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Abstract: To explore the spatial heterogeneity of nitrogen supply from human activities to soil in
coastal areas, we established a soil nitrogen net replenishment index (A-SNNRI). We applied the
Revised Universal Soil Loss Equation (RUSLE) model for soil loss risk calculation and geostatistical
analysis for process simulation. A case study in the Yellow River Delta (YRD) showed that the
A-SNNRI worked well. During the summer crop-growing season, population and land use presented
significant influences on the soil total nitrogen (STN) status. Urban villages and arable land both had
the largest summary STN and variety. There was a negative correlation between STN change and
soil loss. The east coast held both the largest A-SNNRIs and soil loss risks. There were significant
positive correlations between A-SNNRIs and population and GDP. Therefore, to control and reduce
soil-source nitrogen exports in the YRD, we need to reduce nitrogen emissions from urban villages,
agriculture, industry, and aquaculture and determine the main risk locations along the east coast and
in the main city.

Keywords: Yellow River Delta; soil nitrogen variety; soil loss; soil nitrogen net replenishment risk;
spatial heterogeneity

1. Introduction

In recent years, China has faced several environmental problems due to the high
intensity of land development and utilization in coastal areas [1,2]. However, the future of
coastal water ecological environments is not optimistic, as these areas suffer from severe
nitrogen pollution. With the development of the social economy, coastal human-made
sources have become the main causes of marine pollution [3]. Among the terrestrial
pollution source processes, nitrogen pollutants entering water bodies in the form of soil
erosion account for a larger portion, forming serious nonpoint source pollution [4,5].
Simultaneously, soil nitrogen replenishment from crop planting has become the main
source of soil nitrogen losses in agricultural areas [6–8]. Therefore, for pollution control, it
is important to sort out the influence of human activities on soil nitrogen replenishment,
yet the amount of replenishment is difficult to quantify spatially because it contains a
comprehensive process of multiple increments and decrements [9,10]. However, the main
processes of soil nitrogen loss are vegetation consumption and soil loss [11–13], and the
final status of the comprehensive process of soil nitrogen gains and losses can be reflected
in the soil nitrogen storage [14,15]. At present, relevant studies have focused separately on
the spatiotemporal variation in soil nitrogen [16,17] and the loss of soil sediment [18–20].
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Few researchers have focused on soil nitrogen replenishment from human activity and soil
loss perspectives.

The soil loss process is related to several ecological environmental factors, including
the soil texture conditions, rainfall intensity, topography, and land cover [21,22]. Of the
existing soil loss research methods, the Revised Universal Soil Loss Equation (RUSLE) is
currently the most scientific and accurate method for the calculation of soil loss and has
been widely used in recent decades [23–25]. However, the RUSLE is usually applied to
analyse the quantity of sediment that enters the water body due to rainfall scouring the soil
surface [26,27] and never involves loss analyses of concrete soil pollutants.

Human activities and the natural geographic environment both exhibit heterogene-
ity, which leads to spatial differences in the potential for soil nitrogen replenishment
and pollutant outputs. Therefore, these environmental problems also need to be solved
from the perspective of spatial heterogeneity [28–30]. With the rapid development of geo-
graphic science and computer technology, it is possible to present and visualize the spatial
heterogeneity of geographic phenomena. In recent years, the advantages of geographic
information systems (GISs) in spatial data analysis and spatiotemporal problem positioning
have gradually become prominent. Using GIS tools to understand spatial heterogeneity
not only works well in obtaining the location of key issues but also plays the initial roles in
proposing target solutions [31–35].

The Yellow River Delta (YRD), located close to Laizhou Bay, is a typical coastal plain
with an intense number of human activities. In recent years, Laizhou Bay has experienced
serious land-based pollution problems [36–40]. The discharge of industrial and agricultural
nitrogen pollutants from the YRD poses greater threats to the adjacent Laizhou Bay [41–43].
From the land source reduction perspective, it is highly important to accurately and spatially
understand the nitrogen emission risks imposed by human activities in the YRD for the
prevention and control of coastal water pollution. Therefore, this research selected the
YRD as a typical coastal zone region and established a method for calculating the risk
of soil nitrogen replenishment under the influence of human activities, and this method
is called the anthropogenic soil nitrogen net replenishment index (A-SNNRI). In the A-
SNNRI, we mainly considered the soil nitrogen status and loss risks during soil erosion
and realized a two-dimensional layered analysis by applying geospatial methods. We
calculated the soil nitrogen loss risks based on the RUSLE model. For the analysis of
human impact, we applied land use, population, and gross domestic product (GDP) for
relevant geostatistics and correlation analysis. Our objective was to obtain the distribution
characteristics of anthropogenic nitrogen replenishment to the soil environment in the
study area and determine the main influencing factors. Then, we propose temporal and
spatially targeted strategies for the control and reduction of into-sea nitrogen nonpoint
source pollution emissions.

