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Abstract: FANET (flying ad-hoc networks) is currently a trending research topic. Unmanned aerial
vehicles (UAVs) have two significant challenges: short flight times and inefficient routing due to low
battery power and high mobility. Due to these topological restrictions, FANETS routing is considered
more complicated than MANETs or VANETs. Clustering approaches based on artificial intelligence
(AI) approaches can be used to solve complex routing issues when static and dynamic routings fail.
Evolutionary algorithm-based clustering techniques, such as moth flame optimization, and ant colony
optimization, can be used to solve these kinds of problems with routes. Moth flame optimization
gives excellent coverage while consuming little energy and requiring a minimum number of cluster
heads (CHs) for routing. This paper employs a moth flame optimization algorithm for network
building and node deployment. Then, we employ a variation of the K-Means Density clustering
approach to choosing the cluster head. Choosing the right cluster heads increases the cluster’s
lifespan and reduces routing traffic. Moreover, it lowers the number of routing overheads. This
step is followed by MRCQ image-based compression techniques to reduce the amount of data that
must be transmitted. Finally, the reference point group mobility model is used to send data by the
most optimal path. Particle swarm optimization (PSO), ant colony optimization (ACO), and grey
wolf optimization (GWO) were put to the test against our proposed EECP-MFO. Several metrics
are used to gauge the efficiency of our proposed method, including the number of clusters, cluster
construction time, cluster lifespan, consistency of cluster heads, and energy consumption. This paper
demonstrates that our proposed algorithm performance is superior to the current state-of-the-art
approaches using experimental results.

Keywords: FANETS; energy efficiency; clustering; routing; WSN; Cloud; transmission range; bio-inspired

1. Introduction

A FANET is a hybrid model of VANET (vehicular ad hoc networks) and a mobile
ad-hoc network (MANET). In FANETs, UAVs are the network nodes, and the peer-to-peer
communication model is used in communication. FANETs, MANETs, and VANETs have
many similar properties. However, there are also some significant variances. These char-
acteristics make FANETs incredibly fast-moving and capable of coping with various 3D
environments. The FANET’s changing structure and hostile surroundings make network-
ing and communication difficult [1,2]. While in the air, the nodes have a clear line of sight
and are pretty far apart. UAVs have limited resources (batteries, processing power, and
bandwidth), which also hampers UAVs working efficiency. UAVs need to devise a com-
munication system with minimal routing overhead, high throughput, and little processing
complexity to make the most reliable working model [2]. We can see that communication in
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an ad-hoc network can be accomplished via various methods. There are three main types
of routing: proactive, reactive, and cluster-based. Routes to other nodes in the network are
preserved in routing tables in proactive routing. Each time a message is exchanged, a new
routing table is created. We can see a FANETS network in Figure 1 used for monitoring
and searching applications.
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On the other hand, reactive routing protocols do not keep track of the routing table.
Every time a node needs to communicate data, it searches for a new route. It helps to find a
new path once the present one is disrupted [2,3]. When nodes constantly move around,
maintaining the current routing table or finding a new way is a substantial communication
overhead. Network throughput is cut down, extra delays are brought in, and the limited
battery power of the UAV is wasted as a result of these communication overheads [4]. There
is a solution to the problem of limited resources in FANETS, which is clustering. Clustering
is a method for grouping nodes based on their geographic location. It contributes to the
network’s scalability, efficiency, and throughput [4,5] as the UAVs’ energy consumption
will be reduced due to the minimal routing overhead. There is a cost associated with
clustering, although it is substantially lower than the cost of the other approaches. When a
network is clustered, it is broken down into several distinct groups or clusters [6,7]. There
is a leader or “cluster head” (CH) for each cluster, which is in charge of communication
between clusters and inside clusters, as seen in Figure 1. CH serves as a first-hop node that
takes the message to its final destination to facilitate routing [8].

Cluster creation and maintenance consume some of the computational network radio
resources. In the early stages of cluster development, nodes communicate information
about their immediate area, including node ID, location, residual energy, etc. are computed.
Control messages are used to provide this information to other nodes. As a result, a
portion of the network’s radio resources is dedicated to clustering [8]. A CH is elected in
each cluster during network clustering, where nodes can execute calculations to organize
neighboring nodes into clusters. The development of clusters and the selection of CHs are
critical to the stability of the cluster structure [6,7]. It is possible to alter the design of a
cluster by repositioning cluster members (CMs). It is imperative that each CH regularly
broadcasts its presence to its CMs and that each CM responds with its current status so that
any changes to the cluster structure may be tracked. The radio resources of the network
are also used for this cluster maintenance signaling. Overhead for cluster creation and
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maintenance is defined as transposing of control messages. In addition to using radio
resources (such as channel bandwidth), this overhead is also a drain on the UAVs’ energy.
A clustering model’s performance is evaluated using several parameters, including the
cluster’s lifespan and building time [4,9]. As the cluster’s life span increases, the model’s
ability to save money and time increases. Clustering algorithms significantly impact a
network’s performance, and to ensure the cluster’s long-term viability, the CHs must
be carefully chosen. Networks may be divided into clusters using artificial intelligence
algorithms [10]. The fundamental downside of these strategies is their high computing
complexity, which prevents them from providing the best outcomes. They take too long
to get to the best possible work [7]. Clustering in FANETs cannot be carried out using
costly approaches due to the dynamic nature of the environment and the low processing
capability of UAVs. UAV energy usage is also heavily influenced by transmission power
options. Transmission power and energy use go hand in hand. SNs will use more energy if
we choose a transmission power of either high or low [4]. Transmission power should not
be as high as possible while not as low as possible to minimize energy wastage.

