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Abstract: Developing national-level policies related to climate change induced expansions of invasive
species requires predictive modelling at a regional scale level. This study aimed to predict future
changes in the habitat distributions of two major invasive alien fish species, Micropterus salmoides and
Lepomis macrochirus, in South Korea. An ensemble system with multiple species distribution models
was used for the prediction, and gridded water portion data from the linear-structure information on
river channels inputted as habitat characteristics of freshwater ecosystem into the models. Bioclimatic
variables at 20-year intervals from 2001 to 2100 were generated from predicted temperature and
precipitation data under the representative concentration pathway 4.5 and 8.5 scenarios. The overall
distribution probabilities of the potential habitats increased with time in both climate change scenarios,
and the potential habitats were predicted to expand to upstream areas. Combined with regional
ecological value information, such as biodiversity in freshwater ecosystems, these results can be
an important basis for deriving regional priority information for managing alien species in climate
change. Additionally, the modelling approach is highly applicable to various national-level policies
for ecosystem conservation since it is not greatly restricted by spatial scales.

Keywords: invasive alien species; freshwater ecosystem; climate change impact; species distribution
modelling; regional-scale application; habitat expansion

1. Introduction

Ecological disturbances caused by alien invasive species are a major threat to local
ecosystems and native species, and it has been increasingly reported that climate change can
be an additional factor accelerating habitat expansion of alien species in some regions [1–4].
Controlling alien species introduction pathways and habitat expansion has been a strong
recommendation of the UN Convention on Biological Diversity (CBD) for conserving global
biodiversity [4]. There have been several governmental efforts to control habitat expansion
of invasive alien species. Decision-making for political actions is generally based on risk
assessments of potential threats posed by alien species with regard to reproductive capacity,
the possibility of negative impacts on native ecosystems, and biodiversity [5–7]. However,
climate change, which may possibly be an additional factor for alien species expansion, is
of lower concern.

Largemouth black bass, Micropterus salmoides (Lacepède, 1802), and bluegill, Lepomis
macrochirus (Rafinesque, 1819), are the major invasive alien fish species, designated by the
Enforcement Decree of the Ministry of Environment in South Korea. Largemouth black
bass is known to have originated in eastern North America and northern Mexico. It mostly
inhabits soft riverbeds with aquatic plants, slow water velocity (6–20 m/s), appropriate oxy-
gen concentration (~4 mg/L), temperatures between 11–29 ◦C for spawning, and slightly
alkaline water (5 < pH < 10) [8–10]. The major food sources for this species are microcrus-
taceans and microworms. Bluegill can be found in states in central North America, such as
Virginia, Florida, Texas, and New York, where the river has a narrow channel and complex
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habitat. These species prefer relatively high temperatures (17 ◦C < temp. < 21 ◦C) and low
river velocities [8]. These species typically consume zooplankton or microinvertebrates.

In the late 1960s, the Fisheries Agency in South Korea introduced them to expand fish
industries in some local communities to expand fish industries in some local communi-
ties [11–14]. However, the policy unintentionally caused severe ecological disturbances in
freshwater ecosystems due to their nationwide expansions in Korea. Countermeasures by
the central and local governments in Korea have restrained the expansions of the invasive
species through policy-wise capture and attained fairly successful reductions in their num-
bers. Currently, the Korean government is continuously monitoring the habitat expansions
of the alien species and investigating the human-induced factors that affect their expansion.
However, climate change has not been considered a potential environmental factor. Since
the species originated from climate zones warmer than those in Korea, the impact of these
species expansions due to climate change may need careful inspection.

General approaches for assessing the impact of alien species expansion on climate
change include predictions using species distribution models (SDMs). SDMs have been
used to predict potential species distributions based on climate change scenarios [15–17].
SDMs are geographical information system (GIS)-based models that can be used to predict
potential species habitats using species presence/absence data and environmental informa-
tion. According to Guillera-Arroita et al. [18], SDMs are applied for various purposes, such
as species management, predicting climate change impacts, and landscape management.
Several algorithms have been used to predict species distribution, including the general
linear model (GLM), general boosted model (GBM), generalized additive model (GAM),
artificial neural network (ANN), and random forest (RF). Each of these has its own un-
certainty, and ensemble techniques that combine their multiple model outputs are often
used to minimize uncertainties [19]. Currently, SDMs are used to predict the distribution of
invasive species [20–22].

