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Abstract: With the development of the Energy Internet and the Internet of Things, diversified social
production activities are making the interactions between energy, business, and information flow
among physical, social, and information systems increasingly complex. As the carrier of information
and the hub between physical and social systems, the effective management of energy big data has
attracted the attention of scholars. This work indicates that China’s energy companies have carried
out a series of activities that are centered on energy big data collection, as well as development
and exchange, and that the energy big data ecosystem has begun to take shape. However, the
research on and the application of energy big data are mainly limited to micro-level fields, and the
development of energy big data in China remains disordered because the corresponding macro-level
instructive governance frameworks are lacking. In this work, to facilitate the sustainable development
of the energy big data ecosystem and to solve existing problems, such as the difficult-to-determine
governance boundaries and the difficult-to-coordinate interests, and to analyze the structure and
mechanism of the energy big data ecosystem, data curation is introduced into energy big data
governance, and a paradigm is constructed for sustainable energy big data curation that encompasses
its full life cycle, including the planning, integration, application, and maintenance stages. Key
paradigmatic issues are analyzed in-depth, including data rights, fusion, security, and transactions.

Keywords: big data; energy big data governance; energy big data ecosystem; full life cycle curation

1. Introduction

Decades of informatization construction in China have achieved data collection for
the production, transmission, transaction, consumption, and other aspects of the energy
industry. Thus, during energy power system construction and operation, massive data
resources are accumulated. With the development of energy technology and the advent of
the digital economy, the developing data resources have attracted the attention of numerous
energy companies and scholars in China.

In terms of development strategies, China’s energy enterprises are represented by
the SGCC and China Energy, which have issued corresponding big data development
strategies, as shown in Table 1. In terms of business models, the business models of energy
big data companies usually include value propositions, business system design, market
expansion, risk control, etc. [1,2]. In addition, Chen et al. proposed that the enterprise-level
energy big data business models can be evaluated from the aspects of profitability, cus-
tomer value, strategic positioning, etc. [3]. Chen et al. constructed an evaluation system
for energy big data business models from the perspectives of the economy, technology,
the environment, and society [4]. In terms of standard establishments, International Elec-
trotechnical Commission Joint Technical Committee 1 (IEC JTC1) and other international
organizations have issued a series of specifications for the basic standards for big data
in the power industry [5]. Zhang et al. and Han et al. proposed a standard system for
power transmission and transformation projects and for public data publication from data
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description, data utilization, and association models [6,7]. In terms of information tech-
nologies, non-relational databases are considered to be an important solution for storing
and managing large-scale data in energy companies. Data indexing, scheduling, and log
management are important research directions in the field of information technology for
energy big data governance [8,9].

Table 1. Energy big data development strategies of China’s energy companies.

Companies Associated Development Strategies

State Grid Corporation of China (SGCC) (Beijing, China)
Build a world-leading energy internet company and enhance
company momentum by improving the digitalization of grid

operations and company business operations.

China Energy Investment Corporation (China Energy)
(Beijing, China)

Actively carry out big data applications and governance to
achieve goals related to “platform development, digital

operations, ecological collaboration, industry chain
collaboration and intelligent production”.

China Petroleum & Chemical Corporation (Sinopec Corp.)
(Beijing, China)

Access internal and external data widely, create a “data +
platform + application” development model, expand to a new
space for digital economic growth, and create a new engine for

the company’s high-quality development.

China Huaneng Group Co., Ltd. (Beijing, China)

Build a unified intelligent energy data center covering all of the
industrial sectors of the company to achieve both the up- and

the downstream data penetration of the industrial chain as well
as energy production and consumption.

China Southern Power Grid Company (Guangzhou, China)
Accelerate digital transformation and digital grid construction
to achieve interconnection patterns for a digital government,
national industrial internet, and the energy industry chain.

To sum up, due to the lack of a concept for the full life cycle and ecosystem, the current
research and governance of energy big data is still oriented towards specific enterprises
or industries. Specifically, China’s energy big data governance work remains largely
fragmented from the macro-perspective of the industry. Furthermore, systematic and
scientific governance models of energy big data are lacking. Significant data barriers exist
between companies, specialties, businesses, and departments. These barriers result in
potential data risks, such as non-repeatable losses, low value density, and outdated values.
Therefore, based on the concept of the full life cycle and the ecosystem, the construction of
a guiding energy big data governance paradigm from the top-level perspective has become
the key to promoting the data connection and value co-creation. Such an effort would
support data value exploration and energy big data ecosystem construction and would
promote an energy revolution that is driven by the digital economy.

In response to the above problems, this paper studies the element structure, the inter-
action mechanism between elements, the system operation, and the evolution mechanism
of China’s energy big data ecosystem and further points out the development trends and
critical challenges of China’s energy big data ecosystem. Secondly, this paper presents a
paradigm for creating a full life cycle curation of sustainable energy big data that includes
planning, integration, application, and maintenance. Furthermore, four key issues involved
in the full life cycle curation are analyzed. These research results can provide a relevant
basis and reference for the sustainable development of energy big data in China from the
perspective of the macro-strategies and top-level design.
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2. Status Review and Trends of Energy Big Data in China
2.1. Status Review of Energy Big Data
2.1.1. Development

Data analysis methods and data application scenarios differ in the field of energy
big data. Based on these differences, the development of energy big data can be divided
into three periods: the sprout period (before 2010), the boom period (2010–2016), and the
innovative development period (after 2016), as shown in Figure 1 [10–12].

Figure 1. Development of energy big data.

During the sprout period, energy data—which include device parameters; operating
data; trading prices; and the volume data for electricity, coal, and gas—could only be
obtained by distributing metering equipment, installing sensors, and maintaining a manual
record. These data were processed using statistical and visual processing methods to moni-
tor and analyze the equipment, pipe networks, energy markets, and demand-side behavior.
Furthermore, such analyses provided support for equipment operation, market bidding,
and business development strategies by providing an understanding of the operational
state of the equipment, energy transaction price trends, user preferences, etc.

The boom period witnessed the rapid development of information technologies such
as data mining, machine learning, and artificial intelligence. Therefore, it became possible
to further analyze and learn from energy big data. The advent of technologies such as
the Internet of Things and advanced sensors permitted the timely collection of system-,
equipment-, and even component-level data. Furthermore, equipment condition monitor-
ing, pre-warning systems, and operation optimization driven by energy big data developed
gradually. Meanwhile, research on and the construction of smart power stations, smart
grids, and smart devices increased rapidly. These technologies and achievements signifi-
cantly improved the security, reliability, and efficiency of the energy systems.

During the innovative development period, the concept of the energy internet was
proposed. This concept deepened the integration of energy, business, and data flows during
the production, transmission, distribution, trading, and consumption of energy sources
such as electric, heating, and gas systems. The data among different energy systems were
effectively connected. Additionally, emerging technologies—such as cloud computing,
situational awareness, and deep-learning techniques—were applied and popularized. This
process began to promote the transformation and upgrade of energy systems. Mean-
while, integrated energy system scheduling optimization and integrated energy market
transaction decision optimization, etc., became possible [13–15].
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2.1.2. Research

(1) Energy big data technology

Energy big data technology can be divided into four categories: acquisition, integra-
tion, analysis, and presentation technologies [14,15].

Data acquisition can be achieved through databases, networks, and devices. Common
technologies include Oracle, NoSQL, web crawler technology, APIs, smart meters, and
device sensors.

Data integration refers to the integration of distributed heterogeneous data from
various sources and with different formats to form valuable, consistent, and available data
resources. Data integration technology systems mainly include data extraction, cleaning,
transformation, and storage.

Data analysis refers to the process of discovering hidden laws and knowledge through
the analysis of massive, high-dimensional, and heterogeneous data. In terms of algorithms,
the main data analysis technologies involve clustering, regression, association rule mining,
deep neural networks, etc. In terms of modes, the main data analysis technologies include
Spark, MapReduce, HaLoop, etc.