Evolutionary algorithms (EA) are based on the theory of biological evolution [7].
EA includes genetic algorithms/programming, evolutionary techniques, and learning
classifier systems. When other strategies fail, evolutionary algorithms can provide a
viable alternative. Evolutionary approaches are frequently accepted when faced with
issues that seem impossible [8,11] to solve. Even if EA is computationally costly, a near-
optimal solution to an unsolved case is acceptable. Node clustering using evolutionary
algorithms may be carried out well in FANETS and VANETS systems. To identify a
solution to the problem, an environment will be created that allows for the evolution of
viable solutions [12]. It is feasible to find the best possible solution for the issues related to
building environments through these biological algorithms. Nodes are aggregated, and
their geographic locations are shared to tackle the scalability problem. Load balancing
ensures that resources are effectively used in each cluster. One of the best clustering
methods is the moth flame optimizer, which provides the ideal number of clusters. Insects
that resemble butterflies are called moths and currently, there are about 16,000 moth species
known to science. The larvae of moths, as with those of other insects, develop into cocoons
as they mature. Moths fly at night and use the moonlight to find their way around [13]. An
intelligent moth flame optimization-based clustering for FANET was developed to reduce
energy consumption and expand the coverage area of SNs. This study proposes EECP-MFO,
which employs a moth flame and a variation of the K-Means Density clustering method
to choose CHs for usage in a distributed computing environment. K-Means Density is
utilized in conjunction with the MFO algorithm for the first selection of centroids/CH.
The original K-Means Density algorithm only considers one parameter, namely the degree
of the neighborhood [13]. However, the EECP-MFO algorithm considers two additional
factors, namely the energy level and the distance between the neighbors, to select the
ideal CH. EECP-MFO extends the lifetime of a cluster while simultaneously reducing its
energy usage [14–16]. It also saves energy by efficiently choosing the transmission power
of nodes according to operational needs, reducing the network load [16–19]. In terms
of cluster construction time, cluster longevity, the chance of success [20–24], and energy
consumption, EECP-MFO beats the ant colony optimization [17,20], PSO-particle swarm
optimization [18], and grey wolf optimization-based clustering models [14,25].

In a nutshell, the originality and contribution of this article are summarized in the
following section.

• A method for data clustering based on the MFO is presented;
• The quality of the solutions provided by the suggested technique is compared to three

well-known algorithms to determine which is superior;
• A total of five statistical tests have been conducted using different grid sizes to evaluate

the proposed approach’s statistical quality;
• The use of k-means density and the MRCQ approach for data compression has been

employed to improve the CH selection process;
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• Experimental and statistical graphs demonstrate the effectiveness of the suggested
technique.

The remainder of the paper is arranged as follows. In Section 2, the background
information on FANETS and Moth flame optimization algorithms can be seen. In Section 3,
a description and working details of our proposed EECP-MFO are present. While our result
and discussion is presented in Sections 4 and 5, we end the paper with a conclusion in
Section 6.

2. Background and Motivation
2.1. FANETS

An unmanned aerial system (UAS) comprises small unmanned aerial vehicles (UAVs)
that are small in size, flexible, and quick to deploy, as seen in Figure 2.
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When a single UAV is employed, a star topology network is present where the UAV
is at the center. A ground node can indirectly connect with other ground nodes via the
UAV [19,20]. On the other hand, single UAV systems have specific complex challenges in
peer-to-peer communication [26], such as decreasing interference, improving transmission
range, and transmitting more data to multiple UAV systems [27].

