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Abstract: The existing building patrimony is responsible for 36% of the global energy use and 37%
of the greenhouse gas emissions. It is hence a major challenge to improve its energy performance.
According to the Renovation Wave, the average annual renovation rate should be doubled by 2030 up
to 3% and deep energy renovations should be encouraged. The Belgian city of Leuven works towards
this target and is even more ambitious, setting their goal on becoming climate neutral by 2050. The
strategy investigated in this study is to increase the renovation rate by clustering renovations, which
is challenging since the Belgian building stock is highly privatised. Based on a thorough literature
study, this paper examines various methodologies for building stock modelling. The main focus is
comparing the required input data with the data availability, handling the data gaps, and defining
their influence on the model’s accuracy. The findings are applied to Leuven by analysing the main
drivers to cluster renovation measures. However, many data gaps appeared, leading to the selection
of a GIS-enhanced archetype model enriched by energy data as the most suitable approach. To
avoid misinterpretation due to differences in data quality, transparent reporting in stock modelling
is recommended.

Keywords: Renovation Wave; renovation rate; clustering; energy reduction; GIS; data; Leuven

1. Introduction

The building sector is currently responsible for 36% of the energy use and 37% of
the greenhouse gas (GHG) emissions worldwide [1]. The European Union aims to lower
the GHG emissions by 80 to 95% by 2050 compared to 1990 [2]. In line with the goals
of the European Union, the Belgian government is working towards the same goal of
evolving towards low carbon, sustainable, reliable, and affordable energy sources and
towards a less energy-consuming society, and hence a better energy performing building
stock. Considering that by 2050, two thirds of the world’s population will live in cities,
cities play a major role in achieving this objective [3]. This implies that cities not only have
the opportunity, but also the responsibility to take the lead in reducing the energy needs
of the building stock. Many cities already translated the roadmap of Europe into a long
term climate action plan, such as the cities of Leuven, Ghent, Antwerp, and Mechelen in
Flanders [4–7].

Over the past decade, an important transition in the energy performance of new
buildings has been achieved in Europe and in Belgium thanks to the European Directive
on the energy performance of buildings (recast) (2010) [8]. However, the existing building
patrimony still remains an important challenge, as the energetic renovation of the existing
stock is too slow to reach the GHG emission reduction goals. The current (2016) annual
renovation rate in Belgium is less than 1%, while in order to reach the goals for 2050, this
renovation rate should be increased to 3% [9].

Achieving a 3% renovation rate is a major challenge, especially because the majority
of the buildings in Belgium are privately owned. This means that the renovation of each
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building is based on the initiative of the building owner. By renovating building-by-
building, the target of renovating 3% of the stock each year will most probably not be met,
since one-by-one renovations will take more time and not all building owners are convinced
yet or are reluctantly examining the administration work. A larger scale approach based on
renovating clusters of buildings might be a valid way forward. The question arises as to
how such clustered renovation could be accomplished.

The overall goal of this research, and of which this paper is a part, is to increase
the renovation rate of a building stock in the Flemish context by clustering buildings
with similar renovation needs and to identify the renovation measures with the highest
GHG emission reduction potential at the stock level. The clustering of the buildings for
renovation is based on the building envelope, the construction year, the building typology,
and the ownership. The type of HVAC system and the airtightness of the buildings are not
considered for clustering the buildings, as the main focus is on renovating the building
envelope to investigate the GHG reduction potential using clustered partial or full envelope
renovation. This methodology is fully elaborated using the case study of Leuven. This city
is chosen for this study because of its engagement in its climate-neutral program by 2050,
where the aim is to decrease the CO2 emissions by 67% by 2030, and even by 80% by 2050
compared to the situation in 2010 [4]. In order to reach this goal and to evaluate the effect
of the initiatives taken, the total CO2 emissions of the city of Leuven have been monitored
yearly since 2010 and the carbon footprint of the city has been calculated for the year
2010 [10]. In order to reach this target, the current renovation rate should be increased, and
the goal has been set at 1000 renovations per year by 2030. Within the overall goal of this
research, this paper focuses on the search for the most suitable building stock model that
allows the identification of clustered renovation opportunities and enables the evaluation
of the GHG impact reduction obtained by clustered renovation. The focus of this paper is
defining the (data) needs and identifying the barriers in order to develop a building stock
model based on a profound analysis of the state of the art. The search for the building
stock modelling (BSM) approach and the handling of the data gaps for developing the
stock model for Leuven are described in detail. A building stock model is aimed for that
provides detailed insight in each building of the stock, such as the building’s geometry and
physical characteristics, energy performance, ownership, and users’ profile, linked to the
geographical location of each of the buildings.

Different approaches are possible to develop a building stock model. A review of
various BSM approaches is provided, describing the goal of the models, the methodology
used, and the data needed. As data availability is often a big challenge for BSM and
influences the level of detail (LOD) and the accuracy of the model, this is seen as an
important selection criterion in the choice of the most appropriate modelling approach.
Based on the review, a modelling approach is selected for the goal of this study. Insights
in the argumentation of the choices made may also be helpful for selecting the most
appropriate building stock model approach for other goals.

The next section describes the requirements for the building stock model to enable the
identification of clustered renovation opportunities (Section 2), followed by a discussion
of the existing building stock models in relation to the identified features (Section 3). In
Section 4, the implementation for the context of Leuven is elaborated. The data availability
and data gaps are discussed and the consequences of these on the modelling approach
are revealed. In addition, both the possibilities and the difficulties are explained. How
previous studies overcame these data gaps and how such approaches can be applied to the
case of Leuven are examined in Section 5.

2. Building Stock Model Features for Clustered Renovation

Multiple large-scale renovation projects have already taken place for neighbourhoods
consisting of nearly identical buildings [11,12]. These projects proved that such clustered
renovation reduces the costs and speeds up the process significantly, as the organisation
can be outsourced for the whole neighbourhood [13]. This not only improves the efficiency,
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but also unburdens the occupants. In order to identify large-scale renovation opportunities
to a building stock that is very diverse, a building stock model is needed that allows the
clustering of buildings that are sufficiently similar.

An important feature of the stock model to enable clustering is information on the
geographical location of the buildings. If the distances between buildings are too large,
clustering does not make sense. Hence, the stock model needs to include information
on the location of each building and should therefore be Geographic Information System
(GIS)-based. To allow for the identification of clustering opportunities beyond street level,
a model of the whole city is also needed. Such a model enables the identification of
multiple opportunities for clustering buildings, as this should not be solely limited to
similar geometries.