Data presentation refers to the use of image processing and other methods to transform
data into visual forms to allow the information and rules contained therein to be displayed.
Data visualization is an important data presentation technology that can be regarded as a
product of the interaction of scientific visualization, information visualization, and visual
analysis. Data visualization includes visualizations of relational, statistical, and spatial data
based on the specific type of data being displayed.

(2) Applications of energy big data

Energy big data are widely used in energy industry planning, operation, consumption,
and policy making [16–20].

In planning scenarios, the distribution laws of energy resources and loads in the
spatiotemporal dimension can be mastered through the correlation and spatiotemporal
analyses of energy big data, such as renewable energy resources data, meteorology data,
geographic data, macroeconomic data, and multi-energy load data. Additionally, these
laws can provide critical guidance for energy station site selection, installed capacity
determination, and pipe network topology design, etc.

In operation scenarios, awareness of the generator real-time shift peak load capacity,
real-time transmission capacity, and equipment real-time operating conditions provides
a valuable reference for operation optimization and pre-warning systems. This aware-
ness can be obtained by carrying out a trend analysis based on monitoring the opera-
tional data of the energy system, equipment, pipe network, and node load under various
working conditions.

In consumption scenarios, the correlation between a user’s energy consumption behav-
ior and meteorological, economic, demographic, energy price, and other data provides the
theoretical support to create a user portrait. This correlation can be revealed through an en-
ergy big data analysis and provides the support for multi-timescale and multi-energy load
predictions (e.g., medium- and long-term heat-load forecasting, ultra-short-term power-load
forecasting, etc.), energy market transaction decisions, demand-side management, etc.

In policy-making scenarios, energy big data analyses can help to reveal the internal
correlations between the effects of policy implementations and local energy consumption
structures, economic development levels, industrial structures, and other factors. These
can then be used to provide suggestions for the establishment and improvement of policy
mechanisms. For example, an energy big data analysis can calculate and predict renewable
energy outputs, regional load demand, and the trans-regional transportation costs and
capacities of renewable energy sources. Thus, these analyses provide important references
for the development of renewable energy trans-regional trading mechanisms and for the
formulation of renewable quota policies.
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2.1.3. Policies

In recent years, many important economies, including China, have focused on pro-
moting the development of the digital economy, increased the development of big data to
a national strategic height, and introduced a number of relevant policies to promote the
development of energy big data. Tables 2 and 3 list the policies related to energy big data
in China and in typical major economies, respectively.

Table 2. China’s policies regarding energy big data.

Implementation Time Departments Strategies Related Content

2015 The State Council Outline of Action to Promote the
Development of Big Data

Propose the planning and
construction of an information

resource base and security
protection systems in important
fields, including the energy field;

accelerate data collection, analysis,
and open sharing; and promote the

integration of data resources

2016 Ministry of Industry and
Information Technology

The Big Data Industry
Development Plan (2016–2020)

Promote big data applications in
energy and other industries; ensure
data information security in energy
and other industries as a key project

2016
National Development and

Reform Commission, National
Energy Administration

Guiding Opinions on Promoting
the Development of “Internet+”

Smart Energy

Propose the development of the
energy big data service industry;

improve energy big data business
and supervision systems; encourage

cooperation between internet
companies and energy companies

to explore the commercial
value of energy

big data; and promote innovation in
energy big data applications

2017
Drafting committee directly

led by the Political Bureau of
the CPC Central Committee

Reports of the 19th National
Congress of the Communist

Party of China

Propose promoting the deep
integration of the big data, energy,

and other real economy sectors;
strengthen the construction of

power grids and other
infrastructure networks; and
support the optimization and

upgrade of traditional industries

2020 Ministry of Industry and
Information Technology

Guidance on the development of
industrial big data

Propose promoting the digital
transformation of energy and other

important industries while
considering data aggregation, data

sharing, data applications, data
governance, and data industry

development as key tasks
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Table 3. The policies of major economies regarding energy big data.

Economies Relevant Policies Related Content

The United States

Digital government Strategy, Grid 2030, Federal
Big Data Research and Development Strategic

Plan, Federal Data Strategy, Critical and
Emerging Technologies National Strategies, etc.

In the early 2010s, the United States proposed
exploring the potential value of data by building

an open and shared digital platform.
In the mid-2010s, the United States further
enhanced investment and guidance on big

data-related projects in various fields, including
the energy industry. These projects included the

development and application of big data
technology, the establishment of data sharing

and protection mechanisms, etc.
In the early 2020s, the United States proposed
standardizing the big data governance model,

technical standards, resource library
construction, and ethical framework in various

fields. The positioning of big data begins to
change from “technology” to an “asset”.

European Union

European Digital Agenda, Digitising European
Industry, Shaping Europe’s digital future, 2030

Digital Compass, Action Plan on the
Digitalisation of the Energy Sector, etc.

In the early 2010s, the EU proposed that all of
society should enjoy the benefits brought by the

digital era. Data market construction, the
development of digital technology standards,

and data security enhancement were identified
as the critical directions for development

directions in the future.
In the mid-2010s, the EU proposed speeding up
the process of digital infrastructure construction
and increasing the digital innovation capacity of

various industries by relying on Digital
Innovation Hubs, thereby accelerating the

process of European industrial digitalization.
In the early 2020s, the EU proposed accelerating
the digitalization process from the industry level

rather than at the enterprise level.

The United Kingdom

Data Capability Development Strategic Plan, UK
Digital Strategy, Industrial Strategy: building a

Britain fit for the future, National
Data Strategy, etc.

In the early 2010s, the UK proposed attaching
importance to the cultivation of talents in the

field of big data technology and improving the
legal and institutional system to ensure that data

could be shared securely.
In the mid-2010s, the UK proposed strengthening

the development and protection of big data in
the industrial field and further improving digital

infrastructure in the energy sector.
In the early 2020s, the UK proposed fully

exploring the economic value of big data and
promoting the cross-border flow of data under

the premise of ensuring security.

Japan

Basic Law on the Promotion of Public and
Private Data Utilization, Manifesto to Create the
World’s Most Advanced Information Technology
Nation, Strategic Implementation Framework for
Japan’s Industrial Internet Value chains, Science

and Technology Basic Plan Sixth Edition, etc.

In the mid-2010s, Japan proposed accelerating
the application of big data technology in
agriculture, industry, and other fields. In
addition, Japan proposed promoting the

reasonable opening and circulation of public and
private data through the formulation

of laws and standards.
In the early 2020s, Japan proposed a top-level

framework for the development of the industrial
internet in the digital era and promoting

technological research and innovation in big
data. Additionally, Japan proposed accelerating

industrial transformation and upgrading by
promoting the application of big data technology

in energy industries.
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Table 3. Cont.

Economies Relevant Policies Related Content

Russia

2017~2030 Russian Federation Information
Society Development Strategy, Russian
Federation digital economy planning,

Development goals and strategic tasks of the
Russian Federation until 2024, Decree on the

Development Goals of the Russian Federation
up to 2030, etc.

In the mid-2010s, Russia proposed positioning
the digital economy as one of 12 priority areas
for development by 2024 and analyzing and

managing big data as a key production factor;
Russia also proposed promoting a revolution in
production methods, technology, and equipment
in various fields through digital infrastructure

construction and big data technology talent
training and application.

In the early 2020s, Russia proposed positioning
digital transformation as one of the five national
development goals and increasing investment in

big data technology.

Comparing Tables 2 and 3, it can be seen that many of the world’s important economies
have positioned digital transformation as an important direction for development in the
future and have actively promoted the application of big data technology in important
fields related to national development, including the energy industry, agriculture, etc. In
contrast, China has clarified the production factor attributes of big data and has actively
carried out relevant policies and strategies; however, the progress in terms of top-level
framework design, governance models, governance specifications, and big data sharing
mechanisms is lagging behind.