The use of high gain directional antennas, rather than omnidirectional antennas, can be
found as one of the possible solutions to these issues [21]. If the UAV or a sensor/hardware
fails in a single UAV system, the UAV should return to its home base to be repaired or
replaced [5]. The fault tolerance of a multi-UAV system is increased since other UAVs may
share duties among themselves, which raises the overall fault tolerance of the system. It is
feasible to take advantage of the capabilities of other UAVs while working with a heteroge-
neous UAV cluster [22]. FANET is also considered a component of the VANET network.
Due to the excellent mobility of nodes in FANETs networks, conventional routing methods
are also not practical in FANETs and do not offer sufficient throughput [19–21]. FANET
topologies change significantly more often than MANETs or vehicle ad hoc networks,
which is typical [15]. FANETs, which are not only applicable for multi-UAV systems but
can also be formed by single-UAV systems, according to the specification seen in Figure 3.
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2.2. What Links Make FANETs, Different from MANETs, and VANETs?

The IEEE 802.11a network technology is today’s essential network technology for
constructing FANETs. Mesh ad hoc networks utilize the 802.11s wireless networking
standard [14]. When two UAVs interact, this is called Single Hop Communication. Alter-
natively, a Multi-Hop Communication channel may be created across the other UAVs in
UAV-to-UAV communication, as seen in Figure 3.

Fixed infrastructure, such as a satellite or a ground station, is used in the case of
FANETS-to-FANETS Communication, in which UAVs connect with improved infrastruc-
ture. FANET may be a more advanced version of MANET and VANET [15]. However, there
are several distinctions between FANET and the existing ad hoc networks, including the
following: FANET nodes have far greater mobility than MANET or VANET nodes. FANET
nodes fly in the air, in contrast to the traditional MANET and VANET nodes, representing
walking men and vehicles.

1. Due to the high mobility of FANET nodes, the network’s topology changes more
frequently than the network itself [16,19,23]. A typical MANET or VANET network
topology is shown in Figure 4.
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2. There are now many ad hoc networks striving to connect. For example, Wireless sensor
networks make extensive use of these technologies for gathering and transmitting
data about the surrounding environment [24]. Peer-to-peer and broadcast traffic must
be allowed simultaneously for FANET to work effectively.

3. The Distances between FANET and FANETS nodes are much longer than the distances
between the two networks [12,13,24]. Unmanned aerial vehicles (UAVs) need a more
extended communication range than either MANETs or VANETs if they are to be
linked together. Consequently, radio links, hardware circuits, and physical layer
behaviour are all impacted.
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4. Multi-UAV systems may contain various types of sensors, each of which may need a
separate data transmission strategy [19].

2.3. What’s the Roles of Bioinspired Algorithms in FANETs?

A clustering method comprises virtual sets, which are represented by clusters. Each
cluster consists of cluster nodes (CN) or cluster members, each contributing to the selection
or suggestion of a CH [15]. A CH’s neighbors’ nodes within the CH’s transmission range
are considered cluster members. In theory, any cluster node can be nominated as the cluster
head. However, some characteristics may be more critical for a CH than others [20,21].
These characteristics are considered when selecting a CH. Using the example, an SN with
an additional 5G connection is preferred to become a CH than all nodes that do not have
this characteristic [21–24]. The transmission range of the nodes controls the size of a cluster
and, as a result, the outcome varies from cluster to cluster [22].

The term “optimization” refers to improving performance by efficiently using specific
limited resources that exist. During the previous several years, the difficulties associated
with solving specific issues have increased, resulting in the need for novel optimization
strategies to handle a problem efficiently. The methods were theoretically modelled before
developing heuristic optimization algorithms to get the desired results. The most common
drawback with mathematical optimization approaches is that local optima tend to become
stuck in place [21,22,25,26]. This makes them exceedingly ineffective in resolving real-world
problems due to their behaviors. Population-based algorithms, based on randomization,
include two critical steps for obtaining improved results: solution development (finding
the optimal answer) and exploration (finding alternate solutions). The MFO method
is an innovative nature-inspired optimization technique that may be used to address
challenging optimization issues. Transverse orientation mimics the movement of moths
in nature [22]. Our proposed algorithm uses moths and flames techniques, by which it
generates efficient solutions.

Moreover, it has been proven that this algorithm can outperform other meta-heuristic
optimization techniques in terms of performance. It takes its inspiration from transverse
orientation, which is the term used to describe the maritime strategy of moths [20]. Keeping
a steady angle concerning the moon’s movement allows a moth to hover, as seen in Figure 5.
This method is quite effective in drifting over long distances with a straight track. Quite the
opposite, artificial lighting can occasionally fool moths [27]. As a result, in comparison to
the moon, a manufactured light is very close. While maintaining an equivalent viewpoint
to the light, a moth may begin to travel in a spiral route with the light source, which can be
disastrous for it [7,8,11]. This technique has many advantages, but two stand out.

First and foremost, MFO avoids the problem of local optima stagnation [12]. However,
some other optimization methods, such as the genetic algorithm (GA) [7–10], continue to
suffer from this problem. Second, MFO offers tremendous potential for exploitation and
exploration, enabling it to outperform other processes in the long run.

