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Abstract: In education, it is critical to monitor students’ attention and measure the extents to which
students participate and the differences in their levels and abilities. The overall goal of this study
was to increase the quality of distance education. In particular, in order to craft an approach that
will effectively augment online learning using objective measures of brain activity, we propose a
brain–computer interface (BCI) system that aims to use electroencephalography (EEG) signals for the
detection of student’s attention during online classes. This system will aid teachers to objectively
assess student attention and engagement. To this end, experiments were conducted on a public
dataset; we extracted power spectral density (PSD) features using used a fast Fourier transform.
Different attention indexes were calculated. Then, we built three different classification algorithms:
k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF). Our proposed
random forest classifier achieved a higher accuracy (96%) than KNN and SVM. Moreover, our results
compared to state-of-the-art attention-detection systems with respect to the same dataset. Our
findings revealed that the proposed RF approach can be used to effectively distinguish the attention
state of a user.

Keywords: attention classification; EEG signals; online learning; attentive state

1. Introduction

Attention refers to the brain’s capability to choose one aspect on which to concentrate
while ignoring everything else in an environment. Attention is the first step in the learning
process. Students’ perceptions and responses need active attention to plan or preview and
monitor and regulate their thoughts and actions.

Distance learning is defined as a “system of education in which students study at
home and communicate with their teachers over the internet” [1]. A student’s attention
during a class, whether the class is an in-person class or a distance learning class, plays an
important role in the class’s effectiveness [2]. Detecting and monitoring students’ attention
is vital for enhancing student engagement and learning quality.

The brain–computer interface (BCI), a technology that acts as a channel between
the brain and a computer system, can detect humans’ emotional states. EEG-based BCI
has gained widespread attention in research due to its portability, usability, and safety.
Accordingly, an increasing amount of research on EEG-based BCI systems reflects the
scientific community’s interest in EEG-based BCI technology and its application in different
contexts [3].

Due to the COVID-19 pandemic, many schools had to switch to remote learning.
Students across the globe were, and still are, forced to adapt to this new style of learning.
However, the response was not all positive; many have complained that a lack of student–
teacher interactions prevented students from focusing and paying attention compared to
in-person school. Moreover, there are many distraction factors at home, so students are
less focused, especially those who lack self-regulation skills. This raises the question of
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how we can detect students’ attention levels. To help teachers effectively observe students’
states of attention in online learning environments, we propose a solution based on the
EEG feedback approach. Basically, we propose an automatic attention-monitoring system
to help manage students in e-learning.

Advances in EEG-based BCI technology have facilitated the observation of activities
and abnormalities within the human brain without invasive neurosurgery. EEG-based
BCI can be used with online and distance learning in various ways. The aim of this
study was to design and develop a real-time attention-detection system that can detect
an attention level using physiological data. Our objectives included: (i) referring to and
comparing previous similar studies, (ii) investigating different computational methods
and classification approaches to achieve an acceptable accuracy, and (iii) designing and
developing an attention-detection system that could be very efficient for detecting attention
in real time and could thus be used in real-life e-learning contexts.

The remainder of this paper is arranged as follows: Section 2 introduces the main
concepts of this study with background details; Section 3 presents the related works;
Section 4 describes the research methodology, i.e., the experiments with EEG data; Section 5
discusses the evaluation results; and finally, Section 6 presents the conclusions.

2. Background

To clarify our research problem and BCI’s use, the following subsections present online
learning, passive BCI, and the neural correlation of attention in EEG signals, respectively.

2.1. Online Learning

Distance learning, or online learning, refers to a teacher–learner separation by space,
time, or both and the use of media and technology to enable communication and exchanges
during the learning process despite this separation [1].

In response to the COVID-19 outbreak, governments ordered schools to close and
switch to online learning. Across the world, students have been affected by partial or full
school closures with which teacher–student communication has been conducted through
a web-based exchange using learning platforms. Factors, such as the absence of student
motivation, teacher training, and social isolation, have affected the engagement and produc-
tivity of students and teachers. Distance learning requires a level of learner self-direction
and study skills and new teaching and guidance strategies.