2.2. Evolutionary Trends of Energy Big Data—The Energy Big Data Ecosystem

In the field of ecology, a natural ecosystem refers to a dynamic system that is composed
of biological populations and their living environment. Individuals in the biological
population live in a dynamic balance of interactions and mutual influences, where energy
flow and material exchange constantly occur between different individuals. The expansion
of the digital economy has further highlighted the attributes of the production factors and
assets of data. Further exploration into the potential benefits and values in energy big data
has attracted the attention of China’s energy industry (Table 1). As shown in Figure 2, the
energy big data ecosystem has begun to take shape. This section analyzes the characteristics
of the energy big data ecosystem from three aspects: ecosystem elements, the interactions
between elements, and the ecosystem’s operating mechanism.

Figure 2. Schematic diagram of the energy big data ecosystem.
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2.2.1. Elements of the Energy Big Data Ecosystem

From the perspective of element composition, the elements in the energy big data
ecosystem mainly consist of energy production companies, equipment manufacturers,
power grid companies, scientific research institutions, and other entities in the energy
industry. Each single company or institution can be regarded as an individual. Similarly,
companies or institutions with the same attributes can be regarded as a population. To-
gether, all the entities can be regarded as the biocoenosis, while the data can be regarded as
the inanimate matter and energy in the ecosystem.

From the perspective of the functions of these elements, in accordance with data
generation, development, application, and extinction, the companies or institutions that
are involved in each stage can be regarded as producers, primary consumers, secondary
consumers, or decomposers in the energy big data ecosystem. A given entity in the energy
big data ecosystem can switch between the roles of the producer or the consumer in different
situations [21]. Take, for example, an energy production company. When collecting the
historical data of units and generators, the company is acting as a data producer. When the
company adopts an energy-saving transformation and optimizes the operation of the unit
according to these historical data, the company is acting as a data consumer. When deleting
or destroying unit operation historical data, the company is acting as a data decomposer.

2.2.2. Interaction between the Elements

Cooperation and competition between different individuals are universal phenom-
ena in natural ecosystems. Correspondingly, companies, institutions, and other entities
in the energy big data ecosystem attempt to maximize their own benefits. Thus, they
choose cooperation or competition strategies that center on data collection, utilization,
and development. These choices can be seen as predation, competition, commensalism,
or mutualism [22].

For example, when power grid companies analyze user characteristics by collecting
consumption data from users under various conditions, the relationship between the
company and its users can be regarded as predation. When both a power grid company
and an ISO (independent system operator) analyze user characteristics by collecting power
consumption data, their relationship can be regarded as competition. When a power grid
company makes development plans based on public data that have been published by the
government and the government analyzes the macroeconomic trends via the electricity
consumption data collected by the power grid company, the two entities are cooperating
with each other, but they are not interdependent. In this case, the relationship between the
power grid company and the government can be regarded as commensalism. In another
example, a research subsidiary of a power grid company uses data collected by the power
grid company for research. The research is used to support the power grid company’s
formulation of a development strategy. Thus, the relationship between the power grid
company and the research subsidiary can be regarded as mutualism.

2.2.3. Ecosystem Operation and Evolutionary Mechanism

From a macro-evolutionary mechanism perspective, an energy big data ecosystem
is dynamic and open, and it undergoes continuous evolution. Its overall evolution and
development are driven by both external motivation (policy release, technological inno-
vation, etc.) and internal motivation (the pursuit of profit maximization, the expansion of
the digital service business, etc.) [23]. During this evolutionary process, the elements of
the energy big data ecosystem will experience generation (startup), development, maturity,
and finally, due to changes in external motivation, limited resources and timeliness; the
system elements will then undergo decline and extinction, completing the entire life cy-
cle [24,25]. Taking data as an example, collection, cleaning, and mining can be regarded as
the development and maturation processes. Meanwhile, the need to destroy or recollect
data due to the degradation of data values caused by technological or market changes can
be regarded as the decline and extinction processes.
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From the perspective of microcosmic operation mechanisms, the activities of popula-
tions in natural ecosystems promote the flow of matter and energy between producers and
consumers. Similarly, entities in the energy big data ecosystem conduct a series of activities.
These include data collection, processing, development, sharing, exchange, and transaction.
Such activities promote the continuous flow of data between data producers and consumers.
During the process, on the one hand, the value of the data continues to grow. On the other
hand, the value-added data can provide considerable benefits for the data consumers at all
levels. Thus, such mechanisms effectively maintain the operation and dynamic balance of
the energy big data ecosystem. Consider power grid companies as an example. Power grid
companies desensitize the electricity consumption data collected from users and develop
primary data products. Scientific research institutes purchase the corresponding data prod-
ucts from power grid companies to meet their research needs and to produce data-driven
demand-side management optimization models, namely advanced data products through
data mining and analysis. To improve economic benefits and to reduce operational costs,
power grid companies purchase data models from scientific research institutes to support
the formulation of operational strategies. Above all, the value added to data—from raw
data to primary and advanced data products—is achieved through the data flow processes
among users, power grid companies, and scientific research institutes. Corresponding
benefits are created for data consumers along the way.

2.3. Critical Challenges to the Sustainable Development of the Energy Big Data Ecosystem

Although the energy big data ecosystem has already taken shape, its sustainable
development still faces three challenges.

2.3.1. How to Conduct an Ecosystem-Oriented Top-Level Design of Data Governance

The entities in an energy big data ecosystem spontaneously carry out activities such as
collection, development, and transaction that center on the energy big data that are currently
available (Section 2.2). However, the operation of the ecosystem as a whole remains
disorderly when viewed from a macro-perspective. Some policies and research studies
have been created and conducted in relation to energy big data (Section 2.1); in particular,
the Chinese government has issued a series of policies to promote the development of
the energy big data industry. However, the current research on energy big data primarily
focuses on technology and applications at the data level, including acquisition, analysis,
integration, model development, scheme optimization, decision support, etc.

In summary, proposing an ecosystem-oriented and instructive top-level design based
on the corresponding methods is the primary challenge to the sustainable development of
energy big data.

2.3.2. How to Define the Boundaries of Energy Big Data Governance

The inputs of equipment cost, labor cost, management cost, and large-scale data
are critical for achieving the goals of energy big data governance, which include data
mining and data value-added and long-term data preservation. However, these activities
involve various types of data, such as equipment testing data, equipment operation data,
equipment design parameters, pipeline operation data, energy trading and consumption
data, meteorological data, and macroeconomic data. This extremely large number of data
will reach the petabyte level. The amount of energy data needed for this data governance
effort and its potential costs are difficult to measure. In addition, the development and
operation of the data systems and data platforms of each entity are independent to some
extent. Therefore, structured, semi-structured, and unstructured data—including numeric
values, images, and natural language texts—will be generated objectively. The significant
complexity and heterogeneity of energy big data will further increase governance costs.

In conclusion, defining the boundaries of energy big data governance will provide
important guidance for achieving a balance between goals and costs and will help to foster
the sustainable development of the energy big data ecosystem.
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2.3.3. How to Balance the Relationship between Various Interests in the Ecosystem

From the perspective of the relationships between the macro-system and micro-
individuals and to realize the value-added, sharing, long-term preservation, and reuse
of energy big data, the energy big data ecosystem requires all of the data sources (micro-
individuals) to publish and publicize relevant data. However, to protect their own interests
and rights, the micro-individuals in the ecosystem tend to maximize the relevant benefits
by disclosing as few of their own data as possible.

From the perspective of the relationships between micro-individuals, as production
and management activities increase, energy, business, and capital flows become increas-
ingly frequent between the individuals in the ecosystem. Meanwhile, the data footprints
and flow directions become increasingly complex. In addition, because the role of the
micro-individual changes as the specific scenario changes (Section 2.2.1), the purpose and
goal of each micro-individual’s participation in the energy big data governance system
also changes continuously. This situation causes the interactions and relationships be-
tween the individuals who are involved in data governance to become more complex.
Overall, it is challenging to balance the relationship between the rights and benefits
of micro-individuals to guide healthy competition and cooperation between the micro-
individuals in the ecosystem and to facilitate the sustainable development of the energy
big data ecosystem.