However, even though FANETs are part of ad-hoc networks, they cannot use the
same MANET and VANET clustering methods due to their unique characteristics. Instead,
new techniques need to be made, or existing practices need to be changed to consider the
unique features of a UAV network. UAVs were grouped into clusters, each of which had a
specified number of UAVs and one of which was designated as a CH as by Bilal et al. [7].
Neighboring UAVs start by exchanging information about their node’s specifications.
Node information messages include a “zone ID” field that categorizes each UAV in a
particular cluster. Each node keeps a database of connection quality information in the
cluster, including information about its neighbors’ distance, SNR, and latency. LEACH was
developed to ensure balanced energy use and improve WSN efficiency by dividing the
network into numerous clusters and rotating the CHs. LEACH is a MAC protocol based on
TDMA, the first hierarchical routing protocol to use clustering. LEACH is a routing system
based on clustering, where nodes form different clusters. Every cluster has a CH node that
gathers data from cluster members and transmits it to the sink. The LEACH protocol [28]
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is divided into turns, each of which has two primary stages: setup and data transmission.
The setup stage comprises selecting CHs, clustering, and creating the TDMA schedule for
data transmission, which is carried out in the data transmission stage. LEACH-C picks CHs
based on node residual energy and generates clusters accordingly in the network. As the
name implies, LEACH-C [29] employs a centralized technique to choose the best candidate
for CH from nominated nodes. Initially, sensor nodes report their remaining energy and
position to the sink. The sink computes the average energy of nodes using this data. Then it
chooses which nodes will be CHs. Thus, nodes with more leftover energy than average will
be chosen as CHs in this round. The rest, however, remains a simple node. Centralization
improves CH distribution and selection and the number of communications between nodes
and sinks, which improves the network life-cycle. Like LEACH, LEACH-C transfers data
to the sink in a single hop, reducing CH lifespan. The number of CHs varies from turn to
turn in the LEACH technique, but in the LEACH-C approach, it is fixed.
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CBLADSR (cluster-based location aided dynamic source routing) is a new routing
technique suggested by Shi et al. [8]. Using three parameters, CBLADSR selects the CHs.
A CH will be chosen among cluster members with a low-speed ratio, a high energy level,
and several neighbor nodes. Each node in the cluster has a neighbor table, which keeps
track of all of the other nodes in the group. To communicate between clusters, CBLADSR
employs short and long-range transmissions. As part of their research, Zang and Zang [11]
came up with an algorithm for mobility prediction. Each node keeps track of its one-hop
neighbors in a neighbor table. The neighbor table also contains the probability of how
long a node will remain in its table. A dictionary tree structure is used to calculate the
probability. This neighbor node’s probability and time determine when the link will end.
Neighboring nodes’ LET probabilities and degrees are used to create a weight for each
node. A CH will be chosen from among the nodes based on the node’s weight [10–13].
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Clustering in ad-hoc networks has also been performed using artificial intelligence
approaches such as ant colony optimization (ACO) [17,20], particle swarm optimization
(PSO) [13,18], and grey wolf optimization (GWO) [14]. Numerous options are gener-
ated by using these methods. Nodes that potentially serve as CHs are included in
each solution. The future orientation of ad-hoc networks was also examined by Bi-
lal et al. [15] and Rizwan et al. [16]. In addition, these ideas are based on the nodes’
mobility. Peer et al. [23] discussed the routing method using the fuzziness in wireless
multi-hop networks. Nadeem et al. [19] came up with a way to choose a CH by a rec-
ommendation system that takes information from many different datasets and suggests
an optimal CH node. As a result of this research, Adil et al. [20] developed a clustering
technique based on the ACO (CACONET). ACO employs the social behavior of ants to
find some food or a solution to a shared problem [17]. Another ACO-based algorithm
called ACONET [20] has also been used as a clustering technique but has the same problem
as [19,20,23]. GWOCNETs [25] simulate the grey wolf’s leadership hierarchy and hunting
strategy. Alpha, beta, delta, and omega are the four varieties of grey wolves. The alpha wolf
is the most powerful in a pack and serves as the pack’s leader. The rest of the group follows
their lead to keep up with the alpha, beta, and delta wolves. Each wolf will be considered
as a solution to the optimization issues. As an alpha solution, it is considered the best one.
CAVDO [22] utilized the dragon fly algorithm’s feature extraction to resolve the problem
of clustering and selecting the best CH. The fundamental drawback of artificial intelligence
approaches is that they require a large amount of computer power, even though they gener-
ate better outcomes. It takes a long time for them to get to an ideal solution. A vast number
of random selections and random population sizes slow down the convergence of these
methods. Due to the high mobility of UAVs, artificial intelligence approaches take too long
to generate a correct result. Hence, they cannot be employed alone for a changing network
architecture due to their low processing capacity. In Tables 1 and 2 various techniques have
been compared using different metrics. Energy-constrained networks are not that suited for
computationally intensive methods. So, our aim is to enhance the bio-inspired algorithm to
perform efficiently and with less energy consumption in the FANET environment.
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Table 1. Comparison of various algorithms.