There are different perspectives on issues associated with distance learning. Technology-
related issues include the capabilities and capacities of digital learning platforms, internet
connectivity, and digital devices. Students’ related issues include a lack of motivation and
difficulty understanding materials, a lack of communication between the students themselves
and their teachers, and social issues in the absence of regular school activities. Parents’ related
issues include difficulty monitoring their children, which is much more challenging when
parents have multiple children or are working parents. Teacher-related issues include a lack of
access to traditional teaching materials and a lack of the technical skills and expertise needed
to access and teach using online platforms [1].

2.2. Passive Brain–Computer Interface

Affective computing is an interdisciplinary research interest in the study and develop-
ment of systems that can detect, interpret, recognize, and simulate human effects. Affective
BCI (aBCI) is an emerging field of research in affective computing [3].

Passive BCI is an approach that uses BCI technology as an implicit communication
channel between a user and a device while the user does not try to control their brain
activity. Passive BCI originates its outputs from arbitrary brain activity arising without any
voluntary control. Levels of meditation, engagement, frustration, excitement, and work-
load are examples of cognitive feedback in passive BCI. Emotion detection based BCI is
considered a passive/involuntary control modality [3,4].
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In BCI systems, in general, the reliability and accuracy of sensory interfacing and trans-
lation algorithms are key challenges that limit the usage of these technologies. Moreover,
engineering challenges have concentrated on processing a low signal-to-noise ratio em-
bedded in non-invasive electroencephalography (EEG) signals. Computational challenges
include the optimal placement of a reduced number of electrodes and the robustness of
BCI algorithms with respect to a smaller set of recording sites [4].

2.3. Neural Correlates of Attention in EEG Signals

Attention lies in two areas of the brain, as shown in Figure 1. The first area is the
prefrontal cortex, located behind the forehead and spanning to the left and right sides of
the brain, which handles willful concentration. As part of the motivational system, it helps
a person focus attention on a goal. The second area is the parietal cortex, behind the ear,
for sudden events that require action.

Figure 1. Neural correlates of attention in the brain.

Brain waves are patterns of electrical activity occurring in the brain. There are five
widely identified brain waves, and the main frequencies of human EEG waves are delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (above 30 Hz).
Neuroscientists have been studying the brain waves and reported that EEG frequencies
can provide insight into an individual’s moods and emotional states, such as anxiety,
surprise, happiness, and frustration. Moreover, EEG measures are sensitive to cognitive
states, including task engagement/attention, working modality, and the perception of
user/machine errors [5].

Many BCI applications were proposed in the literature for the purpose of attention moni-
toring and adaptation [3]. One important application of BCIs is in monitoring human alertness
while performing critical and security tasks, such as driving and surveillance. For example,
researchers in [6] reported that car accidents can be avoided by monitoring transitions of the
brain state for changes from an alert or awake state to a sleeping or drowsy state.

Numerous research studies examined the neural correlates of attention in humans.
One of the earliest studies was by Xiaowei et al. [2]. They contributed to improving the
quality of distance education by creating a website with various learning content to simulate
a distance-education environment. Their approach was based on the alpha-wave amplitude
becoming smaller when a person is concentrating on learning materials. As a result, they
discovered the relationship between changes in learners’ emotions and material being
taught. However, some studies considered the delta pattern as it is related to deep sleep,
which indicates a low awareness of subjects [7,8].
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Fahimi et al. [9] investigated the neural index of attention. They extracted information
from a single frontal channel EEG recorded during an attention-demanding task as a neural
marker and explored how such EEG features correlate with the elderly’s response time as a
behavioral marker of attention.

Wang et al. [10] computed the power ratio features β/θ, β/α, β/(α + θ) by using
Welch’s power spectral-density estimation methods (Welch, 1967). These features were
seen as classical EEG features for attention recognition in the study.

3. Related Work

Various studies investigated the possibility of utilizing EEG signals to detect individual
attention [9,11]. To understand our research problem and the use of EEG-based attention
detection in an e-learning context, we conducted a comprehensive literature review to
compare our study with similar previous studies. The review explored published research
to provide insights to practitioners and researchers for attention detection in education and,
more specifically, in the distance-learning experience.

Table 1 summarizes various literature work related to user-attention detection in learn-
ing and cognitive memory functions using EEG signals. We investigated the computational
methods for feature extraction and classification approaches to detect different labels of
mental attention states for each related work.