2. Materials and Methods
2.1. Study Region

The study area is the YRD (118◦13′–119◦17′ E, 37◦16′–37◦50′ N), China. It is located
between the Yellow River and the Zhimai River, and Laizhou Bay is in the east (see Figure 1).
The total area is 2902 km2. It is a typical estuary delta in the coastal zone with serious
land–sea interactions, half of which was formed by extremely rapid sedimentation of
the Yellow River in the last 200 years [44], promoting one of the youngest lands in the
world [45,46]. The terrain is flat with an average elevation of 3 m. The YRD belongs to a
temperate continental monsoon climate. Rainfall is mainly concentrated in the summer
season, and the average annual precipitation is approximately 550 mm [47]. In terms
of administrative divisions, our research area was located in Shandong Province, China,
consisting of Dongying District and Kenli District. The Second Land Use Survey of China
showed that arable land and urban villages make up 24% and 10%, respectively. Industry
and agriculture have relatively high economic shares in this region (http://tjj.shandong.
gov.cn/tjnj/ (accessed on 30 December 2020)). There is a twice-a-year crop ripening system.

http://tjj.shandong.gov.cn/tjnj/
http://tjj.shandong.gov.cn/tjnj/
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The main planting crops are corn, rice, soybeans, and cotton in summer and wheat in
winter, which often consume larger amounts of fertilizers and pesticides in summer. In
addition, there was 15% saline-alkali land, and the soil salinity was relatively high. There
was an average pH value of 8.31 and salt content of 5.84 g/kg (soil sampling data of the
0–20 cm topsoil in 2019). Moreover, the sea distribution was a negative factor for the soil
fertility and vegetation cover. There are relatively high soil erosion risks [48–50].
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2.2. Data Collection
2.2.1. Soil Sampling and Laboratory Analysis

Agricultural nitrogen supplements are the main source of soil nitrogen in the YRD [51].
To consider the influence of agricultural planting on soil nitrogen, we carried out two
periods of soil sampling, in June and October 2020, before and after the summer crop-
growing season, respectively. A total of 125 soil samples were collected in June, and
127 samples were collected in October, with a 3 km× 3 km sampling density (see Figure 1a).
The soil sampling depth was 0–20 cm. We implemented a homogeneous-mix process for
each soil sample. Then, the soil samples were sealed and frozen after being collected and
subjected to a laboratory analysis of composition. The measurement indicators included
soil organic matter (SOM) (No. GB 7857-87 of Chinese standard) and soil total nitrogen
(STN) (No. HJ 717-2014 of Chinese standard).

2.2.2. Auxiliary Spatial Data

Relevant geographic grid layers were used to evaluate spatial heterogeneity. The
auxiliary spatial data included (i) soil texture layers, consisting of the percentage data
of sand, silt, and clay ratios (see Figure 2a–c), which were obtained from the Resource
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and Environment Science and Data Center of Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn/ (accessed on 29 August 2019)); (ii) a digital elevation model (DEM)
(see Figure 1b), which was obtained from the Geospatial Data Cloud of China (http://
www.gscloud.cn/ (accessed on 30 June 2009)). Additionally, we calculated the slope layer
(see Figure 2d) and flow layer (see Figure 2e) based on DEM data; (iii) the annual average
rainfall layers from 2011 to 2015( see Figure 1e); (iv) the monthly normalized difference
vegetation index (NDVI) layers from June to October for 2015 to 2019, and we calculated
the monthly and annual mean values (see Figure 2g); (v) the population distribution layer
(see Figure 2h) and gross domestic product (GDP) distribution data (see Figure 2i), and the
source data for (iii) to (v) were all collected from the RESDC website; and (vi) the distance
from the sea (DS) layer (see Figure 1f), which was obtained as a result of this research. Then,
we resampled the geographic data and obtained a 30-m resolution result.
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2.3. Interpolation of Soil Sampling Data and Verification