Protocol Year Network Type Cluster Method Complexity No of CH’s No of Nodes in Cluster Mobility Energy Efficiency

LEACH 2000 Homogenous Distributed Low Uncertain Unforeseeable Inactive Yes

LEACH-C 2002 heterogenous Centralized Low Certain Unforeseeable Inactive Yes

CBLADSR 2012 Heterogenous Distributed High Uncertain Unforeseeable Inactive Yes

CACONET 2016 Homogenous/heterogenous Centralized High Uncertain Unforeseeable Inactive Yes

PSONET 2011 Homogenous/heterogenous Centralized Very high Uncertain Unforeseeable Inactive Yes

GWOCNET 2014 Homogenous/heterogenous Centralized Very high Uncertain Unforeseeable Inactive Yes

CAVDO 2018 Heterogenous Distributed Medium Uncertain Unforeseeable Inactive Yes

Table 2. Comparability based on certain metrics.

Protocol Energy model Location
Awareness

Connectivity
to Bs

Link Quality
Based

Connection
Awareness

Collison
Avoidance

Position of Base
Station Deployment Mode

LEACH First order No Singe hop Distance No No Outside Random

LEACH-C First order Yes Singe hop Distance No No Outside Random

CBLADSR First order No Singe hop Distance Partially No Outside Random and uniform

CACONET First order Yes Singe hop Distance No No Outside Random

PSONET First order Yes Singe hop Distance No No Outside Random

GWOCNET First order No Singe hop Distance No No Outside Random

CAVDO First order No Singe hop Distance Partially No Outside Random and non-uniform
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3. Proposed Methodology
3.1. Network Building and Nodes Positioning

EEP-MFO is a FANET communication model that seeks to reduce the computational,
energy consumption, and communicational cost to the absolute minimum. When the
clustering mechanics are kept simple, the computational overhead may be lowered, and
the communicational overhead can be reduced by lengthening the cluster’s lifetime. Once
the UAVs begin flying, network creation begins [11]. In addition to task-oriented sensors,
unmanned aerial vehicles (UAVs) are equipped with GPS and height sensors. These two
pieces of equipment are responsible for providing the 3D positioning information of the
UAV node to the controller. As an additional assumption, we suppose that UAVs have
three discrete transmission grid levels corresponding to communication ranges of 1000 to
3000 m for each of the four discrete power levels [12]. Nodes begin by selecting the highest
power level available. Later on, nodes can choose the power level that is best appropriate
for them based on their position and the position of their neighbors [22]. This strategy is
used to conserve the energy of the node.

Figures 6 and 7 illustrate our proposed EECP-MFO algorithm’s workflow. Given
fitness values, random positions in solution space (m × n) are allocated to each moth and
their respective moth arrays. Arrays and matrixes are produced in the same way as flames.
The flame matrix contains the best value for the moth discovered [4]. Every time the best
moth against its flame is found, the procedure iterates until it reaches the ideal number
of search space flames. After each successful iteration, the moth position is updated. The
quest for an optimal solution is similar to a moth’s journey across the solution space. The
fitness values are kept in the order of the m × n solution space, starting with the random
location provided to each moth during the startup phase and continuing with the moth
array. Similarly, the flame matrix and related array are created. The flame matrix contains
the value of the moth that has been discovered to be the best so far [24]. Moths are moved
around in a solution space to find the best solution or end the search procedure.
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This procedure took advantage of the dimension of the search space’s lower bound
and upper bound boundaries. It is also used to determine the fitness value of each moth
depending on their location in the search space [11,12,24]. Creating a fitness matrix is an
iterative process; updated values are placed in the matrix in ascending order as the process
progresses. The fitness matrix supplies the lower fitness value for each moth [13]. It is
calculated by combining the moth’s location in the search space with its fitness value, and
this value is used to update the moth’s position in the search space as the moth moves
through the search space. Convergence was achieved using a linear decreasing factor “x”
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for the ideal solution. Selecting a Cluster Head (CH) follows the creation of a cluster, as seen
in Figure 6. The selection of the CH can be made based on several factors, including the
number of nodes, node density, residual energy, and load balancing factor [22,26]. Weights
are assigned to these parameters before sending them to the fitness function. The selection
process in EECP-MFO relies heavily on using a fitness function. Extending the cluster’s
lifespan by picking the optimal CH, reducing network energy, and avoiding excessive
broadcast overhead [26].