Besides the location, the following primary data have been found to be required to
categorise buildings with similar renovation needs: building geometry in at least LOD2 and
preferable LOD3 (see Figure 1) [14], building typology, and renovation history, including
the insulation level of each building element of the building envelope and build-ups of the
building envelope (solid or timber frame construction).
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Besides the building-related data, information about the building owner is important,
as ownership, age, and type of family might influence the willingness to renovate or
influence the type of renovation and related available budget [15–17].

After selecting clusters of buildings with similar renovation needs, the details of the
most-preferred renovation measures need to be developed based on the existing state of the
buildings and building elements, and in view of reducing the life cycle of GHG emissions.

In the following section, different stock modelling approaches are analysed in view
of the above features, and which of these approaches include the required features is
determined. The most promising approaches are then further studied to select the one most
appropriate for the goal of this study.

3. Building Stock Modelling Approaches

Literature on BSM approaches was searched using the keywords ‘building stock’,
‘building stock model(l)ing’ and ‘building stock mode(l)ling city scale’ on Google Scholar
with publication dates between 2015 and 2021. Based on the papers found, additional liter-
ature was retrieved through the corresponding recommended articles in the references of
the selected articles of the first step. The resulting articles were screened in four subsequent
exclusion rounds: a full title analysis, an abstract analysis, a conclusion analysis, and a full
paper analysis. Papers were selected based on the four following preconditions:

1. The main focus is bottom-up energy modelling or building parameter modelling;
2. The object of study is a residential building stock, so studies including only a single

building or other building functions were excluded;
3. The building stock is located in a western country to provide a good basis for compar-

ison with the case study (Europe, Oceania, and the United States of America);
4. Projects with multiple publications were only included once.

In total, 38 papers were analysed in depth. After the in-depth analysis, 25 papers
remained relevant for the scope of this study and were reviewed in more detail. Their most
relevant findings are summarised in Tables 1 and 2. Papers that did not meet the features re-
quired, but provided important insights on the topic, are included in the Discussion section.
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3.1. Types of Stock Modelling Approaches

According to Kavgic et al. [18] and Mastrucci et al. [19], building stock models are
divided into two different approaches: top-down and bottom-up. Top-down approaches
are mostly used for the input–output modelling of cities at an aggregated level, and do not
allow the identification of the main drivers of these inputs and outputs at a high granularity
level. As the stock model in this research aims to identify buildings with similar renovation
needs, a top-down approach is not suitable.

Bottom-up approaches start from buildings or building components at a disaggregated
level, and combine these to the building stock scale [18]. As indicated in Table 2, bottom-up
models allow the tracing of all contributions to the level of the stock components and form
a robust basis for future scenario modelling [19], which makes a bottom-up approach the
preferred approach for the goal of this study. However, bottom-up models require a larger
amount of input data than top-down models, and thus, many studies highlight the (lack
of) availability of the required input data for the full building stock as one of the biggest
challenges. Various approaches can be used to develop a bottom-up building stock model.
In order to define the most appropriate approach for the goal of this study, it is important to
understand the features, limitations, and data needs of the various methods. These insights
are gained through a literature study of existing bottom-up models and are summarised in
Table 2.

Most studies indicate that a higher LOD of the bottom-up approach leads to a higher
accuracy of the model [18,19]. However, Willmann et al. [20] contradict this, explained by
the fact that the LOD and the quality of the input data are the determining factors for the
accuracy. Hence, the trustworthiness of the input data is crucial, and as in their study the
database could not be calibrated with measured energy use data, the higher LOD of the
bottom-up model did not result in a higher accuracy.

3.2. Bottom-Up Stock Modelling Approaches

Different bottom-up approaches have been identified in the literature, as summarised
in Table 1. A first approach is the building-by-building approach [21]. In this approach, the
data of interest need to be known for each single building in the stock, or one should be able
to calculate the data for each building in the stock. This method results in a highly accurate
building stock model with a high level of granularity. This type of model, for example,
allows the identification of the main reasons for the high energy use of each individual
building and, hence, the renovation potential. The major drawback of this method is the
need for big data [21].
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Table 1. Overview of bottom-up building BSM approaches and their data needs [21–45]. The results of the different studies are summed, all characteristics that occur
in more than 60% of the papers are indicated in green, and all characteristics that occur in more than 40% of the papers are indicated in orange.
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Breunig et al. [40] United States
top-down +
bottom-up,
archetypes

a broadly applicable approach for modeling future commercial, residential,
and industrial floorspace, thermal consumption (heating and cooling), and

associated GHG emissions at the tax assessor land parcel level.
yes no yes no yes no no no yes no no no no no no no no no no no yes no no

Brogger et al. [33] Denmark
bottom-up,

building-by-
building

a hybrid bottom-up building stock energy model was developed in order to
overcome the drawbacks of traditional building-physics ( engineering)

based modelling methods. Using a sample of more than 100,000 residential
buildings, individual building-physics based models were calibrated

against energy use data in a multiple linear regression setting, thereby
providing a novel hybrid bottom-up building stock energy model.

yes no yes no no yes yes no no yes yes no no no no no no no hdd yes no no no

Buffat et al. [29] Switserland
bottom-up,

building-by-
building

model building heat demand, derive envelope of all buildings yes no no yes yes no no no yes no no yes yes no no no no yes no no no no yes

Caputo et al. [46] Italy bottom-up,
archetypes

hybrid approach: real + statistical data identification of main renovation
barriers and drivers yes yes yes no yes no yes no no yes yes no yes yes no no yes no no yes yes no no

Dall’o et al. [27] Italy bottom-up Using a GIS platform the integration of two data sources (sample buildings) yes no yes yes yes no yes no yes yes yes yes yes yes yes no yes no yes no no no no

D’Alonzo et al. [32] Italy
bottom-up,

building-by-
building

The paper presents a spatially explicit and “bottom-up” methodology for
the building stock analysis of the residential sector. the energy balance at

the building level (BL) for the whole Valle d’Aosta region (Italy)
is addressed

yes no no no yes no yes no yes yes yes yes yes yes no no no no hdd yes no yes yes

Evans et al. [34] United
Kingdom

bottom-up
building-by-

building

the development of a new three-dimensional model of the British building
stock, called ‘3DStock’. yes no yes yes yes part no no yes yes yes yes yes yes no yes yes yes no yes no no yes

Garcia (2018) [21] Spain
building-by-
building,+
archetype

LCA of renovation measures yes no yes no yes no no no yes yes no yes yes yes no no no no no no yes no no

Gendebien et al. [22] Belgium bottom-up,
archetypes model and simulate domestic energy use yes no yes no no no no no no yes no no no no no no no no hdd no yes no yes
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Table 1. Cont.
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Gulotta et al. [23] Europe bottom-up,
archetypes

bottom-up modelling, energy dynamic simulation and LCA to evaluate
different renovation strategies yes no yes no no no no no no no no no no no no no no no yes no yes no yes