3. Research Methodology
3.1. Data Curation Theory

As early as the 1990s, European and American countries, represented by the United
States and the United Kingdom, carried out a series of studies on long-term digital preser-
vation. The goals of these studies were to avoid the data losses caused by technological
updates or mismanagement and to ensure the authenticity and integrity of the data [26]. As
research has progressed, people have found that negative data preservation will most likely
lead to the emergence of dark archives. Therefore, how to ensure long-term data access and
utilization by reforming management modes has gradually become an important research
topic in library science, information science, and other fields.

In 2001, the Joint Information System Committee (JISC) proposed the need to establish
a specialized organization to lead research and work in the digital field while focusing on
the preservation and management of digital resources [27].

In 2002, Jim Gray emphasized the timeliness of data preservation in Online Sci-
entific Research Data Management, Publication and Archiving and proposed the concept
of data curation.

In 2003, a research report by the National Science Foundation (NSF) in the United
States pointed out that the absence of scientific and effective data management mechanisms
would lead to data failure risks or even data losses. Thus, research on relevant management
mechanisms should be strengthened to ensure that data are usable in the future.

In 2004, the Digital Curation Center (DCC) was established and proposed defining the
term data curation, which is different from data management. Data curation emphasizes
“data preservation, sorting, maintenance and value-added work in the whole life course of
data and research at all stages”.

After almost two decades of development, data curation is considered to be the
most effective method for maintaining the security and authenticity of data resources and
achieving long-term data reuse. Beyond library science and information science, research
and applications focusing on data curation theory have also attracted the attention of the
biomedical and physical sciences. Figure 3 shows the literature on data curation collected
by the Web of Science in recent years.
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Figure 3. Published literature relevant to data curation collected by the Web of Science.

3.2. Data Curation Methods

Since the proposal of data curation, several institutions have proposed corresponding
conceptual models based on the definition and core concept of data curation. These models
combine the characteristics of various fields, as shown in Table 4 [28–34].

Table 4. Conceptual models of common data curation.

Conceptual Model Characteristics Model Elements

DCC model Mainly applicable to the governance
of research data.

Mainly includes creation or reception, appraisal and
selection, ingestion, preservation, action, storage,

access, reuse, and transformation.

OAIS model
Primarily applied for the long-term preservation,

retrieval, and reading of digital resources in
information systems.

Consists of five main modules, including ingestion,
archival storage, data management, access
administration, and preservation planning.

CENS model Primarily applied to the governance of
experimental data.

Includes nine main elements: experimental design,
instrument calibration, data collection, data cleaning,

calculation and derivation, data integration, data
analysis, results publication, and data preservation.

DAMA model The impact of functional and environmental
elements on data governance is fully considered.

Primarily consists of a functional framework and
environmental framework. The functional

framework includes strategy, organization, roles, and
standards. The environmental framework includes

culture, practices and methods, technology,
and principles.

CALib model Mainly applied for data governance
in university libraries.

Consists of three main submodels: enabler, scope,
and implementation and evaluation. The enabler
includes strategic objectives, roles and functions,

technology, and other elements. The scope includes
three elements: a value creation layer, a value

guarantee layer, and a basic data layer.
Implementation and evaluation include the

implementation method, maturity
evaluation, and auditing.

DGI model

This model is largely used for data governance
in business operations. It provides auxiliary
support for decision-making tasks such as

enterprise management and business expansion.

Consists of three main submodels: rules, people and
organization, and processes. Specific elements

include mission and vision, objectives, stakeholders,
data managers, data rules and definitions, and ten

other elements.

Gartner 6 phases model
This model has process management

characteristics and is mostly used for data
governance in business operations.

The model is divided into four parts: specification,
planning, construction, and operation. The main
elements of these parts include demand analysis,
data architecture design, data quality monitoring,

and data access auditing.



Sustainability 2022, 14, 6013 12 of 30

3.2.1. Functions and Effects of Data Curation

Combined with Table 4, the various conceptual data curation models vary across the
applicable scenarios and model elements. In essence, when data curation theory is applied
to data governance, the following functions and effects can be achieved:

(1) In accordance with certain principles and processes, data curation constructs a top-
level design covering the period starting from data generation to extinction. Data
curation defines the work that should be carried out at each stage to ensure the
orderly development of data governance and provides a guiding paradigm for data
governance. The correctness and timeliness of the data governance activities and
decisions can be improved significantly.

(2) Data curation can establish standardized data governance norms through supervi-
sion, guidance, evaluation, and other tasks. Meanwhile, data curation can effectively
encourage countries, industries, or companies to form a standard system that includes
data access scope, data format, communication protocol standards, data naming, data
update frequency, and other dimensions. Therefore, data quality can be improved
from the dimensions of standardization, completeness, accuracy, timeliness, accessi-
bility, and other dimensions, and large-scale multisource heterogeneous data from
different institutions and industries can be integrated under the premise of effectively
controlling governance costs.

(3) Data curation can effectively clarify the roles of related individuals during the data
governance and provide answers that allow individuals to take actions at specific
stages, in specific situations, and for specific purposes. In this way, the interests of
all the individuals can be balanced, cooperation can be organized effectively on the
basis of protecting the rights of individuals, and access permissions can be guaranteed
for individuals.

(4) Data curation involves persistent work throughout the entire data life cycle. Through
data product creation and data service innovation, data curation promotes the contin-
uous development and maturation of data. Simultaneously, it provides broader, more
reliable, and more valuable data and services to the individuals who are involved in
data governance.

3.2.2. The Framework of Data Curation

Although various conceptual models of data curation exist (Table 4), the data cura-
tion framework can be divided into four parts from the viewpoints of the definition and
effect of data curation, including planning, integration, application, and maintenance, as
shown in Figure 4.

The planning stage aims to guide the implementation of data governance through
effective systematic planning work. The entities participating in data governance and
their objectives are complex and diverse. Therefore, during the data curation process,
the planning stage is usually oriented based on the data and business needs of various
entities, and this stage defines purposes, workgroups, boundaries, etc. Finally, it guides the
development of data governance macroscopically by constructing a strategy.

The purpose of the integration stage is to integrate data resources using corresponding
technologies to provide basic support for data applications. To ensure data consistency and
efficient data sharing, the tasks that are usually carried out during this stage include data
acquisition, data fusion, data aggregation, identification, and storage processing. The goal
is to achieve heterogeneous data integration and, ultimately, to construct data resources for
long-term accessibility.

The application stage explores the potential value of data through data publication,
data development, data analyses, etc. This stage is usually guided by the needs of the data
consumers and involves cleaning, mining, desensitization, encryption, large-scale storage,
etc. The purpose is to achieve the long-term utilization and reuse of data resources in the
form of freely available data transactions, data exchanges, etc.
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Figure 4. The data curation framework.

In the maintenance stage, data are maintained according to the assessment results
to ensure the quality of the data resources. This stage is considered the feedback node
of data curation. During this stage, the data quality and the curation achievements are
evaluated from the standpoints of accuracy, completeness, availability, timeliness, and
scalability. Thus, the overall effort and state of the curated data can be obtained. In
addition, weaknesses and deficiencies in curation and directions for improvement can be
accurately identified.

4. A Paradigm for the Sustainable Full Life Cycle Curation of Energy Big Data
4.1. General Framework of the Full Life Cycle Curation Model for Energy Big Data

Comparing the functions and effects of data curation (Section 3.2.1) and the critical
challenges in the sustainable development of energy big data ecosystems (Section 2.3)
indicates that data curation theory has good compatibility and application potential in
the field of energy big data governance. By combining the basic concepts of data curation
theory (Section 3.2) and the characteristics and challenges of the energy big data ecosystem
(Sections 2.2 and 2.3), the curation model proposed in this paper covers the entire life cycle
of energy big data and includes four main stages: planning (Section 4.2.1), integration
(Section 4.2.2), application (Section 4.2.3), and maintenance (Section 4.2.4).