The fitness value for the EECP-MFO algorithm is calculated using the following
Equation (1):

Fitness Function =
W1 × Residualenergy(

W2 × AvgDistance
)
W3 × Delta_Difference

(1)

Residualenergy = Initial energy − Consumed energy (2)

Residualenergy represents the FANETS nodes’ remaining energy calculated by using
Equation (2), AvgDistance is the average distance between nearby nodes, and Delta_Difference
represents the load balancing factor (LBF). Clusters with equal numbers of members are
only possible if everything goes according to plan. However, it is challenging to achieve in
a real-world environment since sensor nodes move around and modify their properties.
The load balancing factor is calculated using the delta difference. Weights for energy,
average distance, and delta difference are represented by the variables W1, W2 and W3.
In an ideal world, all CHs would have an equal number of nodes. However, this is not
realistic in real-world settings since nodes change their position regularly and change their
neighborhood association degree. When a node’s degree of the neighborhood varies from
the ideal degree, this is called the delta difference. The exemplary nodes of SNs from their
neighbors are calculated using the following formula:

Delta_Difference = ABS(Ideal_degree − Node_degree) (3)

Suppose the selection criteria for CH are static, and a single parameter has the potential
to bias the fitness function. In that case, it is possible to make an incorrect choice of CH.
EECP-MFO assigns weight to parameters dynamically depending on the circumstance to
mitigate the skewing problem and reduce the negative influence on fitness values due to
the skewing problem. First, each parameter value was normalized between 0 and 10.

According to Equation (3), the negative impact of each parameter variation is deter-
mined for each parameter deviation.

dev(i) = ABS(mean − parameters(i)) (4)

To account for deviation from the mean, penalized outlier parameters are employed
in Equation (3), and these are used to derive updated values for parameters. Another
Equation (5) is used to penalize the outlier penalty, and it has the following formula:

w(i) = 1/dev(i) (5)

The sum of all weights is equal to “1.” Equation may be used to compute the fitness of
each node for all Sensor nodes using Equation (1).

3.2. Cluster Formulation and CH selection with K-Means Sorted Fitness

When it comes to the actual clustering and the selection of CHs, K-means sorted fitness
(a variation on K-means density) is used. K-means density is utilized in conjunction with
K-means for the first selection of CH/centroids. Input parameter for K-means computes
the “k” ideal centroids placement depending on the neighborhood of data points, as seen
in Figure 8. The K-means algorithm [30,31] can swiftly arrive at an optimal solution due to
the pre-computed centroids.
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There is a set value for “k” in K-means density. However, with FANETs, the nodes
move around often, and the network topology varies. Node positions and transmission
range determine how many clusters are needed in a given network configuration. When
choosing the size and number of clusters in K-means sorted fitness, we consider the
transmission range of CHs [32,33]. The nodes’ fitness values are supplied into K-means
sorted fitness, which returns CHs and the members connected with them as output, and
the flow of this process can be seen in Figure 8. By keeping the clustering function as
basic as feasible, EECP-MFO aims to minimize the computing effort required. Before the
selection of CH occurs, we try to make it more efficient as here, and we already had residual
energy computed for all nodes. So, we try to evaluate the average residual energy first.
Suppose a candidate node for CH has less than the average residual energy. In that case, it
is skipped for the current round of the CH selection process. The fitness value is used to
make decisions in this function [34]. To choose the best CHs, a more precise fitness value
must be calculated first in this scenario. In the beginning, the fitness value is ordered in
decreasing order for more usefulness. The node will take the CH position with the fitness
values. All additional nodes within the transmission range of the selected CH will be
designated as cluster members (CMs). The elected node for CH will not be considered as
the remaining nodes. After that, the Selection process of CH is repeated until there are no
more nodes left to be chosen. All nodes have assumed their respective roles, whether as
cluster leaders or cluster members [35].

3.3. Data Compression and Network Commination

a. Data compression Our proposed protocol is used for captured data, primarily images
and videos. So, to reduce the data transmission energy, we need to use a compression
algorithm. Our proposed protocol uses MRCQ (multi-resolution compression and
query) image-based compression approach [26]. Sensor nodes are organized in a
hierarchy to establish multiresolution summaries of sensed data in the network [11].
Lower-resolution summaries are transmitted to the sink, whereas high-resolution
outlines remain in the network and can be accessed for further analysis [32]. As a
result, MRCQ has lower implementation costs and may be used with low-cost sensor
systems [33,34].

b. Node Movement and Network Communications Communication and data transfer
between nodes begin when clustering is complete. Whether a node inside a cluster [35],
a node across the cluster, or the base station is the intended destination for the data,
the CH is responsible for getting it there [36,37]. EECP-MFO adheres to the RPGM [38]
reference point group mobility model. There is a point of reference for all nodes in
RPGM that they all will follow. EECP-MFO considers a reference point for the CHs,
and all CMs adjust their positions under how their respective CHs move.
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4. Experimental Results and Analysis

Performance comparisons of our proposed clustering algorithms named EECP-MFO
with GWO-based clustering, ACO-based clustering, and PSO-based clustering are pre-
sented in this part. For the assessment and evaluation process, we employ critical vital
criteria, including the number of clusters, the probability of success, the time it takes to form
a cluster, the longevity of the cluster, and the amount of energy consumed. The experiments
are carried out using the MATLAB programming language. A variety of parameters are
included to perform the simulation, as shown in Table 3. We used ten simulation runs in
each set to develop the final results.