Kontokosta et al. [35] United States
bottom-up,

building-by-
building

develop a predictive mode of energy use yes no no no no part no no yes yes yes yes yes no no no no yes no no no yes no

Nageli et al. [36] Switserland bottom-up BSM based on agent-based modeling approach by modeling indiviual
decisions on building level. yes yes yes yes no no yes no yes yes yes yes yes yes yes no yes no no no no no yes

Nishimwe et al. [37] Belgium
bottom-up,

building-by-
building

the annual heat consumption and heat demand of Wallonia building stock
of more than 1,700,000 buildings are assessed no no yes no yes no no no no yes no yes no no no no no no hdd no no no no

Nutkiewicsz et al.
[24] United States bottom-up,

archetypes

assess the feasibility in using an integrated data-driven urban energy
simulation model to quickly evaluate various large-scale retrofits in an

urban environment
yes no yes no yes no no no yes no no yes yes yes no no yes no no no yes no no

Österbring et al. [25] Sweden bottom-up,
archetype describe urban building stock yes yes yes no yes part no no yes yes 2.5d yes yes no no no no no no yes yes no yes

Pittam et al. [26] Ireland bottom-up,
archetypes develop archetype buildings no no no no yes no no no no no no no no no no no no no no no yes no no

Pittam et al. [30] Ireland remote
sensing understanding the stock no no no yes no no no yes yes yes yes yes yes yes no no yes no no no no no no

Schiefelbein et al. [40] Germany bottom-up,
archetypes

urban energy modeling approach based on open source GIS dataset to
reduce input data uncertainty and simplify city district modeling yes no yes no yes no no no yes yes no yes yes no no no no no hdd no yes no no

Stephan et al. [41] Australia bottom-up,
archetypes

spatially model building stock and quantify embodied
environmental requirements yes no yes yes yes no no no yes yes no yes yes yes yes yes yes no no no yes yes no

Streicher et al. [42] Switserland bottom-up,
archetypes simulate national building energy demand + renovation scenarios yes no yes no no no no no no yes no no no yes yes no yes no yes no yes no yes

Taylor et al. [38] United
Kingdom

bottom-up,
building-by-

building
urban scale energy modelling no no no no yes no no no yes no 2.5d no yes 2.5d no no no no no no no no no
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Table 1. Cont.

INPUT DATA (Per Building)
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Usman Ali et al. [44] Ireland bottom-up,
archetypes

developing a methoddology based on bottom-up approach for GIS based
residential building energy modeling at district scale > greatest potential

for energy savings
yes no yes no yes no yes no yes no yes yes yes yes no no yes yes no yes yes no yes

van der Bent et al.
[43] Netherlands bottom-up,

archetypes

to investigate the extent to which empirical models provide more accurate
estimations of actual energy consumption when compared to a theoretical
building energy model, in order to estimate average actual energy savings

of renovations.

yes no yes no no yes yes no yes yes no no no yes no no yes no no no yes no yes

Wang et al. [28] Switserland bottom-up,
archetypes energy demand model, retrofitting model yes no yes yes yes no no no yes no no no yes 2.5d no no yes yes no no yes no yes

Wurm et al. [39] Germany
bottom-up,

remote
sensing

a workflow for deep learning-based building stock modeling using aerial
images at a city scale for heat demand modeling + evaluating

renovation scenarios
yes no yes no yes no no yes yes no no no yes no no no no no no no no no no

Yes 21 3 19 7 17 5 7 2 18 16 11 14 17 14 4 2 11 5 8 6 14 3 11
No 4 22 6 18 8 20 18 23 7 9 14 11 8 11 21 23 14 20 17 19 11 22 14

Total 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
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Table 2. Strengths and limitations of different BSM approaches [18–45,47,48].

Method Approach Strengths Limitations Literature Source

Top-
down General - input–output modelling of cities

- easy scenario modelling at large scale
- not possible to identify main drivers of energy use
(GHG emissions) Breunig et al. [40], Kavgic et al. [18]

Bo
tt

om
-u

p

General

- provides a higher resolution as particular
effects can be traced back to a construction
element/material/building

- interesting for both building owners and
policy makers

- robust basis for future scenario modelling

- inconsistencies in available urban energy data
- available building data too limited
- absent/limited/static occupant profiles
- size of the database vs size of the stock
- influence of the reference unit
- need for greater data transparency and data access

from utility providers
- flexibility of the model for different contexts

Dall’O et al. [25], Kontokosta et al. [33],
Stephan et al. [32], Streicher et al. [38],
Taylor et al. [36], Usman Ali et al. [48],

Wurm et al. [37]

Bu
ild

in
g-

by
-b

ui
ld

in
g

ap
pr

oa
ch

General

- high accuracy
- high level of granularity
- easy to identify high energy consumers

- necessity for detailed data
- possible higher computational time
- user behaviour variations
- -condition of the building elements often not

included (quality, maintenance level, etc.)

Buffat et al. [47], Garcia et al. [21],
Mastrucci et al. [19], Österbring et al. [23]

Prediction model at
building level based

on top-down data
using machine

learning algorithms

- building-by-building data are scaled up to
the urban level

- use of GIS/data driven predictive model
- possible to assess indoor conditions
- fills data gaps of building parameters,

occupancy, or energy data
- higher accuracy than theoretical building

energy model

- purely data-driven approaches lack underlying
thermodynamic modelling to ascertain how energy
retrofits might affect future energy performance

- availability/quality of data
- accuracy for each part of the study may differ (e.g.,

each renovation measure)

Gao et al. [45], Kavgic et al. [18],
Kontokosta et al. [33],

Nutkiewicsz et al. [43], Schiefelbein et al.
[22], van der Bent et al. [39]

Model based on
energy calculations

- performance gap (prebound and rebound effect)
- accuracy based on the reliability of input data
- strongly dependent on assumptions made

Gendebien et al. [41], Österbring et al. [23],
van der Bent et al. [39]
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Table 2. Cont.