We selected the interpolation method with maximum precision among ordinary krig-
ing (OK), inverse distance weighted (IDW), geographically weighted regression (GWR),
and geographically weighted regression kriging (GWRK), to obtain the spatial layers of
SOM and STN.

http://www.resdc.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/


Sustainability 2022, 14, 6078 5 of 18

2.3.1. Ordinary Kriging

OK is a commonly effective interpolation method that establishes a spatial statis-
tical model based on the spatial autocorrelation between sampling sites to predict the
surface [52,53] (see Equation (1)).

K(x0) =
n

∑
i=1

λi ∗ K(xi). (1)

where K(x0) is the predicted value in the x0 point, K(xi) is the measured value of the known
sample around x0, λi is the weight of the ith known soil sample, related to distance, spatial
location, and layout, etc., and n is the amount of the known sample sites.

2.3.2. IDW

IDW plays a good interpolation role in the data spatialization, which assigns a larger
weight to the closer sample according to the distance between the samples and predicted
points and then performs a weighted average of the samples to obtain the predicted
value [54] (see Equation (2)).

I(x0) =
n

∑
i=1

I(xi)

(di)
p /

n

∑
i=1

1
(di)

p . (2)

where I(x0) is the predicted value in the x0 point, I(xi) is the measured data in the ith sample
site, di is the distance between soil samples and the predicted point, and p is the power
value of the weight.

2.3.3. GWR and GWRK

The GWR model is a spatially varying coefficient model attached to the additional
concept of spatial location, the regression coefficients of which are determined by a function
of the spatial location variable [55,56] (see Equation (3)). GWRK added the process of
regression residual removal based on the GWR result, including a residual spatialization
by the kriging method [57].

yi = β0(ui, vi) +
k

∑
j=1

β j(ui, vi)xij + εi. (3)

where yi is the predicted value of the ith point, β0(ui, vi) is the intercept of the polynomial,
βj(ui, vi) is the regression coefficient of the jth impact variable at the ith prediction point,
which is a function of the location (ui, vi), Xij is the value of the jth impact variable at the
ith point, and εi is the random error term.

2.3.4. Verification

We supplemented a cross-validation process [58–60] by evaluating the statistical mean
error (ME) (Equation (4)), mean absolute error (MAE) (Equation (5)) and root mean squared
error (RMSE) (Equation (6)) of the abovementioned interpolation methods to obtain the
optimal spatial layers of SOM and STN.

ME =
1
m

m

∑
i=1

(
y′i − yi

)
. (4)

MAE =
1
m

m

∑
i=1

∣∣y′i − yi
∣∣ (5)

RMSE =

√√√√ 1
m

m

∑
i=1

(
y′i − yi

)2

(6)
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where yi
′ is the predicted value at the ith verification sample, while yi is the ith sampling

value, and m is the number of verification samples; in this study, 10% of the soil samples
were extracted. The smaller the values of ME, MAE, and RMSE, the higher the accuracy of
the interpolation results.

2.4. Soil Nitrogen Loss Risk Index

Based on the RUSLE, we developed a soil total nitrogen loss risk index (SNLRI)
to quantify the risk of soil nitrogen loss dominated by soil erosion. In the SNLRI, we
applied the soil erodibility factor (K), slope factor (S), vegetation cover factor (V), and
rainfall erosivity factor (R) in RUSLE and added a flow factor (F) [61] to comprehensively
characterize the soil nitrogen loss risks [62]. However, the SNLRI calculates the nitrogen
loss risk by normalizing each impact factor and superimposing them with weights (see
Equation (7)).

SNLRI =
n

∑
i=1

fi × wi. (7)

where 0≤ SNLRI≤ 1 is the soil nitrogen loss risk index, 0≤ fi ≤ 1 is the soil loss contribution
index of the ith influencing factor, n is the amount of the soil loss influencing factors, and
wi corresponds to the weight.