Table 3. Simulation parameters.

Parameters Values

Grid Size 1000 × 1000 m2, 2000 × 2000 m2 and 3000 × 3000 m2

Density of Connected Nodes 20, 30, 40, 50, 60

Minimum Distance Between Nodes 5 m

Mobility Model Reference Point Mobility Model

Simulation Runs 10

Simulation Time 120 s

Position Exchange Interval 2 s

Node Energy Level at Start Time 80-Watt Hour

Transmission Range Dynamic

Transmission Frequency 2.45 GHz

Constant Bit Rate 100 kbps

Receiver Sensitivity −90 dBm

W1 +W2 + W3 1

4.1. Cluster Building Time

The algorithm’s computational complexity is measured by its cluster construction time
during the clustering process. Clustering algorithms often use nodes with accompanying
fitness values as input to choose the CH and associate members. Cluster building time
refers to the time it takes an algorithm to go from receiving inputs to creating outputs. The
performance of an unmanned aerial vehicle (UAV) would be negatively impacted if the
time it takes to assemble a cluster is too long. The longer it takes to create a cluster, the
more energy is consumed, resulting in a shorter lifespan for UAVs in a network. Unlike
ACO and GWO, which start with various solutions and converge to the best solution, our
EECP-MFO quickly connects to the ideal solution. This makes it outperform ACO, PSO,
and GWO. A shorter cluster building time has been achieved to shorten the energy and
time it takes for the UAVs to pick a path. It can be noted from Figures 9–11 that the greater
the grid size, the more UAVs in a network will take more time to execute the clustering
algorithm, which increases cluster building time. In Figure 11, we do not see any massive
difference in clustering time for the cluster building by our proposed algorithm, making it
superior to the other algorithms.
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4.2. Energy Consumption

In UAVs, energy is one of the most limited resources. Due to a small dry-cell battery, it
is possible to fly micro-UAVs for just a few minutes, which is from 25 and 30 min. Due to
their low battery power, these unmanned aerial vehicles (UAVs) have several challenges.
To maximize the lifespan of a UAV and increase probability of success, it is essential to
maximize energy efficiency. In UAVs, three processes are responsible for energy loss:
actuating the motor control system, energy used by various sensors, and energy used for
inter-UAV communication. UAVs uses most energy since they communicate with each
other. The total amount of energy is used in communication, including transmission and
reception, can be computed using Equations (6)–(9).

Energytotal = Energycom + Energyflying + Energysensors (6)

Energycom = EnergyTx + EnergyRx (7)

EnergyTx = EnergyTRC × k + EnergyA × k × D2 (8)

EnergyRx = EnergyTRC × k (9)

Here energy consumption refers to the sum of energy consumed during transmission
and reception of data. While running transmitter and receiver circuits, EnergyTRC is the
energy dissipation. EnergyA is the amount of energy used by the transmit amplifier to send
data to the other end. The number of bits sent and received is represented by “L,” whereas
the distance between the sending and receiving nodes is represented by “d.” Energyflying is
energy consumed for flying a node, in this scenario we are using homogenous nodes so
there would be same energy consumed for flying by all nodes.

Here whole energy consumption refers to the sum of energy consumed during trans-
mission and reception of data. By using Equation (6), we can calculate the total energy.
In our case we are using homogenous nodes so there would be same energy for flying in
all nodes.

We calculate the whole energy consumption by EECP-MFO, PSO, ACO, and GWO
over the course of 120 s. As the number of UAVs and the grid size increase, the network’s
energy usage also rises. Figures 12–14 clearly shows that EECP MFO beats the other three
methods. The lower EECP MFO energy usage is since the right CHs were chosen, and the
CH number is within the optimal limit.
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4.3. Probability of Success

The probability of delivery success is another significant metric to consider when
evaluating the performance efficiency of the clustering process.

Based on the average number of hops per packet, this metric indicates how well a
packet is delivered from intermediate nodes to base station in the network. Figure 15
shows that by increasing the number of UAVs in the network, the network density grows,
increasing the chance of successful delivery. We can also say that packet loss ratio drops as
the number of unmanned aerial vehicles (UAVs) in the network grows.