Method Approach Strengths Limitations Literature Source

Archetype approach - less data needed (link to archetype based on
known parameters)

- energy demand of old single-family houses
overestimated (renovations unknown, unheated
spaces, etc.) and of new MFH underestimated

- uncertainty regarding social technical drivers of
energy use

- data to link buildings to archetypes required
- number and representativeness of archetypes

Buffat et al. [47], Kavgic et al. [18],
Pittam et al. [27], Wang et al. [26],

Willmann et al. [20]

GIS-enhanced
archetype

classification

- limited data needed
- building specific data
- identification of particular buildings, their

quantification and distribution

- accuracy of the building characteristics is limited to the
archetype definition Caputo et al. [46], Lismont et al. [44]
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A second type is the archetype approach [20–23,27,32,38–43,46,48,49]. In this approach,
the buildings are represented by archetype buildings based on a classification system.
The most common classification system is the age-type classification to approximate the
U values of the buildings [25,43,44], but there are also other classification approaches:
age–size–type classification to approximate the materials of the buildings for LCAs [21],
classification based on age, type, level of urbanisation, fuel type, and building elements [43],
classification based on age, type, function, and land use [42], classification based on age,
type, and geometry [22,46], age–type–geographic location classification [42], type–location
classification [40], and finally age–type–insulation–installations classification [41]. The
number of archetypes and hence the amount of data to be collected differs widely depend-
ing on the classification system, but is less than for a building-by-building approach. An
interesting source of information regarding archetypes for residential buildings in Europe
is the TABULA/EPISCOPE project, in which the age–type classification is used [50]. A
combination of the first two bottom-up modelling approaches is sometimes used as well.
García-Pérez et al. [21], for example, use a building-by-building model using GIS to as-
sess thermal upgrades of buildings in the metropolitan area of Barcelona, combined with
archetypes to fill the data gaps.

A third bottom-up approach identified in this literature study is a GIS-enhanced
archetype model [44]. In such a model, the archetype approach is used, but supplemented
by GIS data in order to add some building-specific data to the stock model. Examples of
building parameters replacing the generic data of the archetype buildings are the measured
building geometry and address details, and in case of local extensive datasets, even more
parameters can be replaced. This approach is interesting in case a building-by-building
approach is preferred, but not all features are known for each building in the stock, or in
case extra building specific information is useful in an archetype approach. By including
GIS data in the general archetype information, the model becomes more accurate and
reliable [21–23,25–27,32,40,43,46–48]. These GIS data can be supplemented using building
heights or using LiDAR data to create a 2.5D or even 3D city model [51]. In the study
of Mastrucci et al. [52], a GIS-enhanced model is used, but in this case, the data gaps are
filled using statistical data that are apportioned to different building types instead of using
predefined archetypes. In the study of Schiefelbein et al. [22], the GIS model is enhanced by
filling missing values based on national statistics.

A fourth and final modelling approach consists of upscaling a limited number
of building-by-building data to the full stock, making use of GIS data. For example,
Kavgic et al. [18] describe the Energy and Environmental Prediction model, in which
geolocated building-by-building data are processed individually and then scaled up to the
urban level to assess the impact of indoor conditions on human health. As this model starts
from a limited number of buildings including all needed building parameters (bottom-up
data) and upscales to the full building stock (top-down data), this approach is not useful
for the scope of this study as the granularity of the data is reduced.

Table 2 illustrates the other benefits of machine learning-based prediction models. For
instance, these can be used to fill the data gaps of building parameters, occupancy, or energy
use. The study of van der Bent et al. [39] even reveals that prediction models using machine
learning algorithms to define building parameters and energy use might achieve a higher
accuracy than theoretical building energy models using energy simulations. However,
theoretical models are necessary to simulate future scenarios.

3.3. Data Availability

In Table 1, the different bottom-up modelling approaches and the necessary associated
input data are visualised. Out of the 25 analysed papers describing a bottom-up BSM
methodology, 13 papers use an archetype approach, 7 a building-by-building approach,
and 1 a combination of both. Two papers make use of representative building agents, which
are more disaggregated and more adjustable when linking to the stock than using the
archetype approach. In addition, two papers use a remote sensing approach to inventory
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the geometric characteristics of the stock that needs additional data to estimate the energy
use. In the study of Pittam et al. [24], a geometry building stock model (LOD3) is developed
by a remote measurement and mapping technique using Google Earth. Table 1 shows that
the construction period, building typology, GIS dataset, building footprint, building area,
number of stories, and building height are the most common building input parameters.
Each of the parameters occurs at least 14 times. These parameters are followed by the
building volume, the complete building geometry, the window to wall ratio, the heating
installation, and the presence of archetype buildings, which all occur at least 11 times. U
values, measured energy use, or calculated energy use are only known in a very limited
number of studies, so most studies need to derive, calculate, or predict the energy use of
the buildings. The occupancy of the buildings is only known in five studies (improving
the accuracy of the energy calculations), and the material use is only known in two studies.
It can be concluded from this analysis that the methods used in most of these studies do
not allow for an accurate estimation of the renovation needs of the building stock, since no
detailed input parameters regarding the energy performance of the building envelope or
efficiency of the technical installations are known. If the data gaps in these studies could
be resolved, a more detailed estimation of the renovation potential of the building stock
would be possible. Methods to fill the data gaps are discussed in Section 3.6.

3.4. Energy Performance of Building Stock

Four data sources are commonly used to define the energy-related characteristics
of a building stock: (1) measured data and (2) statistical data, which can both be at the
building level or at a higher scale (city, statistical sector, street); and (3) steady state or
(4) dynamic building energy simulations [22,26]. The selection of the most appropriate
data source is based on the availability of the data and the goal of the stock model. On the
one hand, measured energy use per building is the most accurate method to identify high
energy-consuming buildings (e.g., [53]). On the other hand, building energy simulations
are required to assess the effect of renovation measures. In this case, the calculation method
is selected based on the amount of available data and the need for precision [23,47]. The
result is highly dependent on the assumptions made and the data quality. When using
building energy simulations, it is recommended to consider the energy performance gap,
i.e., prebound and rebound effect, to avoid steering in the wrong direction [22,25,43].
Various data sources can also be combined: in the research of Buffet et al. [47], the measured
energy use is known for 1845 buildings in the city of St. Gallen, Switzerland, and this
information is used to validate the energy calculations. In the study, iterations of 2000 heat
profiles for each building were simulated and a Monte Carlo analysis was performed.
However, one should be cautious about the reliability of the results, as the energy demand
of old single family houses is consistently overestimated, while the energy demand of new
multifamily houses is often underestimated [47].

3.5. Material Inventory of Building Stock

A building stock model can also be used to estimate the type and amount of materials
present in the stock and assess the related embodied environmental impacts. For example,
García-Pérez et al. [21] perform an environmental assessment at the urban level using a
bottom-up methodology combining GIS and Life Cycle Assessment (LCA) methods. In the
study of Stephan and Athanassiadis [32], a spatially defined bottom-up model is developed
using building archetypes to represent the land use, construction period, and building
height for Melbourne, Australia. Using these models, the material flows of the building
stock can be analysed in order to quantify the inputs, the outputs, and the materials stored
in the building stock of cities and to assess the corresponding environmental impacts. In
the study of Heeren et al. [54], based on an in-depth building-by-building dataset, the
environmental impact of the building stock is simulated using a life cycle approach for both
the used energy and the materials by clustering the buildings according to their building
type, construction period and heating, ventilation, and air conditioning (HVAC) system.
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3.6. Data Enrichment Methods

Besides the four data sources, methods can be used to enrich the data from these
four sources in case of data gaps for specific buildings in the stock. Different methodolo-
gies to fill the data gaps are found in the literature (the evaluated papers presented in
Table 1). Generally, the archetype approach can be seen as a way to avoid the need for
building-by-building data, as only a limited number of building parameters are required in
such an approach to link each building to the corresponding reference building and then
approximate all buildings by the detailed information of the archetypes [22,23,25,30,40].