As shown in Figure 5, the planning stage is the starting point for energy big data cura-
tion. In this stage, the top-level design of the curation work is completed from the aspects
of the design of dynamic strategies, a demand analysis, and a data acquisition standard.
This stage constructs the overall guidance for the entire curation model. The integration
stage collects and integrates the data of the producers in the energy big data ecosystem to
provide rich data resources for data applications. In the application stage, the data value is
explored and shared through data utilization and long-term reuse. This is an important
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step in which data function as a production factor to achieve value externalization. The
maintenance stage is the feedback and closed-loop point of the overall curation model. This
stage updates or destroys the data according to the data quality and the results of the utility
assessment.

Figure 5. Framework of the full life cycle curation model for energy big data.

Based on the above, the connection of the workflows in the four stages forms an energy
big data governance paradigm that covers the entire data life cycle: generation, integration,
preservation, application, reuse, transaction, destruction, and update (Figure 5); provides
support for long-term storage, reuse, and updates for energy big data; and realizes the
sustainable and dynamic governance of energy big data.

4.2. Implementing the Full Life Cycle Curation of Energy Big Data
4.2.1. Step 1: Planning Stage for the Full Life Cycle Curation of Energy Big Data

As shown in Figure 6, the planning stage involves three parts: dynamic strategy
design, demand analysis, and data acquisition standards [35].

Dynamic strategy design aims to complete the top-level design of the full life cycle
curation model for energy big data. The development of the energy big data ecosystem
is in its infancy. Therefore, in a manner different from the traditional data management
strategy solidified in the planning stage, energy big data curation work should be based on
the ecosystem’s entity structure (e.g., data producers and consumers), the demands of data
consumers, different data types, etc. Then, combining the top-down expert-driven model
with the bottom-up participant-driven model, dynamic curation strategies and models
are constructed from the perspectives of the curation purposes, curation groups, curation
policies, curation standards, and ecosystem entity management.

Reasonable data curation boundaries are the key to the sustainable development of
the full life cycle curation of energy big data. Investment in the sensors, meters, servers,
and other equipment involved in data access, perception, acquisition, transmission, storage,
and analysis can significantly increase the cost of energy big data curation. Therefore, a
demand analysis that is aimed at potential data consumers can effectively promote the
precise connections between supply (data and data products) and demand. This work
provides a reference for determining the data curation boundaries and for controlling and
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compressing curation costs. In addition, potential data consumers can be divided into intra-
and extra-energy industry entities. Intra-energy industry entities include thermal power
plants, power grid companies, gas companies, etc. Extra-energy industry entities include
governments, research institutions, colleges and universities, etc.

Figure 6. Schematic diagram of the planning stage.

In the data acquisition standards layer, based on the curation strategy and demand
analysis results, the data acquisition standards for data curation can be formulated accord-
ing to dimensions such as data sources, data structure, sampling frequency, etc.

Specifically, to coordinate the diverse demands and goals of the entities in the energy
big data ecosystem (Figure 6) and to complete the curation flow and workflow, such as
data curation boundary determination, strategy and plan making, standard system settings,
etc. (Figure 5), a curation working group needs to be formed during the planning stage
to handle the connection between the data curation process flow, workflow, and the goals
of sustainable energy big data curation from the full life cycle of the data. The curation
working group can be formed through various modes, such as through direct curation
by the government, the collaborative autonomy of ecological entities under government
supervision, or the establishment of third-party public institutions (industry associations,
research institutes and universities, etc.).

4.2.2. Step 2: Integration Stage of the Full Life Cycle Curation of Energy Big Data

The integration stage aims to build a data asset pool that aggregates multiple data
sources and that can be continuously accessed and scheduled during the application stage.
As shown in Figure 7, this stage can be divided into four layers: data acquisition, data
transmission, data fusion, and data storage [36].
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Figure 7. Schematic diagram of the integration stage.

The data are obtained from equipment, grids, the energy market, the macro-economy,
the weather, etc., by sensor systems, manual recordings, and third-party platforms. The
acquired data, which are extracted from relatively independent data sources and systems
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belonging to different entities, are heterogeneous. Guided by the strategies and standards
established in the planning stage, the data fusion layer conducts data-mapping and fusion
operations to coordinate the data format and semantic conflicts for the structured, semi-
structured, and unstructured data that have been extracted from various data sources,
such as numbers, natural language, images, etc. This approach can shield the underlying
differences that exist among data sources that are caused by multivariate heterogeneity and
can improve the value density of the data.

Furthermore, it is difficult for traditional, centralized, relational data-storage models
for data management to adapt to the requirements of large-scale and strongly heteroge-
neous data. Instead, a “logically unified, physically distributed” storage model can be
applied for the large-scale storage of energy big data. For example, large-scale storage
can use nonrelational database technology (NoSQL) to fragment the integrated data to
corresponding node servers at the edge of the energy big data ecosystem. Furthermore,
a distributed server cluster can be utilized to build a unified virtual data asset pool that
effectively meets the data access and data query requirements at different nodes during the
application stage while reducing data storage costs [37,38].

4.2.3. Step 3: Application Stage of the Full Life Cycle Curation of Energy Big Data

The application stage is key to exploiting the value in and sharing of energy big
data. Such applications should follow the FAIR data principles of “findable, accessible,
interoperable and reusable” [39]. As shown in Figure 8, the application stage includes a
data product development layer and a data circulation layer [40,41].

Figure 8. Schematic diagram of the application stage.
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The data product development layer can be divided into primary and advanced data
product development. Primary data products for circulation can be obtained through the
cleaning, clustering, and visualization of the raw data that are imported and collected from
energy suppliers and equipment, energy consumers and equipment, third-party platforms,
etc. Some examples are energy market reports, pollutant emission monitoring reports,
research data analysis reports, etc. [42]. Advanced products—such as load modeling,
load forecasting, system security pre-warning, extreme weather prediction, operation
optimization schemes, macroeconomic development forecasting, etc.—can be obtained
through the in-depth development of primary data products.

Compared to traditional energy systems, data and data product circulation are impor-
tant for achieving sustainable data applications and data reuse. To avoid the potential legal
risks of data circulation and to restore the commodity attributes of data products [43], it
is necessary to analyze the interest demands of energy consumers, energy suppliers, and
governments as both data producers and consumers [44]. A frame of reference is needed
for key issues in data circulation, such as subject matter confirmation, the price formation
mechanism, and the division of responsibilities and rights. Therefore, a basic guarantee
system should be constructed according to the data pricing system, business model, and
risk management mechanism dimensions, among others.

4.2.4. Step 4: Maintenance Stage of the Full Life Cycle Curation Model of Energy Big Data

Considering the risk of data value degradation, the primary and advanced data prod-
ucts in the energy big data ecosystem need to be maintained regularly. As shown in Figure 9,
the maintenance stage is divided into a data assessment and a data maintenance layer.

Figure 9. Schematic diagram of the maintenance stage.
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The data assessment layer includes both quality and utility assessments. On the one
hand, considering the potential risk of data aging, bias, and error due to deterioration in
the operational characteristics of energy equipment and pipeline networks and the drift
or failure of metering or sensing devices, quality assessment focuses on the quality of the
data in terms of value, format, meaning, and structure to ensure the accuracy, integrity,
accessibility, and semantic uniqueness of the data in the energy big data ecosystem [45,46].
On the other hand, given the enrichment of the data economy and data business systems
in the energy big data ecosystem, any existing primary and advanced data products will
not be able to adapt to the growing needs of different data consumers. Moreover, based
on a full understanding of the needs of data consumers and considering the potential
risk of data asset value degradation, a utility assessment should be conducted in terms of
effectiveness, value density, responsiveness, and access frequency [47].

The data maintenance layer includes data update and destruction. According to
strategies and standards formed in the planning stage, the data will be updated, replaced,
and expanded through data reacquisition, reprocessing, and redevelopment based on the
results of the data assessment in the data update module. Considering data security and
privacy, data destruction mainly focuses on data that have reached the end of their life
cycles, such as expired or obsolete data (such as historical power market transactions,
expired nodes, and redundant backup data). Technical means, such as overwriting, secret
key destruction, and physical destruction, are used to eliminate the data stored in the
application, platform server, cloud server, etc. [48].