However, one of the challenges for simulating spatial distributions of fish species
on a regional scale is to incorporate the geographical information of their habitats into
the models. Since most SDMs use gridded spatial data for environmental information,
including climate conditions, data processing from vectorized linear structures of river
channels (as in polylines) to gridded scalar data at a lower scale (for example, at 1 km
resolution or lower) can cause critical bias. Modelling with lower resolutions is often
accompanied by the loss of important habitat information, such as small streams [23–26].
However, climate change studies have generally been limited to models with lower spatial
resolutions (several square kilometers at most) due to technical difficulties in valid data
production of future climate change at a high scale [27,28].

This study aimed to examine a regional-scale application for SDM simulations of
invasive alien fish, largemouth black bass and bluegill, with climate change in Korea. The
simulated future spatio-temporal prediction of alien species can help diagnose the impact
of climate change on the alien species at a national level in freshwater ecosystems.

2. Materials and Methods
2.1. Study Region and Observations of the Invasive Alien Fish Species

The study region is South Korea whose total area is about 100,000 km2. South Korea
shows a temperate climate condition, annual temperature is about 12.5 ◦C from −2.0 ◦C
in the coldest month to 26.0 ◦C in the warmest month, and annual precipitation is about
1200 mm. Due to the nature of the aliens’ habitats, South Korea has a slightly cold climate,
and thus future warming is likely to provide a more favorable climate condition.

Data largemouth black bass and bluegill were obtained from a survey conducted by
the Division of Ecological Safety of the National Institute of Ecology. A total of 380 points
were used for the SDMs for bass and 180 for bluegill, which were collected from 2015 to
2018 during the national survey of alien species. The distribution of each species is shown
in Figure 1.
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Figure 1. Distribution map of the two invasive alien species, largemouth black bass (red dots) and
bluegill (green dots), with the study domain (the yellow shaded area), Korean Peninsula. Blue lines
are the major river channels in the domain.

2.2. Species Distribution Models

An ensemble approach with multi-SDMs in the BIOMOD system [29] was used to
improve the accuracy of using a single model. In BIOMOD, 10 different mathematical pre-
diction algorithms are available for ensemble simulations: GLM, GBM, GAM, classification
tree analysis, ANN, surface range envelop, flexible discriminant analysis, RF, multivariate
adaptive regression splines, and MaxEnt. The simulation performance of each model is
validated using 20% of randomly selected species input data. Then, the final ensemble
model outputs are obtained by a composite of weighted SDMs based on the diagnostic
index indicating the modelling performance and true skill statistics [30,31].
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2.3. Input Data for SDMs

For the current climate conditions in the SDMs, 19 bioclimatic variables (BIOCLIMs)
were generated from WorldClim (accessed on 2 March 2019. BIOCLIMs were processed
to have a 1 km spatial resolution based on global climate observations for approximately
50 years since 2000 [32]. The final variable selections as the model inputs were carried out
through covariance analyses among all BIOCLIMs for South Korea. Once a high correlation
between two selected variables (0.7 or higher in Pearson’s correlation coefficient in this
study) was shown, one of them was excluded from the list of inputs [33–35]. The final
BIOCLIM inputs selected for this study, three temperature-related and three precipitation-
related inputs, are shown in Table 1.

Table 1. Selected BIOCLIMs for model inputs.

Name Description Name Description

BIO1 Annual mean temperature BIO12 Annual precipitation

BIO2 Mean diurnal range BIO13 Precipitation in the wettest month

BIO3 Isothermality BIO14 Precipitation in the driest month

For future climate conditions, predicted temperatures and precipitation based on the
two climate change scenarios, representative concentration pathway (RCP) 4.5 and 8.5, as
defined by the Intergovernmental Panel on Climate Change (IPCC) [36], were obtained
from the Korean Meteorological Administration (KMA). The KMA data were statistically
downscaled (1 km resolution) from a global climate model output (25 km resolution)
with geomorphological characteristics at a higher resolution [37,38]. To examine temporal
variations in species distributions, the data were further processed to generate 20-year-
averaged monthly climate data for four different time periods: 2021–2040, 2041–2060,
2061–2080, and 2081–2100.