The first enrichment approach is to approximate the missing data for some buildings
by assuming the data are identical to the known data of neighbouring buildings. For this en-
richment method, GIS data are required. This approach is used in the study of Schiefelbein
et al. [22], where some missing values were filled using an enrichment approach using
GIS. More specifically, for each missing construction year of a building in the database,
GIS tools are used to examine the neighbourhood of 10.000 m2 to predict the most likely
construction year.

A second approach is based on applying machine learning algorithms to complete
datasets based on similar buildings [18,24,35,40,43,48]. In this case, the missing data should
be available for a subsection of the building stock so that the prediction model can use this
subsection as a training dataset. For example, a subset including measured energy use
of buildings is then used to predict the energy use of the buildings in the stock for which
data are lacking [18,24,35,43,48,55]. On the other hand, the energy use of buildings in the
stock can also be estimated based on energy simulations using building features, which are
predicted with machine learning algorithms. Different machine learning algorithms were
identified in the literature study (Table 1) to predict missing data. In the literature, clustering
techniques are applied in order to find similar buildings in an unbiased way [33,45]. When
a similar building is found based on a few parameters, the other parameters are assumed to
be similar as well. One frequently used clustering algorithm is K-means clustering. In the
study of Gao and Malkawi [45], the GIS database is enriched by distributing the buildings
into different representative building categories using the K-means clustering method. The
centroids of each of the clusters are the most-suited representative buildings, and these
are used in this study to define the benchmark of this building stock. These benchmarks
are used to assess the energy performance of similar buildings. Another machine learning
approach used in the literature is the multiple linear regression model for downscaling. In
the study of Mastrucci et al. [52], statistical data are used to feed the model and determine
the energy use at the dwelling level. For each building, a prediction is made per archetype,
per floor area, and per person. The algorithm starts at the postcode level and downscales
both the natural gas and electricity use to the individual building level based on different
building parameters. Kontokosta and Tull [33] estimate the energy use of 1.1 million
buildings in New York City based on the available information of 23.000 buildings using a
predictive model that utilises a machine learning approach. More specifically, based on the
energy benchmark data of the city, the electricity and gas use of every building is predicted
using linear regression, random forest, and support vector regression algorithms. Finally,
Artificial Neural Networks (ANN) can be used to enrich the data in the building stock
model. This is used in the study of Wurm et al. [37], for example, to extract the building
form from aerial images in order to fill the geometry data gaps. In the comparative study
of Seyedzadeh [55], both ANN and support vector machines (SVM) are revealed to be the
most common algorithms to predict the heating load and the energy demand of buildings.

A third approach often used to fill data gaps is allocating top-down data to build-
ings [40,56]. The top-down data can be based on statistical information, literature, or
surveys. Based on a probability distribution, values for building parameters are assigned
to the buildings in the stock. In this case, the relevant building parameters are not known
at the building level, but only at the stock, statistical sector, or national level, and this
distribution is further extended to the buildings of the stock by randomly assigning values
according to this distribution.
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By filling in the data gaps in stock modelling, the accuracy of the model reduces and
the uncertainty increases. Hence, it is important to validate the model, e.g., by comparing
to results from top-down models, and to gain insight in the uncertainty of the model. The
latter is further discussed in Section 5.2.

3.7. Uncertainty Assessment

The need for big data in stock modelling typically requires combining various databases,
and filling data gaps for at least part of the stock. The reliability of the data from these
different sources, which might even use different system boundaries, has a significant
influence on the uncertainty of the results. Documenting the assumptions is, hence, an
important requirement for transparently reporting these uncertainties.

In the studies of Österbring et al. [23] and Breunig et al. [40], uncertainties are assessed
using sensitivity analysis for the most impactful uncertain parameters. In addition, in the
study of Garcia et al. [21], the influence of the geometry assumptions was verified using a
sensitivity analysis, revealing a link between the average height and the window-to-wall ra-
tio, which reduces the uncertainty of allocating impacts to a specific geolocation. Similarly,
in the study of Schiefelbein et al. [22], multiple simulations are run for the uncertain param-
eters, with 10,000 samples per parameter being assumed. Based on 10,000 simulations, a
probability density function was created to identify the most likely values. The resulting
normalised net space heating demand is revealed to be close to a gaussian distribution.
Kavgic et al. [18] and Garcia et al. [21] emphasise that the relative importance of the input
parameter variations on the predicted output need to be quantified.

Buffat et al. [29] use a Monte Carlo analysis to assess the effect of the uncertainty of
input parameters on the model outcomes. More specifically, to minimise uncertainties in
the simulated heat demand, a normal distribution of geometric input values and indoor
temperatures is taken, a uniform distribution for the shadow factor, a triangular distribution
for the thermal storage capacity, and a lognormal distribution for the ventilation rates. Then,
a Monte Carlo simulation with 2000 iterations is performed.

In other studies, the uncertainty of the model is reduced by checking the past de-
velopment of the building stock with the statistics from past years [36,57]. Using both
historic and current data for the building stock, the simulated long-term development in
the building stock can be validated. This validation step also guarantees better simulations
for future scenarios [36,57]. D’Alonzo et al. [32] validated the results of the bottom-up
model by comparing these with the available top-down data.

A final uncertainty that should be taken into account is the discrepancy between the
estimated and measured energy use of buildings, which can be more than 100% [24,29]. In
the research of Kavgic et al., a lack of knowledge regarding the real energy use of residential
buildings is clarified by the fact that energy models cannot handle social interactions
properly. The uncertainty regarding the occupants’ behaviour is addressed as a risk of
unpredictability in the studies, but it is not resolved.

3.8. Conclusions

In the overall goal to develop a stock model that allows the identification of buildings
with poor energy performance and a high environmental impact, their location, and the
main drivers of the energy use and impacts, a literature study was performed of existing
modelling approaches. From the review, it can be concluded that top-down models are
not sufficiently detailed for this purpose, and only bottom-up models are appropriate.
Nevertheless, a top-down model can still be used to validate the bottom-up model results.

As the location of the buildings is important to identify clusters for group renovation,
the model should include geographical information (GIS data). A building-by-building
approach is preferred in terms of accuracy of the building parameters, energy related data,
and occupant characteristics, but an archetype-based approach might serve as alternative
in cases where data are not sufficiently available for each single building. Furthermore,
the dataset can also be extended using different enrichment approaches, as discussed in
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Section 3.6. A mixed approach might be a solution to reach a high level of accuracy if data
are incomplete.