Namita and Ajitkumar [12] aimed to enhance traditional e-learning by proposing
a system that predicts a learning video based on emotion. They used five classification
methods and measured their accuracy: neural network (71.6%), linear discriminant analysis
(LDA; 75.25%), least-squares SVM (74.97%), Naive Bayes (75.02%), k-nearest neighbors
(KNN; 88.46%), and random forest (RF), which had the highest accuracy rate at 97.03%.

Myrden and Chau [13] aimed to detect three mental states, namely fatigue, frustration,
and attention. In their experiment, 11 participants completed a series of challenging mental
tasks. PSD features were extracted, and different classification methods were applied,
such as LDA, SVM, and Gaussian Naive Bayes. The attention classification achieved a
84.8 Â ± 7.4% accuracy. Their finding showed that the alpha band expressed in the larynx
predicts changes in attention levels.

Alirezaei et al. [14] looked into how attention can be detected by using EEG signals.
Data were gathered from 12 participants. Features were extracted using Fisher criteria and
forward feature selection. An SVM classifier achieved a classification accuracy of 92.8%.

Nuamah and Seong [15] proposed an attention-monitoring system to be used in
educational environments. EEG signals were recorded from 12 participants using eight
forehead channels in their experiment. PSD features were extracted, and four classifiers,
namely KNN (K = 9), c-SVM, LDA, and Bayesian, were used to determine attention states
with 92.8% and 92.4% accuracies, respectively; the c-SVM and LDA classifiers were more
accurate than the other methods.

Aci et al. [11] proposed a passive EEG-based BCI for monitoring a set of the mental
states of students. They aimed to detect three mental attention states: passive attention,
disengagement, and drowsiness. They collected an EEG signals dataset comprising a total
of 25 h from five participants engaged in a low-intensity control task. The EEG data were
acquired using an Emotiv headset. In the feature extraction stage, they used a short-time
Fourier transform and the Blackman window to calculate the power spectra of the EEG
signals in each EEG channel. Different classification methods were applied, and the SVM-
based method achieved the best performance (accuracy = 96.70% (best) and 91.72% (avg.))
compared with an adaptive neuro-fuzzy system and KNN.

Ludi et al. [16] proposed an EEG emotion recognition system to distinguish between
the positive and negative emotional states of a learner. They used the preprocessed version
of the SEED dataset. They used the wavelet transform approach to decompose and extract
the frequency band and calculate the sample entropy from EEG signals. They proposed
using a recurrent neural network and long short-term memory to classify the emotions in
EEG signals. Their classification method achieved a final accuracy rate of 90.12%.
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Table 1. Related work on EEG-based attention detection.

Ref. Channels Feature Extraction Classifier Mental States (Class Labels)

Namita and Ajitkumar, 2016 [12] - PSD features
SVM, LDA, Naive Bayes,
KNN, and neural network Two states (low and high concentration)

Myrden and Chau, 2017 [13]
Fz, F1, F2, F3, F4,
Cz, C1, C2, C3,C4,
CPz, Pz, POz, P1, and P2

PSD features
LDA, SVM, and
Gaussian Naive Bayes

Three states (fatigue,
frustration, and attention)

Alirezaei and Sardouie, 2018 [14] AF3, F3, FC5, FC6, F4,
AF4, F7, and F8 Power spectrum and entropy SVM and LDA Two states (attentive

and inattentive)

Nuamah and Seong, 2018 [15] C3, C4, P3, P4, O1, and O2 PSD features SVM
Cognitive engagement
during five tasks

Aci et al., 2019 [11]
F3, F4, Fz, C3,
C4, Cz, and Pz PSD features SVM

Three states (focused,
unfocused, and drowsy)

Ludi et al., 2016 [16]
AF3, AF4, F3, F4,
F7, F8, T7, and T8 Sample entropy RNN and long short-term memory

Two states (positive
and negative)

Nandi, 2021 [17] 48 channels Wavelet-based features
Logistic regression-based
classifier

Emotion model
(low/high),
valence, and arousal

Djamal et al., 2016 [18]
O1–O2,
C3–C4,
and F3–F4

Wavelet-based features SVM
Two states (attentive
and inattentive)
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Nandi et al. [17] proposed a method for a real-time emotion classification in e-learning
contexts using EEG signals. They developed a logistic-regression and stochastic-gradient
descent-based method. They used the DEAP dataset to validate the proposed method’s
performance. They reported that their proposed method outperforms other offline and
online approaches.