5. Challenges and Key Issues in the Full Life Cycle Curation of Energy Big Data
5.1. Data Rights

Data constitutes the critical production factor and has become the “oil” of the digital
economy era. However, current data product development processes treat data ownership
and use as completely separate states. This unclear definition and division of data rights
may transform the real producers and owners of the data in the energy big data ecosystem
into the “tenants” of the data controllers [49]. Clarifying the ownership of data-related
rights and interests is an important aspect of data sharing, development, and transactions,
and it is key to facilitating the sustainable development of energy big data ecosystems. Due
to the different natures of data sources, energy big data can be divided into nonpublic data
and public data [50].

5.1.1. Nonpublic Data Rights

Nonpublic data are primarily generated by a series of activities, such as those through
the production, operation, and consumption of various entities in the energy ecosystem.
Rights to nonpublic data mainly include personality and real rights [51].

Personality rights research on data evolved from traditional privacy rights research [52].
Considering that energy big data include a substantial amount of sensitive information
from actual data producers and given the progress in data mining and information tech-
nology techniques, it may be difficult to achieve totally irreversible data anonymization
and desensitization [53]. Therefore, unlike traditional privacy rights, personality rights to
data in the digital economy era should not be limited to defining and protecting private
data. In addition, protecting the intent and rights of both the natural and the legal people
who are the actual data producers should be emphasized regarding whether the data may
be disclosed [54].

Real rights refer to the privilege of managing, using, and benefiting from data and
highlight that data are a type of property in the digital economy era. As data are objective
electronic records that contain information, the actual producer of the data should indeed
enjoy corresponding property rights [55]. However, because the data controller or user
expends money and labor to collect, process, and develop the data, the value of the data as
a commodity increases accordingly [56]. Thus, adopting traditional exclusive real rights to
grant complete property rights to either the original producers or the controllers may result
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in blocked data circulation, reduced enthusiasm for data development, data monopolies,
and other phenomena, thus leading to the distortion and failure of the data market [57].
Therefore, how to coordinate the conflict between the original data producers and the data
controllers with regard to data real rights has become a key to ensuring the sustainable
development of data ecosystems [58,59]. Some scholars have proposed addressing the
rights conflicts between the original producers and the controllers by setting up a dual real
rights mode (assigning nominal ownership to the original producer and actual ownership to
the controller) or by independently creating restrictive data producer rights. However, the
above approaches may lead to an ambiguous division and attribution of real rights and may
even conflict with existing copyrights and intellectual property rights, thus aggravating
disputes over data property rights [60,61]. The structure of data real rights: “ownership
+ usufruct”, which are based on the idea of the division of rights in property law, can be
reasonably derived and distributed between the original producer and multiple controllers
without violating the traditional real rights framework [62]. Ownership constitutes the most
comprehensive control over data; it includes the privilege of possession, use, income, and
disposal. Ownership clarifies the attribution of data as objectively existing in insubstantial
objects and provides an important legal basis for data availability and circulation. As a
derivative right of ownership, usufruct stresses the privileges of data control, development,
and transfer. Usufruct provides an important legal basis under which processors can control
data. Thus, it can effectively improve the data allocation efficiency, which is a valuable
resource in the digital economy era [53].

5.1.2. Public Data Rights

Public data—such as geographic, meteorological, municipal, and macroeconomic
data—are strategic resources that are related to national security and social economic
development. In the process of openness and circulation, research on public data rights
has focused on its sovereignty attributes. As an extension and representation of national
sovereignty in the digital economy era, the sovereignty of public data, which includes
the rights of possession, jurisdiction, use, and disposal, has a certain exclusivity [63].
Strengthening the awareness of data sovereignty is conducive to improving the protection
and development of national strategic data resources. However, it is worth pointing out that
overemphasizing data sovereignty may aggravate the zero-sum game, foster antagonistic
behavior between countries in the digital field, and hinder the flow and allocation of digital
resources between countries [64].

In terms of data sovereignty, in the process of making data publicly available, two
different solutions have been proposed by the United States and the European Union at the
present stage.

Although the United States stresses that cyberspace is a global commons, the U.S.
position is that countries around the world should minimize interference in the flow
of data across borders to achieve liberal data sharing. The Clarifying Lawful Overseas
Use of Data Act issued by the U.S. not only grants corresponding rights and makes it
convenient for the U.S. government to acquire public data outside of its the territory
through overseas US-owned electronic communication companies and computing service
companies but also sets a series of draconian rules regarding access to U.S. public data
by foreign governments. In part, the U.S. adopts a double standard on the issue of public
data sovereignty mechanisms and the cross-border flow of public data [65]. In contrast,
the European Union (EU) position is that data sovereignty should be defined based on
the location where the data are physically stored, emphasizing that the data produced
in a country should be stored locally and that management and protection should be
strengthened in cross-border data circulation scenarios [66]. To this end, the EU has issued
a successive series of policies and laws, including the General Data Protection Regulation, The
White Paper on Artificial Intelligence, and A European Strategy for Data. These papers clarify
the authorization, transmission, evaluation and supervision, and disposal mechanisms and
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the rules that should be followed when granting public data access and sharing to help
ensure the integrity and independence of data sovereignty [67].

Competition exists in relation to public data protection and regulation and the sharing
and liberalization that must be balanced with regard to the sovereignty of the cross-border
flow of public data. To do so, on the one hand, countries should seek opportunities for com-
petitive cooperation; follow win–win cooperation principles; promote the construction of
multilateral cooperation mechanisms, laws, and regulations for public data co-governance;
and urge countries to assume the corresponding responsibilities and obligations while
still guaranteeing their rights to enjoy public data development. On the other hand, the
development and application of the blockchain, data watermarking, and other digital tech-
nologies to establish public data sovereignty, access authorization, data traceability, data
destruction, and other scenarios should be accelerated to provide technical support for the
sustainable development of public data co-governance involving multilateral cooperation.

5.2. Data Fusion

The increased diversity of data sources means that energy big data ecosystems will
accumulate large volumes of heterogeneous data in the spatiotemporal dimension. The
fusion processing of data sources and their data at various stages can provide strong
support for improving data quality and perfecting knowledge graphs. Data fusion can be
subdivided into intra- and inter-source types.

5.2.1. Inter-Source Data Fusion

During the period in which equipment performance degradation can be ignored, the
measurement data, soft measurement data, or related characteristic indexes (such as system
carbon emissions, unit coal consumption, and equipment efficiency) of a single data source
(such as a microgrid system, a generator, or equipment) in the energy big data ecosystem
should be stable within a certain range over the same sampling period, the same typical
day, or under the same working conditions.

However, many factors, such as the transient states and unsteady operations of systems
and equipment, differences between meter installation positions, and meter drift or faults,
may lead to data deviations or even serious errors. Consequently, the historical data of the
corresponding data source for the same sampling period and obtained during the same
typical day or working conditions should be fused along the time dimension to remove
incorrect data, reduce data conflicts, and improve data quality and reliability [68].

5.2.2. Intra-Source Data Fusion

In general, entities in the energy big data ecosystem only collect and preserve the data
related to their own needs. Therefore, data fusion among data sources in the energy big data
ecosystem can achieve interaction and supplementation between different data sources.
Thus, data fusion effectively alleviates the “isolated island of information” phenomenon
and provides support for knowledge graph improvement, the exploration of the potential
value of data, and data service expansion. Considering that the development, modeling,
and operation of the information systems of entities in the energy big data ecosystem are
relatively independent (e.g., the supervisory control and data acquisition (SCADA) systems
used by power grids, the supervisory information system (SIS) used by power plants, and
the meteorological data operation system (MDOS)), the heterogeneous data generated by
multiple data sources must be fused along the spatial dimension at three levels: pixel,
feature, and decision [69].