4. Case Study—Leuven

This study focuses on the residential building stock of Leuven. The stock of Leuven in
the year 2021 consists of 34,206 buildings and 64,283 residential units [57]. The building
stock is very diverse and highly privatised [58]. As most buildings are privately owned,
large-scale renovation projects are not only challenging in terms of construction, but also
in terms of engaging the building owners. Although this paper focuses on modelling the
stock of Leuven, the approach can be extrapolated to other cities with a similar climate, i.e.,
requiring space heating and no mechanical cooling. However, an analogue methodology
can be developed including or replacing more building parameters when developing a
stock model for a different climate.

4.1. Availability of Required Data

A first important source for developing the stock model of Leuven is the open-source
GIS data (‘GRB Flanders’) [59] of the Flemish region. This database includes various data
of the buildings: area of the ground floor of the building, perimeter, postal address, and
ridge height (LOD1), as indicated in Table 3. However, this LOD is insufficient for the goal
of this study.

Table 3. Ten samples from the dataset of Flanders (anonymised by removing the house address numbers).

Flanders Dataset
NR ID_Flanders Street Municipality NR Height Perimeter Footprint Centroid_X Centroid_Y
1 2880957 Oude Rondelaan Leuven XX 9.86 41.07 104.11 172,655.45 175,468.68
2 2880955 Oude Rondelaan Leuven XX 7.89 50.28 154.28 172,683.67 175,484.70
3 2880944 ‘s Hertogenlaan Leuven XX 6.3 71.22 222.35 172,565.03 175,460.76
4 2880943 ‘s Hertogenlaan Leuven XX 6.1 54.06 164.48 172,549.18 175,450.56
5 2880937 ‘s Hertogenlaan Leuven XX 6.7 47.7 130.86 172,528.38 175,437.81
6 2885460 Rotspoelstraat Heverlee XX 7.49 54.46 137.34 170,646.96 172,205.77
7 2880722 Brouwersstraat Leuven XX 10.98 22.58 31.66 172,677.58 174,831.51
8 2880734 Brouwersstraat Leuven XX 10.93 38.9 66.33 172,613.70 174,869.47
9 2886057 Parkbosstraat Heverlee XX 13.5 54.16 163.06 173,147.07 172,260.91

10 2908196 Politieke-
Gevangenenlaan Wilsele XX 9.01 40.87 71.56 174,227.56 178,078.37

In the case of Leuven, an additional GIS database is available, including all buildings
of the stock and providing information regarding the building function, the number of
floors, the construction year, the roof type, and the number of residential units, as shown in
Table 4 [60]. Both databases are of interest, as they include different building information,
and thus, combining both adds value to this research. Both databases work with different
IDs and different polylines. In a previous step in this research, the majority of the buildings
could be linked in both databases using geoprocessing tools [61]. This resulted in a GIS
database for the building stock of Leuven with LOD2 in which all Flemish main building
IDs (excluding annexe buildings) could be linked to a main building of the GIS database
of Leuven. To illustrate the outcome, 10 corresponding samples from both databases are
visualised in Tables 3 and 4. Both tables follow the same order and could thus be linked.

As the GIS databases do not include information on the energy performance or insu-
lation level of the buildings, as illustrated in Tables 3 and 4, the data need to be further
enriched based on different data sources. A potential source for this enrichment is the
Energy Performance Certificate (EPC) database for Flanders. The EPC database provides
information about the energy performance parameters of the buildings; more specifically,
the following relevant data can be retrieved from the database: construction year, building
typology, ownership, roof type, calculated energy use, U values, areas of building elements,
EPC label of the building, and fabrication year of the HVAC installations. However, this
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database is only available in an anonymised way for privacy reasons. The location (address)
of the buildings is not provided, which means that the EPC database cannot be directly
linked with the GIS databases of Flanders and Leuven.

Table 4. Ten samples from the dataset of Leuven (SFH: single family house, EDU: education).

Leuven Dataset

NR ID_Leuven Construction
Year

Number
Floors

Number
Floors

Basement

Number
Floors Roof Roof Type Function Centroid_X Centroid_Y

1 2264224 1966 2 0 1 pitched SFH 172,655.4456 175,468.7454
2 2264232 1971 2 1 0 pitched SFH 172,683.3761 175,485.0469
3 2264244 1976 2 0 1 flat SFH 172,565.0013 175,460.8042
4 2264248 1988 1 1 0 pitched SFH 172,549.1693 175,450.9007
5 2264252 1990 2 0 1 flat EDU 172,528.3674 175,437.8730
6 2407336 1988 1 1 0 pitched SFH 170,646.9585 172,205.8175
7 2268312 1946–1970 0 0 0 pitched SFH 172,677.9027 174,832.4616
8 2268196 1946–1971 0 0 0 pitched SFH 172,612.8326 174,867.0901
9 13126791 2002 0 0 0 pitched Unknown 173,147.0758 172,260.9632

10 2333891 1957 0 0 0 pitched SFH 174,227.0597 178,078.6134

A second source of energy-related data is the energy use (both natural gas and electric-
ity) data provided by Fluvius, the energy network distributor of Belgium. Fluvius provides
information of the energy use of buildings, aggregated at the street level or sector level.
Building-level data are not available due to privacy issues. The gas use (in kWh) for the
year 2017 per m2 building derived from the Fluvius data and assuming an identical use
per m2 floor for each building in the street is shown in Figure 2. This very rough estimate
does not allow for differentiation of the energy use between the various buildings of one
street. Section 5 of this paper explains how this data gap has been handled in this research.

Finally, taking into account information regarding the building owners and occupants
will ensure that those with similar renovation interests can be grouped. However, this
information is not included in the GIS data of Flanders, nor Leuven. A study conducted by
Steunpunt Wonen [15] reports the distribution of the age of the building owner according
to the construction year of the building. In this study, a link was also found between the
renovation level of buildings and the age of the occupant, and between the houses sold on
the market and the occupants’ age. Furthermore, the EPC database provides information
regarding the property type, distinguishing a natural, social, legal, and governmental
owner or landlord. Both the EPC dataset and the results from Steunpunt Wonen are not
available at the building level, but these datasets do include statistical data that can be used
to enrich the GIS dataset.

A summary of the required data for the goal of this study and their availability for
Leuven is provided in Table 5, including the source of the data. The final column provides
information about the approach taken to fill the data gaps, further discussed in Section 5.