Djamal et al. [18] developed attention-recognition software to be used to evaluate
the student learning process and employee development. They extracted brain frequency
bands using the wavelet method. Then, the cognitive states were classified into only two
classes, attentive and non-attentive, using an SVM binary classifier. The best-obtained
accuracy was 83%.

4. Methodology

This section outlines our methodology and provides implementation details related to
the proposed system for EEG-based attention recognition. We begin with an explanation of
the used dataset. We explain the signal-preprocessing, feature-extraction, and attention-
computation phases. Finally, we discuss classification algorithms for attention detection.

4.1. Dataset Description

We used a publicly available EEG dataset [11] for attention-detection experiments
(Table 2). The original dataset includes 25 h of EEG recordings gathered from 5 subjects
involved in a low-intensity control task. We preprocessed the dataset and selected the
first 5 min for each trial. Our study aimed to detect a positive state of attention level.
Therefore, we used only the focused state from the original dataset and marked other trials
(i.e., unfocused and the drowsy states) as negative states of attention. The "focused" state
was related to the inactive supervision of a train while preserving concentration. However,
steady concentration was mandatory during the trials.

Table 2. Mental Attention dataset description.

Attention Model Binary (focused–unfocused)

Stimuli Visual-based stimuli (10 min per mental state)

Protocol
Virtual, passive control task, i.e., controlling a computer-simulated
train over a main shapeless route for 35–55 min

Participants Five subjects (five trials for each subject)

Time EEG recording of 25 h; each trial took 35–55 min

EEG device Twelve-channel Emotiv EPOC

Experimental method

Each user controlled and engaged in the focused control of a
simulated train during the first 10 min of each trial. During the
remaining time of the trial, the user stopped following the sim-
ulator and became unfocused with respect to changes on their
computer screen

4.2. Data Preprocessing

We first averaged the EEG signals and then resampled the frequency to 128 Hz per
channel. Based on prior knowledge of EEG, the correlated signal frequency ranges pro-
duced by the brain during attention states are mainly concentrated below 40 Hz. Therefore,
the useful frequency band in EEG signal data is between 2 and 40 Hz. Because of this,
we used a band-pass filter ranging from 2 to 40 Hz. Subsequently, we used ICA filters to
eliminate artifacts. A selection of electrodes was based on attention mapping with brain
areas (prefrontal cortex and parietal cortex). Figure 2 shows the selected electrodes in our
study, i.e., F7, F3, P7, O1, O2, P8, and AF4.
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Figure 2. International EEG 10–20 system with 14 channels.

4.3. Feature Extraction

Feature extraction plays a crucial role in building EEG-based BCI applications. PSD
indicates power in a certain signal in terms of frequency. It is one of the most common
feature extraction approaches used in EEG-based research, and it is based on frequency
domain analysis. The PSD approach transforms data from a time domain to a frequency
domain and vice versa. This conversion is based on the fast Fourier transform (FFT), which
measures the discrete transformation of a Fourier series and its opposite. We extracted EEG
frequency bands using a PSD approach known as Welch’s method (Figure 3). Algorithm 1
presents the pseudo-code for feature extraction with PSD. Then, we stacked the features
computed by PSD into a single array over the raw EEG of the channels.

Figure 3. PSD feature extraction.
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Algorithm 1 Feature extraction with PSD.

Input
X Filtered EEG signals

Output
bands Frequency bands
avg_power Average power of signals

power← tfr_array_morlet (X) . Calculate frequency transform (FFT)

avg_power←mean_over_time (power)
theta← avg_power (4–8 Hz)
alpha← avg_power (8–13 Hz)
beta← avg_power (13–30 Hz)
gamma← avg_power (30–40 Hz)

bands← Vector (theta, alpha, beta, gamma)

4.4. Attention Index

This research computed six equations for attention detection: the alpha–beta–theta
ratio (ABTR), alpha–gamma ratio (AGR), theta–beta ratio (TBR), beta–theta ratio (BTR),
beta–alpha ratio (BAR), and alpha–beta ratio (ABR).

The alpha–beta–theta ratio (ABTR), reported by Daniel and Bilgen [5] and Wang et al. [10],
was computed based on the powers of theta, alpha, and beta bands so that attention could
be detected using Equation (1).