According to the KMA climate change predictions, temperature in Korea is expected to
increase at the rate of approximately 0.28 and 0.6 ◦C per 10 years until 2100 under RCP 4.5
and 8.5 scenarios, respectively. More rainfall is predicted in both climate change scenarios
until the end of the 21st century, while the spatial variabilities in rainfall regimes are very
different between the two scenarios; the standard deviations are 1.2 and 1.7 mm/year on
average for the RCP 4.5 and 8.5 scenarios, respectively (Figure 2). A total of 19 BIOCLIMs
were generated using the same method as the WorldClim datasets, and only six BIOCLIMs,
as listed in Table 1, were applied to the model simulation.

As an essential habitat characteristic of freshwater ecosystems, water portion data
were applied to the model as a geographical input. Those were made with the intention of
reflecting the water amount for the rasterized model structure. To reflect the river channel
characteristics in these low spatial analyses, Korea’s national land use land cover data
gridded into 5 m resolution, which is provided by the Korean Ministry of Environment (via
egis.me.go.kr, accessed on 7 April 2022), were utilized to extract water body information.
Then, the area percentage of the water body was inscribed into each 1 km2 grid to avoid
habitat information loss for freshwater ecosystems (Figure 3).

Gridded slope data generated from the digital elevation model (DEM) of Korea were
used as an additional geographical input. These data were considered to indirectly repre-
sent the water streaming velocity. The DEM was excluded as a model input due to its high
covariance with the average temperature.

egis.me.go.kr
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Figure 2. Temperature (Ta) (A,B) and precipitation (PRCP) (C,D) increasing trends for one hundred
years (2000–2100) predicted for South Korea, under RCP4.5 (C) and RCP4.5 (D) scenarios. Note the
differences of color bars’ scale of temperature increasing speeds.
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Figure 3. National water portion map of Korea gridded in a 1 × 1 km resolution.

3. Results
3.1. Simulated Current Status of the Habitat Distribution of the Invasive Alien Species

The indices for modelling performance, true skills statistics (TSS), and receiver operat-
ing characteristic (ROC) were relatively high: 0.79 for TSS and 0.97 for ROC. According
to the modelling contributions of the input variables, the water portion map showed the
highest contribution to modelling for both alien fish species, 93.6% for largemouth black
bass and 83.8% for bluegill (Table 2). This indicates that proper habitat information is
crucial for modelling these species. In addition, these results show that the water portion
information in this study may make it easier to apply SDMs to regional-scale modellings
regardless of spatial resolution, especially for freshwater ecosystems. The next most impor-
tant variable was BIO1 for both species, implying that it is a climate-related environmental
descriptor for freshwater ecosystems. In fact, BIO1, mean atmospheric temperature, is not
a direct habitat characteristic, but due to the general relationship between atmospheric and
freshwater temperatures, it is indicated that the future increase in atmospheric temperature
will affect the species habitat distribution in the SDMs. In contrast, precipitation-related
BIOCLIMs and slope information had relatively low contributions. Information of the
model predictions to input variables were provided in Appendix A.

Table 2. Percentages of modelling contribution and permutation importance for each input variable.

Variables
Largemouth Black Bass Bluegill

Contribution (%) Importance (%) Contribution (%) Importance (%)

BIO1 2.7 3.3 10.2 10.3

BIO2 0.7 0.7 2.3 4.4

BIO3 0.4 1.1 0.3 2

BIO12 0.2 0.3 0.6 1.1

BIO13 0.5 0.8 1.2 1.1

BIO14 1.5 0.8 0.9 0.7

Slope 0.4 0.6 0.7 0.3

Water Portion 93.6 92.3 83.8 80.1
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Figure 4 shows the potential habitat distribution of largemouth black bass and bluegill,
simulated from BIOMOD under current climate conditions (2001–2020). The results showed
a highly concentrated distribution of habitats, mainly on major river channels. Both species
were simulated to be concentrated in the Nakdong and Yeong-san River basin. The total
areas showing high probability (70% or higher) were 9369 km2 for largemouth black bass
and 7649 km2 for bluegill.
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3.2. Future Simulations of Habitat Distributions of the Invasive Alien Species

Future simulations showed that habitats with a high probability would increase by
2100 (Figure 5). Based on the current total areas of 70% or higher probabilities, the area
percentages of largemouth black bass were predicted to expand up to approximately 130%
and 125% by 2100 under RCP 4.5 and 8.5 scenarios, respectively. Similarly, those of bluegill
were predicted to expand up to 160% and 170% by 2100 under RCP 4.5 and 8.5 scenarios,
respectively.