4.2. Building Stock Model for Leuven

The study of the availability of the required data in the previous section reveals that a
detailed building-by-building approach for Leuven is not currently possible. Consequently,
an archetype approach is chosen. To increase the accuracy of this bottom-up archetype
model, GIS data at the building scale are added to the highest extent possible. The stock
model developed in this research is, hence, a GIS-enhanced archetype model. The literature
review indicated that various building characteristics can be taken into account to define
archetypes. In the case of Leuven, the construction period and building type are known for
most buildings, so an age–type classification (in order to be able to link the archetypes to
the buildings of the stock) seems most appropriate.

These archetypes can then be used to approximate the U values of the building
envelope elements in their original state (data gap mentioned before). An important
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shortcoming in this approach is that it ignores any renovation that has already taken place,
and therefore overestimates the energy use of renovated buildings. Unfortunately, no
information is available on the performed renovation measures for the city of Leuven.
Section 5 will discuss the methods to fill this data gap.
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Figure 2. Visualisation of the extrapolated gas use per m2 residential building using the Fluvius data
at street level (consumption year 2017, in kWh/m2).

Table 5. Overview of the data needs, data availability, data gaps, data sources, and methodologies to
fill data gaps in Leuven.

Data Necessary for . . . Availability Data Source Methodology to Fill
Data Gap

Building
related data Construction year build-up of the elements partly GIS file Leuven nearest neighbours

Building typology build-up of the elements,
energy loss surface yes GIS file Leuven +

geoprocessing -

Geometry (LOD1) energy loss surface yes GIS file Flanders -

Roof type build-up of the elements,
energy loss surface partly GIS file Leuven

statistical distribution
based on the building

typology and
construction year

U value of the
building elements

build-up, renovation
history no

statistical distribution
based on EPC based

on the building
typology and

construction year
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Table 5. Cont.

Data Necessary for . . . Availability Data Source Methodology to Fill
Data Gap

Details heating
installation

performance, renovation
history no

statistical distribution
based on EPC based

on the building
typology and

construction year

Construction type
(solid/skeleton) build-up of the elements no

statistical distribution
based on EPC based

on the building
typology and

construction year

Building address link with other
data sources yes GIS file Flanders

Energy consumption
data at street level

average energy
performance per street yes Fluvius

Carbon footprint of
the city (separately
for households and

the various
energy sources)

top-down validation step yes
Klimaatactieplan

stad Leuven
2020–2025

Owner
related data Rental or property renovation history,

willingness, main goal no statistical distribution
based on EPC

Legal status of
the owner

renovation history,
willingness, main goal no statistical distribution

based on EPC

Age of the owner renovation history,
willingness, main goal no

statistical distribution
based on research
Steunpunt Wonen

5. Data Inventory for Stock Model of Leuven

A GIS-enhanced archetype model enriched by energy data was identified as the most
suitable model, as not all building parameters are known at the building level. The data
needed for the model are shown in Table 5. Figure 3 shows a flowchart, starting with the
required data and the available data sources. The archetypes are needed to estimate the
original U values and build-up of the building elements. The statistical data are needed to
estimate the renovation potential of buildings, which is defined by the building parameters
(U values of the existing state) on the one hand, and the building owners on the other.
This estimation is made according to the corresponding building typology, function, and
construction period. When the location, the original state, and the renovation potential of
buildings are known, clusters of similar renovation potential can be identified. The data
availability for the case study of Leuven is discussed in Section 4.1, and comparing the
available data with the data required reveals that important data gaps remain.

On the one hand, the building parameters for which data are available still have
missing values. For Leuven, these are the roof type (1%) and the construction year (40%).
On the other hand, some building parameters are not known at the building level for
privacy reasons [18,35], and are only known in anonymised datasets, at street level, or in
statistical datasets. For Leuven, these are energy- and owner-related building parameters.
In Section 3.6, different enrichment methodologies were discussed; the next section dis-
cusses various methods to fill the data gaps by enriching the GIS dataset for the case study
of Leuven.
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5.1. Data Enrichment Approaches Used for Modelling Leuven Building Stock

The archetype approach using an age–type classification enables the identification of
the original state of the buildings at the moment of construction. In the merged GIS database
discussed in Section 4.1, the building typology (e.g., detached house, terraced house, semi-
detached house) is unknown. However, the building type could easily be determined using
the GIS software Arcmap by counting the adjacent neighbours: detached buildings have no
adjacent neighbours, semi-detached houses have one neighbour, terraced buildings have
two neighbours, and apartments can be identified by the function (see Table 4). In the GIS
database for Leuven, the roof types and construction years were lacking for respectively 1%
and 40% of the buildings. These missing values are shown in Figure 4. In an earlier step of
this research [61], these data gaps were filled using a GIS enrichment approach similar to
the approach used by [40]. The missing roof types were filled in randomly accordingly to
the statistical distribution of the roof types of the corresponding building type (construction
period and building typology). The data gaps of the construction year could be filled in by
taking the average of the construction years of all buildings within a 30 m radius.
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types (right).

To determine the energy use of each building in the stock, machine learning techniques
were used, departing from the available building parameters [62]. Different algorithms
(decision tree regressor/classifier, random forest classifier, kNN regressor/classifier) were
compared, and the kNN classifier (k-Nearest Neighbours) algorithm was identified as the
best performing with an accuracy (R2) of 0.89. This methodology is explained in depth
in [62].

In order to add energy-related building parameters to the GIS dataset, machine learn-
ing techniques were explored in order to determine the U values of the building elements
and information on the heating system. However, the U values could not be modelled
accurately using these machine learning techniques, as too few EPC database records meet
the current standards and, therefore, the EPC database is too unbalanced to predict the U
values of building elements. Therefore, all data gaps that could not be resolved using a
GIS enrichment algorithm or by a machine learning algorithm were filled in by allocating
top-down data randomly to the buildings according to their statistical distribution in the
EPC database corresponding to the building type (typology and construction year). Energy
parameters are based on the EPC database, while owner-related data are based on the EPC
database and the study performed by Steunpunt Wonen [15]. Once the U values have been
randomly allocated to the buildings in the stock using the MS Excel function ‘Rand’ and the
corresponding distribution in the stock, these can be compared with the building practice
of the corresponding construction period and with current standards. This comparison
provides insight into the renovation measures already taken. Based on these comparisons,
various renovation statuses can be defined, i.e., ‘original’ when no renovation has taken
place yet, ‘small Renovation’ when the U value performs better than the original value,
but worse than the energy standards, and ‘Conform’ when the U values are in line with
current Energy Performance requirements. Knowledge regarding the original state of the
building (based on construction year and build-ups of the archetypes in that period) and
the renovation history of buildings, the renovation needs can be defined. In Table 6, the
estimations of the U values of the 10 samples of Tables 3 and 4 are shown.
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Table 6. Ten samples from the EPC database assigned to the GIS dataset of Leuven.