Among these, pixel layer fusion collects original data from associated data sources
through the design and authorization of interface interaction and communication specifica-
tions, as well as through the construction of a unified metadata mapping framework. For
example, historical datasets are constructed by integrating operating data from equipment
with the same type but located in different regions and operating under different working
conditions. Feature layer fusion is primarily aimed at extracting multidimensional features



Sustainability 2022, 14, 6013 22 of 30

such as coordinates, power, temperature, and pressure from the original data and using
them to construct a conceptual model or knowledge map through semantic data fusion.
For example, the equipment operating model for the overall working conditions based on
the historical dataset can be constructed through feature layer fusion. Decision-level fusion
aims to obtain a decision set that has high consistency and that is robust and generalizable
by fusing individual decisions from multiple data sources. For example, the fusion of the
operation strategies extracted from equipment operating models for the overall working
conditions can provide a reference for the design and manufacture of the equipment and
its operation optimization.

5.3. Data Security

Energy big data are an important asset and function as an information carrier in the
digital era. Ensuring the security of data circulation is a key issue in constructing the full
life cycle curation of energy big data. Blockchain technology has the characteristics of
openness, traceability, and immutability. Thus, it can be used to create smart contracts that
support the establishment of secure, reliable, and sustainable energy big data ecosystems
from two dimensions: data encryption and access permission administration [70–73].

5.3.1. Data Encryption

Ensuring the consistency, accuracy, and security of primary and advanced data prod-
ucts is the basic requirement of energy big data circulation. When a node or entity in the
energy big data ecosystem receives and confirms a data-sharing or transaction request,
a trigger can automatically take action. Such actions include invoking a corresponding
smart contract to encrypt the data to be accessed according to a preset algorithm. Then,
the encrypted data and address will be generated and published to the energy big data
ecosystem. Subsequently, other nodes or entities can decrypt the data to obtain the plaintext
(unencrypted string) alone by obtaining the corresponding smart contract. Such strategies
effectively reduce the risk of data leakage or tampering during circulation [72].

5.3.2. Access Permission Administration

To reduce the risk of illegal access to energy big data, access permissions can be
controlled via secret key management, accessing entity control, and the scope of accessible
data control.

In terms of secret key management, data owners and users (consumers) can obtain a
unique-identity secret key by sending a registration application to the certificate authority
(CA), and the key can provide support for entity encryption and identification. In addition,
data owners can use encryption algorithms such as SM4 to encrypt data files, data addresses,
and the symmetric keys that provide support for data encryption and identification [74].

From the point of view of accessing entity control, the access list contract is designed
so the data owner can adjust the access list contract by invoking functions. Moreover, the
use of an access list contract can gain the capability of accessing entity control by flexibly
adding or canceling the authorization of the accessing entities.

In terms of the scope of accessible data control, based on the registration contract
and data contract, constructor functions can be used to write the secret keys, identity
information, and the data of each node or entity into the blockchain. Furthermore, a one-to-
many mapping relationship can be constructed between registration contracts and data
contracts, which allows the data owner to modify the authorization list to adjust the range
of accessible data [73].

5.4. Data Transaction

Data transactions allow data to participate in the allocation of social resources by
having them act as a new production factor. Data valuation, transaction subject matter, and
price mechanisms are three of the key issues that are in data transactions.



Sustainability 2022, 14, 6013 23 of 30

5.4.1. Data Valuation

Data valuation is important for pricing the subject matter involved in data transaction.
However, data are a nontraditional asset and a nonentity. The subjective nature and uncer-
tainty of its utility, the high cost of initial production but extremely low replication costs,
and other characteristics make it difficult to quantify the value of data assets. Consequently,
no standardized or unified data valuation method has been formed yet. By considering
the characteristics of data assets and drawing on the valuation methods for both intan-
gible and tangible assets, three methods can be used for data valuation: comprehensive
evaluation-based, cost-based, and comprehensive utility-based data valuation.

Comprehensive evaluation-based data valuation builds an evaluation system that
represents the data quality, scale, function, reputation, risk, and other dimensions. Then,
corresponding experts or data consumers can conduct qualitative or quantitative evalu-
ations based on the evaluation system indicators. The analytic hierarchy process (AHP),
entropy weight method, and other methods are used to determine the weight of each
indicator. The value of the data assets can be determined by calculating the total evaluation
score. Furthermore, this method can overcome the subjective impact of data asset utility on
the value evaluation [75].

The cost-based data valuation method makes a quantitative valuation. In doing so, it
considers the market leverage effect, inherent value, and other factors based on calculating
the labor, equipment, and other costs needed to replace each dataset at the time of the data
valuation. This method is able to counteract the data value dynamics [76].

The comprehensive utility-based method first evaluates the cost of data replacement
and then represents the data value by superimposing the difference in benefits after and
before data products are applied by data product consumers, as shown in Equation (1).
This method is better able to overcome the influences of data asset utility uncertainty and
subjectivity on data valuation and to reflect the value of the data as a commodity while
reflecting the cost of the data assets (we assume that the data subsets are mutually exclusive).

VU(D) =
N

∑
i=1

ci +
N

∑
i=1

Pi,j · ∆Ui,j (1)

where VU(D) is the value of data set D based on the comprehensive utility-based method,
ci is the replacement cost of i, which is a subset of D, and Pi,j and ∆Ui,j are the probability
and difference of benefit generated by data consumer j’s consumption of data product i.

5.4.2. Subject Matter

Clarifying which data transactions are being traded—that is, the subject matter of
the data transactions—is the prerequisite to setting the prices of the data transactions
and constructing a data transaction market. At present, most studies have diversified
definitions of data subject matter. These include raw data, information, model algorithms,
decision methods, technical services, etc. In essence, this is a paid transfer of rights between
buyers and sellers. Consequently, combined with the analysis in Section 5.1, the subject
matter of data transactions is data rights, which mainly include the rights of ownership,
use, and usufruct.

Ownership is the right that allows one to have the most comprehensive control over
data. When the transaction subject matter is ownership, the data buyer will obtain the
right to possess, use, derive benefit from, and dispose of data. The production of data
assets involves multiple entities. Therefore, when “rights of use” is the subject matter of
the transaction, on the one hand, after the purchase, the purchaser can use the data without
changing the nature of the data assets. On the other hand, ownership disputes between
entities with regard to the same data set can effectively be avoided to a certain extent [77].
The situation is different from the rights of use, which is the case when the transaction
subject matter is usufruct. Then, the data purchaser gains the right to utilize the data and
generate income from the data (i.e., by mining and reprocessing the purchased data).
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In summary, different subject matter can be regarded as methods of disassembling
data rights. That is, the subject matter of the transaction presents a certain combination of
rights. Therefore, in combination with the data valuation from Section 5.4.1, the Shapley
value can be calculated based on Equation (2) to realize the value allocation and accounting
of different types of subject matter, thus providing support for the value formulations of
different types of subject matter.

Vr = ∑
r∈R

(r− |R|)!(|R| − 1)
r!

· [V(R)−V(R− {i})] (2)

where R is the set of subject matter (data rights), r is the subject matter that is a subset of R,
and Vr is the portion of the total value that can be attributed to it.

5.4.3. Pricing Mechanisms

A scientific and reasonable price mechanism should reflect the supply and demand
relationship of the market effectively, and to a certain extent, it should guarantee the benefit
and profit spaces of the buyers and sellers. Considering the complexity of data value
quantification and the dependence of price formation on specific trading scenarios, forming
a unified and standardized pricing mechanism is difficult [78,79].

From the perspective of transaction price formation, the price of data transactions can
be determined through bilateral negotiation, usage measurements (statistics such as the
number of data accesses and data flows, etc.), public auctions, and listing transactions [80–82].
Bilateral negotiations, public auctions, and listing transactions are widely used and are
applicable to the three types of subject matter transactions mentioned in Section 5.4.2.
However, price formation based on the use of statistics is typical on a per-time basis and is
applicable to repeatable transaction scenarios. Therefore, this method is only applicable to
rights of use [77].

From the perspective of product pricing methods, the price of the subject matter can be
determined by pricing methods that are based on expected revenue, information entropy,
game theory, and market querying [83–85].