4.4. Cluster Lifetime

The cluster lifetime is when the cluster exists, from its formation to its dissolution. The
UAV with the best fitness value is selected as the cluster leader when the clustering method
is completed. When different operations are performed on the UAV, the fitness value of
the UAV steadily declines over time. The CH election process is triggered again when the
value falls below a certain threshold. A shorter cluster lifetime indicates that the clustering
method must be conducted more frequently, increasing the amount of communication and
computing that must take place in the network. As seen in Figures 16–18, our EECP-MFO
algorithm outperforms the GWO, PSO, and ACO algorithms in terms of performance. As
a result of these findings, it can be concluded that increasing the number of UAVs in the
network reduces the longevity of the cluster. As the number of SNs in the network grows,
the network’s topology changes more often, making the grid less reliable.
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4.5. Consistency of Cluster Heads

The energy efficiency of the protocol is greatly influenced by the number of cluster
heads in use. If the number of cluster heads is too less, the data transmission duration
between sensor nodes and the cluster head will be too long, resulting in increased energy
usage. Excessive data transmission by the cluster will also increase energy usage. As the
cluster heads rose, the overall network energy demand increased.

In Figure 19, we can see that ACO has many variances in the cluster head number
since the cluster headcount is randomly reliant on the threshold function model, which is
also random, which causes the cluster headcount to fluctuate a lot. The figure shows that
the cluster headcount swings in the range of 4 ≤ k ≤ 19 in the ACO and 2 ≤ k ≤ 18 in the
GWO, 3 ≤ k ≤ 17 in PSO, but the suggested protocol has a headcount of 3 ≤ k ≤ 12, which
is the most appropriate as compared to others.
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5. Discussion

The EECP-MFO model was presented in this research to overcome the routing problem
in FANETS. Highly energy efficient and optimized solutions in search space can be found
using the MFO method. In FANET, the EECP-MFO method improves cluster building time,
reduces energy consumption, and has a high probability of packet delivery success with a
balanced number of cluster heads. In addition, it decreased broadcasting efforts that were
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not essential and helped to minimize the cost of routing and preserve the energy of UAVs
by regulating their transmission range. Figure 20 depicts a side-by-side comparison of the
three existing methods with our own proposed protocol. Every assessing parameter shows
that EECP-MFO outperforms other approaches since it can give an optimum node for CH
selection and the best neighbor nodes selection for a cluster in an efficient and optimal way.
However, if we talk about the second most superior algorithm, we cannot reach a single
algorithm as GWO [14,25] performs better than the PSO [18] and ACO [17,20] in the case of
clustering time. However, in the case of energy efficiency and probability of success, ACO
performs better than GWO and PSO [36].
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One of the critical limitations of the proposed algorithm is tuning parameters, as it
can bias the fitness function for selecting a CH and also leads to the skewing problem.
Improper selection of those parameters will result in a poor clustering mechanism, leading
to high energy consumption and a weak node lifetime [37–40]. However, secondly, the
proposed algorithm does not provide any aggregation technique by which it can ignore the
identical packet for processing as they consume substantial computation efforts and UAV’s
energy. A packet scheduling system is required to overcome the issues mentioned above,
also tackling the congestion control concern. These limitations can be addressed in future
studies [41]. Moreover, these limitations will encourage the researchers to take up this
research problem. As part of our future work, we will also attempt to construct a dynamic
model in a heterogeneous environment using the Moth flame optimization technique to
make our proposed model more widely applicable for improving the lifetime of WSNs and
providing an energy-efficient for the application and development of WSNs and IoT [42].

6. Conclusions

The EECP-MFO model as an efficient and optimized clustering algorithm for FANETS
was proposed in this study. Fast-moving nodes have two significant drawbacks: limited
energy and inefficient routing. By adjusting the transmission range and correctly clustering
the network, we can improve routing and conserve energy on UAVs. The EECP-MFO
approach proposed an evolutionary technique for cluster optimization to address the
FANET routing problem. Using the EECP-MFO method for FANETs is a cost-effective way
to reduce the number of clusters as it cuts down on the amount of unneeded broadcasting
and decreases the cost of routing and speed of routing. The efficiency of the proposed EECP-
MFO algorithm was assessed and validated as the experiments on the simulations were
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performed and monitored with variable transmission ranges of SNs. EECP-MFO gave near-
optimal solutions in the FANETS topological restrictions and created minimum clusters
in the search space. GWO, PSO, and ACO are all well-known evolutionary algorithms.
However, EECP-MFO is the best solution for the challenges under investigation. It is
the clear winner in cluster longevity and the number of clusters; however, EECP-MFO
also succeeds in time and energy consumption in establishing clusters. In our proposed
algorithm, the UAVs can process identical data packets, which exhausts the UAV’s limited
resources and degrades network performance. A packet scheduling system is required to
solve these difficulties and improve packet management in FANETs. In the future, we will
focus on this research area for congestion control in resource constraint UAV networks.
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