Top-Down Allocation
NR Pitched Roof Flat Roof Wall Floor Window Year Heating Ownership

1 small Ren small Ren original small Ren Conform original Owned–private
2 small Ren original original original Conform small Ren Rent–social
3 small Ren small Ren original original Conform original Owned–private
4 small Ren original small Ren original Conform small Ren Owned–private
5 small Ren original original small Ren Conform original Rent–private
6 small Ren original small Ren small Ren Conform original Rent–social
7 Conform original original original Conform small Ren Owned–private
8 small Ren original original small Ren small Ren small Ren Owned–legal
9 small Ren original small Ren small Ren Conform small Ren Owned–private
10 original small Ren original original Conform original Rent–government

In conclusion, given the data availability in Leuven, a GIS-enhanced archetype model
enriched by (energy) data obtained through GIS additions, a data driven predictive model
and top-down allocation, has been chosen as the most suitable approach to enable stock
modelling and clustering of buildings. In the next step of the research, this model will be
used to cluster buildings based on their renovation needs, estimate the renovation potential
of the building stock, and evaluate the potential GHG reductions using an LCA.

5.2. Uncertainty Assessment for Model of Leuven

In order to trace back the data reliability, the developed database (stock model) clearly
differentiates the measured and estimated (calculated or predicted) data to ensure trans-
parency about the data quality and to allow for the critical interpretation of the results. This
also allows the pinpointing of areas where more efforts are needed in future to improve
data quality. For Tables 3, 4 and 6, the quality of the data is illustrated in Tables 7–9.

Table 7. Ten samples from the dataset for Leuven, including the data quality (SFH: single family
house, EDU: education, k: known, n: based on neighbours, u: unknown, g: calculated in GIS, D:
detached, T: terraced, SD: semi-detached).
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1 2264224 1966 k 2 k 0 k 1 k pitched k SFH k D g
2 2264232 1971 k 2 k 1 k 0 k pitched k SFH k D g
3 2264244 1976 k 2 k 0 k 1 k flat k SFH k D g
4 2264248 1988 k 1 k 1 k 0 k pitched k SFH k D g
5 2264252 1990 k 2 k 0 k 1 k flat k EDU k D g
6 2407336 1988 k 1 k 1 k 0 k pitched k SFH k D g
7 2268312 1946–1970 n 2 k 0 k 0 k pitched k SFH k T g
8 2268196 1946–1971 n 2 k 0 k 0 k pitched n SFH k T g
9 13126791 2002 k 1 k 0 k 0 k pitched n Unknown u SD g
10 2333891 1957 k 2 k 0 k 0 k pitched k SFH k D g
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Table 8. Ten samples from the dataset for Flanders, including the data quality (XX: address numbers
are anonymised, k: known).

Flanders Dataset
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1 2880957 Oude Rondelaan k Leuven k XX k 9.86 k 41.07 k 104.11 k
2 2880955 Oude Rondelaan k Leuven k XX k 7.89 k 50.28 k 154.28 k
3 2880944 ‘s Hertogenlaan k Leuven k XX k 6.3 k 71.22 k 222.35 k
4 2880943 ‘s Hertogenlaan k Leuven k XX k 6.1 k 54.06 k 164.48 k
5 2880937 ‘s Hertogenlaan k Leuven k XX k 6.7 k 47.7 k 130.86 k
6 2885460 Rotspoelstraat k Heverlee k XX k 7.49 k 54.46 k 137.34 k
7 2880722 Brouwersstraat k Leuven k XX k 10.98 k 22.58 k 31.66 k
8 2880734 Brouwersstraat k Leuven k XX k 10.93 k 38.9 k 66.33 k
9 2886057 Parkbosstraat k Heverlee k XX k 13.5 k 54.16 k 163.06 k

10 2908196 Politieke-
Gevangenenlaan k Wilsele k XX k 9.01 k 40.87 k 71.56 k

Table 9. Ten samples from the EPC database assigned to the GIS dataset for Leuven (m: medium
weight, h: heavy weight, O: original, sR: small renovation, C: Conform, r: randomly assigned).
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1 m r sR r sR r O r sR r C R O r Op r
2 m r sR r O r O r O r C r sR r Rs r
3 m r sR r sR r O r O r C r O r Op r
4 h r sR r O r sR r O r C r sR r Op r
5 h r sR r O r O r sR r C r O r Rp r
6 h r sR r O r sR r sR r C r O r Rs r
7 m r C r O r O r O r C r sR r Op r
8 m r sR r O r O r sR r sR r sR r Ol r
9 m r sR r O r sR r sR r C r sR r Op r
10 m r O r sR r O r O r C r O r Rg r

In the next step, the influence of all calculated or predicted data on the end result
will be validated by comparing these with the top-down carbon footprint data of the
city of Leuven, including all relevant sectors [10]. The most influencing parameters will
also be identified and a sensitivity analysis regarding the volatility of the values of the
building parameters will be made. This uncertainty will be considered when presenting
the results, i.e., a range of results will be shown rather than a single score value. Moreover,
this identification of uncertain building parameters with a high impact is of importance to
define data collection priorities.

6. Conclusions and Discussion

It can be concluded that many different stock models are used in the literature, dif-
fering in methodological approach, building classifications, and location specificity. The
modelling approach is typically chosen according to the goal and scope of the study, and
the data availability. Data availability is a predominant concern in the literature. However,
a significant amount of the missing data could be filled in by the energy network oper-
ators. Greater data transparency and data access would improve the model’s accuracy
in forecasting energy use, which can help cities in terms of their sustainability strategies.
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These data gaps not only affect the study itself, but the lack of public open data and lack of
transparency also have negative consequences on the reproducibility of the study. However,
much of the data are still not available because of privacy and confidentiality concerns, but
in some countries, more data are becoming available in order to influence energy demand.

The literature review shows that data gaps are either resolved by avoiding the use
of these data, or by using various methods such as machine learning algorithms, among
others. However, these studies highlight the importance of reliable and accurate data
collection to improve the estimation of the current energy use of the building stock and to
localise the renovation potential of the stock.

When applied to the case study of Leuven, the lack of building-specific energy data
seems the most decisive criterion for the overall approach. This data gap implies that the
building stock model of Leuven cannot rely on measured energy data or on thermal building
features, which strongly influences the accuracy of the model. Based on the findings of
the literature review, a GIS-enhanced archetype model enriched by energy data obtained
through a data-driven predictive model is chosen as the most suitable approach. However,
completing the dataset using a prediction model instead of measured data has a negative
effect on the accuracy of the model. Hence, it is important that assumptions and related
reliability issues are displayed in a transparent way to allow for correct interpretations. This
implies that far-reaching data management is required to correctly estimate and interpret
the results; however, the presentation of this data management is beyond the scope of
this paper.
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