ABTR =
β

(α + θ)
(1)

The alpha–gamma ratio (2) and theta–beta ratio (3), reported by Fahimi et al. [9], are
correlated with the elderly’s response time as a behavioral marker of attention.

AGR =
α

γ
(2)

TBR =
θ

β
(3)

Wang et al. [10] computed power-ratio features, the beta–theta ratio (BTR) and beta–
alpha ratio (BAR) β/θ, β/α, by using Welch’s PSD estimation methods (Welch, 1967). This
study saw these features as classical EEG features for attention recognition.

Alpha–beta ratio (ABR), reported by Liu et al. [19], was used for calculating attention
Equation (4):

ABR =
Eα

Eβ
(4)

where Eα = ∑13
f req=8 Pf req, Eβ = ∑30

f req=14 Pf req and Pf req is the energy value of the fre-
quency f req.

4.5. Classification

EEG-based attention classification normally involves the spectral conversion of wave-
forms into features that machine-learning algorithms can exploit. These algorithms are
trained on labeled data to determine if the attention is presently being detected. Attention
classification based on EEG signals may involve binary labels (e.g., focused/unfocused
or most focused/least focused) or multiple ordinal labels (e.g., ranks, including 9-point
ranks and 5-point ranks). This section proceeds by comparing the performance of classifi-
cation algorithms, including SVM, RF, and KNN. In a literature review of the classifiers
used in BCI systems, the authors of [20] categorized these classifiers into the following
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types: linear, nonlinear Bayesian, neural network, nearest neighbors, and ensemble classi-
fiers. Linear classifiers distinguish classes using linear functions, such as LDA and SVM,
the most commonly applied classification algorithms in EEG classification. The following
paragraphs provide a brief overview of the classification algorithms used in this research.

4.5.1. K-Nearest Neighbors (KNN)

Due to KNN’s sensitivity to the curse of dimensionality, it is unusual in BCI applica-
tions [20]. It can be used efficiently with a small number of features in BCI applications
because of its relatively high convergence speed and simplicity. However, there are many
disadvantages associated with KNN classifiers. The main disadvantage is a large memory
requirement needed to store an entire training set. If the training set is large, the response
time will also be large, which leads to a poor runtime performance. Despite the memory
requirement, the KNN algorithm in general performs effectively in classification problems.
Moreover, KNN is highly sensitive to irrelevant and redundant attributes, influencing
classification accuracy. Hence, a selected dataset should be preprocessed carefully using a
suitable attribute-selection technique. Another disadvantage of KNN is the selection of k.
If the value of k is too small, the result can be sensitive to noise. However, if the value of k
is too large, then the result can be incorrect where neighbors include too many points from
other classes [21].

4.5.2. Random Forest (RF)

RF is a classification and regression technique that uses ensemble learning. It consists
of numerous decision trees with the ultimate result class being the mode of all the outcome
classes of individual trees. It offers an additional layer of randomization for bootstrap
aggregation in general. This layer integrates the results of all randomized trees into a
single classifier that decides a class based on a majority vote of all the decision trees.
This advantage reduces error rates and resilience against overfitting while maintaining
computational efficiency [4,22].

4.5.3. Support Vector Machine (SVM)

SVM works by determining the optimum N-dimensional hyperplane to distinguish
training examples into multiple classes with the greatest margin of error and the fewest
classification mistakes. Maximizing margins can improve generalization flexibility, but op-
timal separation cannot be obtained if the resulting model cannot be extended to another
dataset (i.e., the overfitting problem) [23,24]. SVM has been successfully utilized in several
BCI systems with a reasonable level of generalization, allowing it to handle overtraining
and highly dimensional data efficiently [20].

5. Results

Attention-detection experiments were performed on the benchmark dataset as ex-
plained in Section 4.1. Previous research implemented a subject-specific paradigm, leading
to a poor generalization of the algorithms because one classifier was usually trained for
each subject independently [25]. Such classifiers each achieve a good performance, but
it is difficult to train a classifier for each person in real life. Therefore, we adopted a
common-subject paradigm to generalize the methodology and train the same classifier for
all the subjects.