2.4.1. Soil Erodibility Factor

In the RUSLE, the soil erodibility factor (K) characterizes soil loss from the soil content
(soil sand, soil silt, soil clay, and soil organic carbon (SOC)) perspective (see Equation (8));
usually, a larger K value presents a stronger soil erosion risk [23,63,64]. However, the
nitrogen in the soil surface is often dissolved in water and lost with the soil erosion
process [65,66]. Therefore, the soil erodibility index (K) can present the soil nitrogen loss
risk well.

K =
{

0.2 + 0.3× exp
[
−0.0256× SAN ×

(
1− SIL

100

)]}
×
(

SIL
CLA+SIL

)0.3

×
[
1− 0.25×SOC

SOC+exp(3.72−2.95×SOC)

]
×
{

1− 0.7×(1− SAN
100 )

(1− SAN
100 )+exp[−5.51+22.9×(1− SAN

100 )]

}
.

(8)

where K is the soil erodibility index, t·h·MJ−1·mm−1. SAN is the soil sand content (%),
SIL is the soil silt content (%), CLA is the soil clay content (%), and SOC is the soil organic
carbon content (%). The SOC data is calculated by using a modulus of 0.58 based on the
sampled SOM data (that is, SOC/SOM = 0.58) [67].

2.4.2. Slope Factor

Different terrain slopes usually show differentiated soil loss potential [68,69]. We
applied the slope factor in the RUSLE (see Equation (9)) to quantify the slope contribution
to the soil loss risk.

S =


10.8× sin θ + 0.03, θ < 9%
16.8× sin θ − 0.50, 9% ≤ θ ≤ 18%
21.91× sin θ − 0.96, θ > 18%

. (9)

where S is the slope factor index and θ is the angle value at a grid scale.

2.4.3. Vegetation Coverage Factor

Terrestrial vegetation plays an initial role in soil and water conservation. Vegeta-
tion coverage may effectively reduce the soil nutrient loss caused by soil erosion [70].
However, the vegetation impact on soil loss can be properly quantified by the NDVI
(see Equation (10)) [71].

V = exp [−(2 × NVDI)/(1 − NVDI)] (10)
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where V is the vegetation coverage factor index; the larger the value, the greater contribu-
tion to soil loss. NDVI is the mean monthly NDVI value in summer.

2.4.4. Hydraulic Erosivity Factors

In this study, we mainly considered two types of hydraulic influencing factors in the
SNLRI, named the rainfall erosivity factor (R) and flow factor (F). Rainfall is the governing
force for soil loss, and greater rainfall intensity usually corresponds to larger soil loss
risks [24,72]. We applied the average annual rainfall from 2011 to 2015 to quantify the
regional heterogeneity of rainfall erosivity. In addition to rainfall, the erosion effect of
upstream incoming water on the soil surface also plays an important role in soil loss [73,74].
Therefore, we also applied the hydrological flow to calculate the F factor, presenting the
hydrological promotion effect on soil loss during the runoff process. In this study, we used
the range conversion method to normalize the R and F factors, and a larger rainfall or flow
value corresponded to a larger contribution to the SNLRI.

2.4.5. Weight Determination and the SNLRI

In this study, we assessed the relative spatial risk distributions by using a normalized
index. Therefore, the spatial variability in the influencing factors determined their hetero-
geneity contribution levels. For the overlay of risk factors, we used the spatial standard
deviation (SD) of every factor layer to determine their weights (see Equation (11)). Then,
we can obtain the final SNLRI distribution layer by comprehensively superimposing the
five types of soil loss factors.

wi = σi/
n

∑
i=1

σi . (11)

where wi is the weight of the ith soil loss influence factor, and σi represents the spatial
standard deviation of the ith influence factor.

2.5. Anthropogenic Soil Nitrogen Net Replenishment Index

We proposed a simple soil nitrogen index to present the STN net supply to soil
dominated by human activities, named the anthropogenic soil nitrogen net replenishment
index (A-SNNRI). In the A-SNNRI, the STN replenishment mainly consists of the soil
nitrogen variety and the soil loss part. However, we did not add other soil nitrogen losses,
such as volatilization and transformation processes, which occurred at relatively low levels.

2.5.1. STN Change Index

STN change is a comprehensive result of soil nitrogen gains and losses within a certain
temporal scale. We calculated the STN change index (SNCI) based on the variety of STN
concentrations to present the replenishment possibility of soil nitrogen (see Equation (12)).