Figure 6 shows the relationship between future potential habitats and water bodies.
The high habitat probability (70% or higher) under the current status was observed in
regions (or grids) with 12% or higher for largemouth black bass, and 15% or higher for
bluegill water bodies. The peak habitat probability for largemouth black bass occurred at
approximately 25% of the water portion, while the maximum habitat probability of bluegill
was saturated at approximately 30% of the water portion and then started to fluctuate at
approximately 80% of the probability. Although the habitat distribution patterns differed
between the species, this indicates that the water portion is the most influential factor in
describing the habitat characteristics of both species in the models. Interestingly, future
simulations showed an increase in habitat probabilities for almost all magnitudes of river
channels, implying a strong impact of climate change on the expansion of alien fish species.
In addition, high distribution probabilities appeared in the lower water part area over time,
implying that climate change may cause alien fish to expand toward smaller magnitudes of
river channels.
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Figure 6. The portions of water bodies versus probabilities of potential habitats for largemouth black
bass and bluegill under the two climate change scenarios. Each colored line indicates a different time
period: Black, blue, green, brown, and red for current, 2040 s, 2060 s, 2080 s, and 2100 s, respectively.
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4. Discussion and Conclusions

This study conducted modelling experiments using an ensemble system with multiple
SDMs to diagnose the effects of climate change on the possibility of habitat expansion of
major invasive alien fish species in South Korea. In particular, for the application of SDMs
to fish on a regional scale (applied at the national level for South Korea in this study),
water portion data were designed for model input as a habitat characteristic of freshwater
ecosystems and played a very decisive role in describing the highly realistic patterns of
fish distribution within the model. This approach is expected to be very useful in SDM
applications (only for those in rasterized model structures), regardless of spatial resolution
to a certain extent. This can possibly be useful in application to larger areas with lower
spatial resolutions. It can also be extensively applied not only to alien species but to all
species in freshwater ecosystems.

The impact of future climate change on the distribution of invasive alien fish species is
clear. Areas with a habitat distribution probability of >70% clearly showed a tendency to
expand over time. However, the degree of impact of climate change was predicted to be
greater for bluegill than for largemouth black bass. A major uncertainty during the process
of examining the impact of climate change using SDMs was the lack of consideration of the
possible route between watersheds for species migration. Due to the nature of freshwater
ecosystems, habitat connectivity (or hydrological connectivity between watersheds within
river channels) should be considered as an influential factor in describing species migration.
Another considerable factor in terms of species movements might be the obstructive effects
of artificial structures in river streams, such as dams. It is necessary to apply the data on
paths and mechanisms related to species movement to SDMs to reduce these modelling
uncertainties. Nevertheless, this study showed that climate change will cause species
expansion toward upstream areas within hydrologically bonded watersheds.

The expansions of these alien fish into upstream areas are likely to be the effect of the
temperature rise; temperature showed the second most contribution for model predictions.
Warm water fish, such as the alien species in this study, has been studied to expand to higher
locations with temperature increase [39–41]. In this upstream area, species abundance is
generally lower, but rare and insectivorous species are largely distributed [42]. Cold
water species in these upstream areas with higher altitudes have been reported to be more
vulnerable to warming environments [43–45], and thus expansions of alien species are
likely to exacerbate the species vulnerabilities significantly more [46,47]. Their ecological
disturbing behaviors have been mainly reported since their introduction in Korea: Lowering
the species diversity and degrading the sustainability of native fish species [48–50].

The information regarding the expansion of invasive alien fish due to climate change
in this study can help establish strategic countermeasures, even by simple combination
with local ecological information, such as biodiversity. This approach can help derive
priority area information for ecosystem conservation. For example, among habitats with
high biodiversity, those with high expansion possibilities for alien species can be selected as
higher priority for conservation. Areas inhabited by endangered species or those vulnerable
to climate change can provide additional information for priority selection. Furthermore, it
will help derive a more specific regional methodology for reducing alien invasion impact
by adding disturbance characteristics of alien species, such as disturbances, feeding habits,
and competing species.
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Appendix A

The following plots show information the impact of each covariate on the species
presence probability.
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