To evaluate the performance of the classification algorithms, we used different cross-
validation methods. These were holdout, i.e., splitting into a 70% training dataset and
30% testing dataset, and k-fold cross-validation, where k was set to five. Tables 3 and 4
present the accuracy results for RF, KNN, and SVM using each cross-validation method.
RF achieved the best accuracy results at 96% and 87% in holdout validation and k-fold
cross-validation, respectively, when k was set to five.
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Table 3. Results for attention recognition using k-cross-validation (k = 5) and the different classifiers
SVM, RF, and KNN.

RF SVM KNN

Accuracy 87% 69% 83%
Recall 14% 14% 62%

Precision 83% 23% 82%
F-measure 77% 17% 68%

Table 4. Results for attention recognition using holdout validation and the different classifiers SVM,
RF, and KNN.

RF SVM KNN

Accuracy 96% 78% 74%
Recall 96% 78% 74%

Precision 96% 77% 76%
F-measure 96% 78% 75%

6. Discussion

To compare our model with traditional approaches used in Aci et al. [11], we used the
same holdout cross-validation in which we split the data randomly into training and testing
sets. Our model achieved a better accuracy result at 96% over traditional algorithms, such
as KNN and SVM. Table 5 presents a comparison of related work in regards to recognizing
different labels of attentive states based on the accuracy of classification algorithms.

Table 5. Comparison of classification methods’ accuracies in detecting attentive states.

Ref. Classifier Average Accuracy

Liu et al., 2013 [19] SVM 76.82%
Ke et al., 2014 [26] SVM 85.24 %

Peng et al., 2020 [27] SVM 84.80%
Suhail, 2021 [28] SVM 92.98%

Our proposed system RF 96%

Liu et al. [19] aimed to enhance the class-learning process by proposing a system that
objectively assesses students’ attentiveness during instruction. They used a fast Fourier
transform (FFT) as a frequency domain analysis to extract PSD features and calculate an
energy value, which were added together based on the waveband dispersion of the EEG
data. Moreover, the alpha and beta activate ratio was calculated and used as the feature for
assessing level of mental attentiveness. In the classification stage, the SVM classifier was
used to identify whether students were attentive. The classification accuracy achieved 76%.

Ke et al. [26] proposed an attention-detection system to detect three states, namely
attention, no attention, and rest. They investigated the effects of different features of linear
parameters, such as power spectrum, and nonlinear parameters, such as approximate
entropy, sample entropy, and multiscale entropy. The extracted features were fed to an
SVM classifier. The results showed that sample entropy outperformed the power spectrum
in the two experiments with accuracies of 76.19% and 85.24%, respectively.

Peng et al. [27] proposed an attentiveness-detection system that helps identify a
person’s mental state and focus when performing specified activities. They used HHT to
analyze single-channel EEG data. The data were recorded from the frontal region at various
degrees of attention. Band powers and spectral entropy features were fed into an SVM
classifier. The results reported that they could discriminate between attentive and relaxed
states with an average classification accuracy of 84.80%.

Suhail [28] proposed a neurofeedback system that aimed to assess a cognitive state
based on EEG signals. They experimented on 20 subjects during a learning task to detect



Sustainability 2022, 14, 6553 11 of 12

two states: attentive and idle. In a feature extraction phase, they used time-domain tech-
niques, such as Hjorth parameters, wavelet-based features, spectral entropy, the attention
index AITABG, and a combination of EEG band ratios, which were calculated on EEG
band ratios. They used the Fisher ratio and correlation analysis methods to select the most
discriminating features in a feature selection phase. In a classification phase, they used
three classifiers: SVM, KNN, and LDA. The results showed that the SVM classifier achieved
the highest recognition performance with an accuracy of 92.9%.

We compared our proposed model and other existing studies in the same attention-
detection experiment. From Table 5, we can conclude that our proposed RF model ef-
fectively distinguishes the attention state of a subject with a high classification accuracy
of 96%.

7. Conclusions

The self-assessment of attention for teachers and students can enable them to im-
plement necessary adjustments during classes. We propose an attention-based detection
system aimed to monitor and analyze the attention levels of online learners in real time.
Compared with traditional approaches, such as KNN and SVM, we achieved a better result
with an accuracy of 96% using an RF model.

Future directions for this research include using a large EEG dataset to fine-tune the
model to improve its performance. More alternative ML approaches, such as deep learning,
could be explored to improve the detection results.
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