SNCI =
(STNa f ter − STNa f ter)−Min

(
STNa f ter − STNa f ter

)
Max

(
STNa f ter − STNa f ter

)
−Min

(
STNa f ter − STNa f ter

) . (12)

where 0 ≤ SNCI ≤ 1 is the STN change index; the larger value corresponds to the higher
STN replenishment possibility. STNafter and STNbefore represent the STN concentration in
October and June, respectively.

2.5.2. A-SNNRI

By weighting and superimposing the SNLRI and SNCI layers (Equation (13)), we
can obtain the regional A-SNNRI result. For the weight, we also referenced the weight
determination method based on the SD of the grid layer (see Equation (11)).

A-SNNRI = SNCI× w1 + SNLRI × w2. (13)
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where 0 ≤ A-SNNRI ≤ 1 is the anthropogenic soil nitrogen net replenishment index; the
larger the value, the larger the nitrogen supply capability is w1 and w2 are the weights of
the SNCI and SNLRI, respectively.

2.6. Statistics

In this study, we implemented relevant geostatistical analysis and the overlay of
grid layers under an ArcGIS 10.2 environment (Environmental Systems Research Institute,
Redlands, WA, USA). For the spatial correlation analysis, we applied a resampling method
to obtain the simulated samples based on ArcToolbox tools. However, the basic statistical
analysis was based on SPSS 20 (International Business Machines Corporation, Armonk,
NY, USA) and Excel 2016 (Microsoft, Redmond, WA, USA). The software mentioned above
were all obtained from Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences. In addition, the factor detector tool in Geodetector [75] (see
Equation (14)) played a better role in the evaluation of spatial stratified heterogeneity and
the correlation analysis of qualitative data.

q = 1−
L

∑
h=1

Nhδ2
h/N δ2. (14)

where 0 ≤ q ≤ 1; the larger value indicates a stronger heterogeneity under the strata status
and higher correlation with the qualitative data. h is the classification number of the
qualitative spatial data (e.g., the land use layer). Nh and N are the unit numbers of zone h
and the entire region, respectively. δ2

h and δ2 correspond to the variances of zone h and the
entire region.

3. Results
3.1. Spatiotemporal Distributions of STN and SOM

We obtained the spatial layers of STN in June and October 2020 and SOM in June by
selecting the best interpolation results (see Figure 3). Then, we calculated the regional STN
changes from June to October (see Figure 4). Moreover, the influences of environmental
factors on soil indicators were analyzed (see Table 1).

3.1.1. STN and SOM Characteristics

We obtained the STN spatial layers for June and October 2020 by the GWR model
and the SOM result for June with the kriging method (see Figure 3). In Figure 3, the
STN concentrations in June and October presented consistent distributions in the study
area. Lower values were distributed along the east coast and presented an increasing
trend with increasing distance from the sea. The highest values of STN were in the main
city of Dongying and the southwestern region. However, the mean STN values in June
and October were 0.72 g/kg and 0.71 g/kg, respectively. In terms of SOM, there were
distributions similar to those of STN; the east coast had lower concentrations, and the
southwestern part had the highest value. Overall, the mean SOM value in June was
11.61 g/kg.

3.1.2. STN Change and Impact Factor Analysis

The spatial STN variety from June to October is shown in Figure 4. In the study area,
the STN changes were balanced overall after the summer crop-growing season, with a
regional mean value of −0.01 g/kg. However, the larger decreases in STN were mainly
located in the northern area and the east coast. There were obvious STN increases in the
main city and southwest.

From the land use perspective, overall, the STN distributions in June and October
showed a consistent trend; that is, the mean STN concentration presented the order of urban
villages > arable land > garden land > industrial and mining storage land > woodland > tidal
flat land (see Figure 5a,b). In Figure 5c,d, the largest values of the summary STN change
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were also located in urban villages and arable land. However, the mean STN change in
arable land was relatively low, and the larger values were mainly located in urban villages,
industrial and mining storage land, and facility agricultural land.
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Table 1. Correlations between soil indicators and environmental factors.