A pricing method that is based on expected revenue is a typical cost-oriented pricing
method in the accounting field and can better reflect the seller’s expectation and intent.
This method is based on calculating the production cost, and it forms the data transaction
price by setting a reasonable expected return rate for the seller, as shown in Equation (3). A
pricing method based on information entropy is a typical product value-oriented pricing
method that can reflect the uniqueness and effectiveness of data products as commodities.
As information entropy is non-negatively correlated with the volume and effective infor-
mation amount of data products, this method calculates the price of data transactions by
constructing an appropriate nondecreasing contact function and by calculating the informa-
tion entropy of data products as shown in Equation (4). A pricing method based on game
theory is a market-oriented pricing method that addresses the information asymmetry
between buyers and sellers, the depreciation and obsolescence of data assets, and other
problems in data transactions. With this method, buyers and sellers take turns bidding and
finally reach Nash equilibrium; then, the transaction price is formed. A transaction price
based on the Rubinstein model is shown in Equation (5). The pricing method based on
market inquiry is a typical consumer demand-oriented pricing method with anti-arbitrage,
discount-free, and timeliness characteristics. This method generates pricing based on the
view generated by any query behavior demonstrated by the buyer to achieve dynamic
differentiated pricing [84].

pε(D) =
D

∑
i=1

c0
i · (1 + ε) (3)
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pE(D) ≡ l(E(D))
E(D) = − ∑

di∈D
P(di) · logb P(di)

∀x1 ≥ x2, l(x1) ≥ l(x2)
∀x1, x2 ≥ 0, l(x1 + x2) ≤ l(x1) + l(x2)

(4)

where pE(D) is the price of D based on the information entropy-based pricing method,
l(·) is a nondecreasing contact function, E(D) is the information entropy of D, di is the
subset of D, P(di) is the probability that D contains di, b is the base, and the data are
measured while b is equal to 2.

pG = psell,min +
1− δbuy

1− δsell · δbuy
· (pbuy,max − psell,min) (5)

where pG is the price of D based on a game-based pricing method, psell,min is the lowest
price acceptable to the data seller and can be represented by the cost of data, pbuy,max is the
highest price acceptable to the data buyer and can be represented by the benefits of data
consumption, and δsell and δbuy are the discount factor of the seller and buyer. These factors
represent the endurance of both the seller and the buyer when participating in the game.

6. Conclusions and Discussion
6.1. Conclusions

In the context of the deep integration of internet technology and the energy industry,
the long-term preservation, reuse, and update of energy big data are important manifes-
tations of the sustainable development of energy big data governance, and a scientific
management paradigm is important for facilitating the sustainable development of en-
ergy big data governance. Based on this, this manuscript first analyzes the structure
and mechanism of the energy big data ecosystem and proposes the challenges faced dur-
ing the sustainable development of the energy big data governance. Secondly, based on
data curation theory, this paper proposes a governance paradigm that covers the entire
life cycle of energy big data. Finally, the key issues in the life cycle curation of energy
big data are analyzed and discussed, including data rights, data fusion, data security,
and data transactions.

Compared to the current practices and research, the main conclusions and contribu-
tions of this paper are as follows:

(1) In terms of research, according to the data flow and life cycle, this paper shows
that energy production enterprises, equipment manufacturers, and other entities
constitute producers, consumers, secondary consumers, and decomposers in the
energy big data ecosystem and that there are predation, competition, reciprocity,
and other relationships among different entities around energy data. Different from
ecology, a given entity in the energy big data ecosystem can switch between the roles
of the producer and consumer in different situations. In contrast, previous research
on energy big data governance is mainly oriented toward specific enterprises and
industries. This paper provides a new perspective for energy big data governance
research because it considers it from the macroscopic and systematic dimensions
according to the ecosystem concept.

(2) In terms of research methods, on the basis of analyzing applicability, this paper
introduces curation theory, which originated from the fields of library science and
information science, into energy big data governance. The model that was constructed
in this paper based on curation theory can provide systematic and theoretical support
for workflow organization, specification formulation, and interest coordination among
different entities as well as full life cycle management in the process of energy big data
governance, and this enriches the sustainable methods for energy big data governance.

(3) In terms of research content, this paper presents three energy big data curation
challenges, namely how to carry out the ecosystem-oriented top-level design for data
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governance; how to determine the boundaries of energy big data governance; and
how to balance the relationships among various interests in the ecosystem. In view
of the above problems, this paper proposes a governance paradigm that covers the
entire energy big data life cycle according to the planning, integration, application,
and maintenance stages; furthermore, this research analyzes four key issues of full life
cycle curation, including data rights, fusion, security, and transactions: (1) in contrast,
non-public data rights emphasize personality and real rights, and public data rights
emphasize sovereignty. (2) In order to improve data quality and accuracy, inter-source
data fusion should be processed from the time dimension; in order to alleviate the
“isolated island of information”, intra-source data fusion should be processed from
the spatial dimension at the pixel layer, feature layer, and decision layer. (3) The
encryption of the data itself, the data address, and the secret key can be achieved by
using the blockchain to create smart contracts. The application of this technology
can reduce the risk of unauthorized access and tampering, effectively enhancing data
security. (4) The valuation and confirmation of the subject matter are the premise of
data transaction. The three value evaluation methods, the comprehensive evaluation-
based, cost-based, and comprehensive utility-based methods, can effectively reflect
the objectivity and dynamics of data value; the essence of data transactions is the
paid transfer of data rights. According to different transaction scenarios, the subject
matter can be a combination of ownership rights, use rights, and usufruct rights.
Based on this, diversified pricing mechanisms can be used for data pricing, including
bilateral negotiations, public auctions, expected revenue-based pricing methods, etc.
These pricing methods can effectively overcome the difficulties in formulating price
mechanisms due to the complexity of the data value and subject matter.

6.2. Discussion

Data rights, fusion, security, and transaction are the key issues affecting the sustain-
able governance of energy big data. The manuscript analyzed and studied these key
issues in terms of the composition rights of public and non-public data, inter-source and
intra-source data fusion, data encryption and authority control methods, value evaluation
and price mechanisms, etc. However, this manuscript mainly focused on the curation
model construction and the key issues involved in curation flow from a theoretical per-
spective. In order to connect the energy big data curation paradigm constructed in this
paper with the real energy big data system, future research and practices can focus on the
following aspects:

(1) In terms of laws and regulations, in addition to the “invisible hand” of the mar-
ket, the development of energy big data in the digital economy era also needs the
support of the “visible hand” of the government. In the future, relevant laws and
regulations on data curation should be studied and formulated from the perspec-
tives of rights protection, access authority, market mechanisms, arbitration methods,
and risk control.

(2) In terms of organizational mechanisms, considering the complex role positioning of
the various entities in the energy big data ecosystem, the diverse governance goals,
and the potential conflicts of interest, in the early stages, a joint curation working
group should be set up by energy industry companies under government supervision
and gradually promote the development of energy big data curation at the regional
(provincial), industrial, and national levels.

(3) In terms of professional talent cultivation, energy big data curation requires profes-
sionals. Unlike traditional data administrators, data curators need to assume more
complex roles, including those of planners, policy makers, information technology
specialists, and researchers [86]. In addition to the ability for data archiving and
preservation, database management and maintenance, etc., energy big data cura-
tion requires considerable knowledge of the law and the energy industry. Such
knowledge includes intellectual property law, integrated energy system planning
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and operation optimization theory, energy demand-side management theory, etc. As
interdisciplinary integration becomes a more prominent trend, it is necessary to estab-
lish and improve the education and cultivation for energy big data curation talents
in the future.

(4) In terms of information platform development, as an important physical carrier for
the curation of energy big data, information platforms should realize the functions
of access subject management, cross-system data transmission and integration, and
data transaction aggregation on the premise of guaranteed security and privacy. How
to design and develop a platform suitable for regional, industrial, national, and
international levels in terms of communication protocols, interfaces and ports, model
algorithms, etc., is one of the key issues for future research and practices.
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