Pearson
Correlations

(SPSS)
Elevation DS Sand Silt Clay NDVI Rainfall Population q Statistic

(Geodetector)
Land
Use

STN_June a 0.085 0.174 0.111 −0.103 −0.108 0.322 ** 0.048 0.254 ** STN_June d 0.392 **
STN_October b 0.205 * 0.316 ** 0.020 −0.017 −0.016 0.343 ** 0.148 0.230 * STN_October d 0.377 **
SOM_June c 0.101 0.200 * 0.135 −0.126 −0.132 0.336 ** 0.053 0.257 ** SOM_June d 0.370 **
STN change d 0.362 ** 0.655 ** 0.184 ** −0.190 ** −0.173 ** 0.118 * 0.456** 0.413 ** STN change d 0.127 **

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
a. Listwise N = 113; b. Listwise N = 114; c. Listwise N = 113; d. Listwise N = 281.
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In Table 1, we obtained the correlations between soil indicators and relevant envi-
ronmental factors. The SPSS correlation analysis results of the STN influencing factors in
June and October were also applied in the GWR model. In June, the STN distributions had
significant positive correlations with the NDVI and population (p < 0.01), and the Pearson
correlation coefficients were 0.32 and 0.25, respectively. The October STN presented sig-
nificant positive correlations with the NDVI, DS, population, and elevation (p < 0.05), and
the Pearson correlation coefficients were 0.34, 0.32, 0.23, and 0.21, respectively. In addition,
the SOM in June presented significant positive correlations with the NDVI, population,
and DS (p < 0.05), which presented correlation coefficients of 0.34, 0.26, and 0.20. However,
the STN change had significant correlations with all the mentioned environmental factors
(p < 0.05), and the coefficients with DS, rainfall, population, and elevation all exceeded
0.3. The silt and clay indicators both presented significant negative correlations with STN
change. Moreover, the Geodetector analysis results showed that STN, SOM, and STN
changes all presented significant correlations with land use (p < 0.01), and the q values of
STN and SOM concentrations all exceeded 0.35.

3.2. Soil Nitrogen Loss Risks in the YRD

To present the heterogeneity of STN loss risks, we applied the RUSLE to evaluate soil
erodibility and soil loss. Then, based on land use, the correlations between soil loss and
STN variety were analyzed.

3.2.1. Distribution of Soil Erodibility

In Figure 4, the mean K value of the study area was 0.033 t·h·MJ−1·mm−1, which
was relatively high. This phenomenon occurred mainly because the land-forming soil of
the YRD came from the Loess Plateau, and there was higher land exposure in the study
area [50]. In terms of spatial distributions, there had higher soil erodibility on the east
coast, and the highest K values were mainly distributed in the Guangli River estuary and
its upward-extending area in the southeast.

3.2.2. SNLRI Analysis

We obtained the risk contributions of the five soil loss factors according to the RUSLE
(see Figure 6). Then, we calculated the spatial SD (σ) values of the normalized layers of
soil loss factors and generated the overlaying weights to the SNLRI (see Equation (11)).
The SDs of the five soil loss factors presented the order of V > K > R > F > S, which was
also the order of their weights. In the study area, vegetation cover, soil erodibility, and
rainfall erosivity were the main leading factors affecting the spatial heterogeneity of soil
loss. Figure 7b presents the final SNLRI calculated result, where the higher SNLRIs are
mainly distributed along the east coast, the main city of Dongying, and the Guangli River.

3.2.3. Soil Loss Influence on STN Change

In Figure 4, the soil erodibility (K) had a significant negative correlation with the STN
change, and the correlation coefficient was 0.32 (p < 0.01). Moreover, we obtained the
correlation between the summary soil loss risks and the total STN changes based on the
land use divisions (see Figure 5e,f). For the land use statistical results, we can conclude that
the STN change was significantly negatively correlated with the summary soil loss risk,
with a determination coefficient (R2) of 0.82, except for the land use types of urban villages
and arable land. Although the urban villages and the arable land had higher soil loss risks,
they also attached larger increments of STN.
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3.3. Spatial Distributions of A-SNNRI

We obtained the A-SNNRI layer by applying Equation 13 and analysed the index
distribution in different land uses (see Figure 7c,d). In this study, based on the spatial SD
and Equation (11), the overlay weights of the SNCI and SNLRI for presenting the final A-
SNNRI layer were 0.33 and 0.67, respectively. In Figure 7c, the spatial A-SNNRIs presented
higher values on the east coast and the southeast, especially for the main city of Dongying.
For the land use statistics, the higher values of summary A-SNNRIs were mainly located in
arable land, saline-alkali land, and urban villages, while the larger mean A-SNNRIs were
distributed in tidal flat land, industrial and mining storage land, saline-alkali land and
urban villages (see Figure 7d). Although the summary A-SNNRI in arable land was the
largest, the mean value was relatively low. However, the summary and mean A-SNNRIs of
urban villages and saline-alkali land all presented higher values in the study area.

4. Discussion
4.1. Influences of Human Activities on STN Status
4.1.1. Influence of Land Use on STN Distribution

There were higher STN values on the east coast in Figure 3 and higher values in
agricultural land uses in Figure 5. The spatial distribution characteristics of STN and SOM
were mainly due to seawater intrusion and agricultural development [51]. In this case, the
soil fertility in the sea-proximity areas was poorer, and the crop planting was concentrated
in the inland areas. Agriculture and human activities had a certain increasing effect on the
STN and SOM concentrations.

4.1.2. Anthropogenic STN Supplement Analysis

In estuarine deltas, human activities usually have greater influence on the STN status
and variety [76]. We selected the population and GDP indicators for presenting the intensity
of human activity and used the DS indicator to evaluate the influence of sea distribution
in coastal areas. Then, we implemented the correlation analysis between the calculated
A-SNNRIs and the spatial data of population, GDP and DS in the YRD (see Table 2). The
A-SNNRI showed significant positive correlations with population and GDP (p < 0.05) but
presented significant negative correlations with DS (p < 0.01). To some extent, population
concentration and socioeconomic development promote the flow of nitrogen to the soil.
With the development of human society, the amount of nitrogen supplied to the soil by
humans is generally greater than the land consumption, resulting in a net increase in soil
nitrogen. In the YRD, the STN concentrations, STN increases and A-SNNRIs in urban
villages were all relatively high. Although the coastal soil is poor, there is also a large
proportion of arable land in the YRD. In this case, to obtain a higher land yield, people
tend to add a larger amount of nitrogen to the soil to supplement the growth of crops [77].
However, due to the constraints of soil parent material and environmental conditions,
future nitrogen replenishment to soil in arable land is not optimistic [78,79]. In this study,
the mean STN concentration increases in arable land were relatively low. In addition, the A-
SNNRIs of saline-alkali land were relatively high, which might be related to the saline-alkali
soil improvement activities in this region [80]. In contrast, the DS had a certain negative
effect on the A-SNNRIs (p < 0.01). We maintained that this is closely related to the strong
sea–land interactions. In this case, the proximity to the sea results in poorer soil fertility,
resulting in greater anthropogenic nitrogen resupply. Otherwise, according to the survey
data of this study, there was a large proportion of aquaculture and other nonagricultural
industries near the coast, which significantly supplements the soil nitrogen [81,82].

4.2. A-SNNRI Application in the Control of Coastal Nonpoint Source Pollution

Compared with other terrestrial areas, the discharge of terrestrial pollutants into the
sea in coastal areas is more direct and larger [5,83]. Therefore, coastal areas are usually the
key sources of marine pollution, and it is necessary to accurately grasp the spatial locations
of the main source region [84,85]. However, the process of terrestrial pollutants generated
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by human activities entering water bodies as nonpoint source pollution through water
and soil processes is complicated. It is difficult to spatially quantify the specific pollutant
supplements of human activities to the soil. Therefore, this research focuses on the soil loss
potential and the changes in soil pollutant content to infer an A-SNNRI and evaluate the
spatial heterogeneity of soil nitrogen replenishment dominated by human activities. Then,
based on the A-SNNRI, we can obtain the spatial distributions of the nitrogen export risks
and the key influencing factors. The research methods and results presented in this study
may provide a good reference in the spatial management and control strategies for coastal
nonpoint source pollution.

Table 2. Correlations between A-SNNRIs and population, GDP, and DS.

Pearson Correlations c A-SNNRI Population GDP DS

A-SNNRI 1 0.164 * 0.280 ** −0.298 **
Population 1 0.785 ** 0.252 **

GDP 1 0.254 **
DS 1

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed).
c. Listwise N = 168.

In this paper, the SNLRIs were relatively high on the east coast and in the main city
of Dongying, corresponding to higher soil nitrogen loss risks. For the analysis of the
distribution of soil loss influencing factors, we may obtain the main pollutant emission
influencing factors of the vegetation coverage, soil erodibility, and rainfall. Therefore, we
can conclude that it is an initial step to add the density of coastal vegetation planting and
increase offshore soil and water conservation effects. Additionally, in the study area, to
control the discharge of nitrogen nonpoint source pollution into the sea, we must strengthen
farmland planting management and reduce nitrogen fertilizer inputs in the southwest.
However, we should also consider the summer crop growing season as the key period for
the control of the into-sea nonpoint source pollution.

4.3. Limitations

In this study, there were still some limitations in the data setting and methods. From
the data limitation perspective, there was a mismatch in the temporal scale of the research
data. In this study, due to the limited data involved in sampling and experiments, some
of the auxiliary geographic data came from the existing research results. The land use,
soil texture, rainfall, and NDVI data were not displayed during the sampling period. In
addition, the spatial resolution of some spatial data needs to be improved. From the method
limitation perspective, in this study, we mainly focused on the soil erosion processes that
had the greatest impacts on the nitrogen loss in the soil surface but did not include the
vertical migration of soil nitrogen and other loss influences. In addition, compared with the
inherent nitrogen content of the original soil, the nitrogen supplied by human activity in
other forms might present a differentiated loss law when soil erosion occurs. However, this
study used the RUSLE to uniformly analyse the loss risks of these two types of nitrogen
formats. We mainly intended to present a generalized risk index of the soil nitrogen net
replenishment influenced by human activities and quantify its spatial heterogeneity.

5. Conclusions

In this study, based on the actual soil nitrogen status and soil loss risk, we established
a simple method to evaluate the soil nitrogen net replenishment risk dominated by human
activities. A case study in the YRD showed that the A-SNNRI could present the supply
intensity to soil nitrogen well. The main conclusions are described as follows.

(i) In the study area, the STN and SOM presented consistent spatial distributions, with
lower values on the east coast and the highest values in the southwest and the main
city of Dongying. The mean values of STN and SOM were 0.7 g/kg (June and October)
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and 11.6 g/kg (June), respectively. The larger STN decreases were in the northern
area and the east coast, while the STN increases were mainly in the main city and the
southwest. Urban villages and arable land held the largest mean STNs and summary
changes. Population and land use presented significant influences on STN status.
However, sea proximity was a negative factor for the STN content and variety.

(ii) The soil erodibility was relatively high, and the K value was 0.033 t·h·MJ−1·mm−1.
Higher soil loss risks were mainly located on the coast, the larger estuaries of the
southeast, and the main city of Dongying. The contributions of influencing factors
to the SNLRI showed the order of V > K > R > F > S. There were significant negative
correlations between the STN changes and the K values. Moreover, except for urban
villages and arable land, other land uses showed that the summary STN changes had
significant negative correlations with soil loss.

(iii) Higher A-SNNRIs were mainly located on the east coast, the southeast region, and
the main city of Dongying, which also had the largest soil loss risks. The contribution
weights of SNCI and SNLRI to the A-SNNRI were 0.33 and 0.67, respectively. Larger
values of the summary A-SNNRIs were found in arable land, saline-alkali land, and
urban villages, while the mean A-SNNRI of arable land was relatively low. However,
tidal flat land and industrial and mining storage land had the largest mean A-SNNRIs.
The distributions of population and socioeconomic activities presented significant
influences on the A-SNNRIs. In the YRD, the pollution risk sources of STN were
mainly in urban villages, agriculture, industry, and aquaculture.

(iv) In coastal areas, there are often settlements of human life and socioeconomic produc-
tion, which are also the main sources of marine pollution. However, due to differences
in the regional natural conditions and the development of the social economy, the
impacts of such human activities on coastal pollution often present spatial hetero-
geneity. Therefore, when formulating corresponding land-source management and
control strategies for marine pollution in coastal areas, we should determine pollutant
sources from the human behaviour perspective in a spatially specific way.
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