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Abstract: With the increasing complexity of application situations in multi-core processing systems,
how to assure task execution reliability has become a focus of scheduling algorithm research in recent
years. Most fault-tolerant algorithms achieve hard reliability requirements through task redundancy,
which increases energy consumption and contradicts the concept of sustainable development. In this
paper, we propose a new algorithm called HDFE (Heterogeneous-Dag-task-fault-tolerance-energy-
efficiency algorithm) that combines DVFS technology and task replication technology to solve the
scheduling problem of DAG applications concerning energy-saving and hard reliability requirements
in heterogeneous multi-core processor systems. Our algorithm is divided into three phases: the
priority calculation phase, the task replication phase, and the task assignment phase. The HDFE
algorithm achieved energy savings while meeting hard reliability requirements for applications,
which was based on the interrelationship between reliability and energy consumption in filtering
task replicas. In the experimental part of this paper, we designed four comparison experiments
between the EFSRG algorithm, the HRRM algorithm, and the HDFE algorithm. The experimental
results showed that the energy consumption of task scheduling using the HDFE algorithm is lower
than other algorithms under different scales, thus achieving energy savings and complying with the
concept of sustainable development.

Keywords: heterogeneous systems; scheduling algorithm; fault tolerance

1. Introduction
1.1. Background

Since the late 1990s, with the development of semiconductor technology, the number
of transistors on a single chip has greatly increased, while multi-core processors have
also seen a lot of development [1]. Artificial intelligence applications have also gradually
penetrated various industries such as intelligent medicine, autonomous driving, aerospace,
and security surveillance, owing to the powerful computing power brought by multi-core
processors. These industries have rigid requirements for the reliability of task execution.
On the other hand, energy savings is also an eternal research topic with regard to embedded
systems. In the field of task scheduling algorithms in multi-core processors, the discussion
about the improvement of energy savings and reliability has never been interrupted.

1.2. Motivation

Task replication techniques are widely used in fault-tolerant scheduling algorithms for
multi-core systems. However, redundant task replicas cause a surge in energy consumption
while guaranteeing the reliability of task execution [2]. Therefore, how to save energy
in scheduling algorithms based on task replication techniques has become a concern for
scholars. Considering energy savings, the DVFS technique is undoubtedly the best choice.
The DVFS technique achieves energy savings by reducing the processing frequency of
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processor cores. Existing studies [3,4] have shown that the failure rate increases when the
processor cores are at a low frequency, which easily leads to task execution failure and thus
reduces the system’s reliability. There are some algorithms that have been proposed, which
combine task replication techniques with DVFS techniques to satisfy both application
reliability requirements and energy efficiency. For example, the EFSRG algorithm, by
filtering application replicas in an ascending order of energy consumption, allows the
reliability of the application to be satisfied [5]. In the process of screening task replicas, such
scheduling algorithms take the energy consumption of task replicas as the ranking basis
and the reliability of task replicas as the condition constraint; this is accomplished without
considering the comprehensive performance of task replicas in the screening process.
Therefore, for this paper, we considered how to take into account the comprehensive
performance of task replicas in the screening process of task replicas, as it is possible to
find the task replica that meets the task reliability requirements and has lower energy
consumption.

1.3. Contribution

In this paper, we focus on the problem of scheduling computational tasks with re-
liability and security requirements in heterogeneous multi-core processors for various
domains, while considering energy savings. We consider task replication techniques, which
guarantee the successful execution of a task by duplicating application replicas; we also
ensure the continuation of an application as the execution of a task fails due to a transient
failure of the processor. Each core in a multi-core processor system can be independently
frequency-regulated by the DVFS technique, and we consider regulating the execution
frequency of task replicas in order to achieve energy savings. The main contributions of
this paper are the following:

1. In this paper, we propose a static heuristic scheduling algorithm, HDFE, for solving the
scheduling problem of DAG applications with energy-saving requirements and hard
reliability requirements in heterogeneous multi-core processor systems. The algorithm
is divided into three phases: the priority calculation phase, the task replication phase,
and the task assignment phase.

2. In the task priority calculation stage, this paper presents a new priority calculation
method based on the execution time uncertainty of tasks.

3. This paper proposes a task replica screening method that combines the comprehensive
performance of reliability and energy consumption in the task replication phase.

4. In the experimental part, the simulation experiments designed for this paper compare
the differences in energy consumption between the EFSRG algorithm [5], the HRRM
algorithm [6], and the HDFE algorithm proposed in this paper and are based on
simulation scheduling experiments on an actual application and a random application.

The rest of the paper is organized as follows. Section 2 introduces related work,
Section 3 introduces related models, Section 4 presents the algorithms and the cases, and
Section 5 describes the experiments. Finally, in Section 6, we discuss our conclusions.

2. Related Work

This section discusses the key research works related to energy-saving task scheduling
and reliability task scheduling.

Energy consumption is an extremely important evaluation property of scheduling
algorithms; the discussion on energy-saving scheduling algorithms has never stopped in
various environments such as single-core processor systems, multi-core processor systems,
real-time systems, or non-real-time systems. Most of the discussions on energy savings in
heterogeneous processor systems rely on techniques such as VFI, DPM, DVS, and DVFS
to dynamically regulate the voltage or frequency of processor cores in order to achieve
energy savings [7]. The scheduling algorithm proposed in [8] aimed to achieve energy
savings by dynamically adjusting processor voltage using the DVS technique. The DPM
algorithm mainly achieves static energy consumption reduction by adjusting the processor
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state [9]. The VFI technique, on the other hand, discusses energy savings by regulating the
voltage of processor cores in groups within processor systems that have a large number
of cores [10–12]. The DVFS technique is most widely used in energy-efficient scheduling
algorithms [13–15]. However, the DVFS technique also has a drawback in that the transient
failure rate increases when the processor core is running at low frequencies, which leads to
a higher probability of task execution failure. This drawback of the DVFS technique causes
a conflict between its energy-saving capability and its reliability. How to explore a highly
reliable and low energy consumption scheduling algorithm in the conflict between has thus
become the focus of research.

Most of the research on fault-tolerant scheduling discusses how to ensure that the
final execution results of tasks are not affected in case of transient or permanent processor
failures. Many factors can cause processor failures, including high temperature, hardware
failures, etc. [16,17]. The study of fault-tolerant scheduling mainly considers transient
failures because the probability of permanent failures during task execution is much lower
than that of transient failures [18]. Existing fault-tolerant scheduling algorithms generally
quantify the probability of successful task execution by defining it as the reliability of
the task. In this regard, many fault-tolerant techniques have been proposed in order to
achieve the task reliability requirement; these include the task replication [19,20], primary-
backup [21], and checkpoint [22] techniques.

Niraj Kumar et al. in [2] discussed the reliable energy-efficient scheduling of non-
preemptive real-time tasks in heterogeneous multi-core processing systems, but the diverse
ideas presented in their discussion about heterogeneous multi-core systems is reflected in
the fact that each core can independently adjust its operating frequency without discussing
the heterogeneity of the hardware parameters of the processor cores.

The HRRM algorithm proposed in [6] considers the hard reliability requirements of
an application through task replication, but it does not consider energy savings while
achieving the reliability requirement.

The EFSRG algorithm was proposed in [5] to satisfy the hard reliability requirements
of tasks by task replication while achieving energy savings by regulating the execution
frequency of task replicas. However, as stated in the previous section, the EFSRG algorithm
does not consider the energy consumption and reliability of task replicas together when
screening the task replicas, and it does not fully utilize the interrelationship between energy
consumption and reliability.

In this paper, we will discuss the dynamic scheduling algorithm for DAG applications
in heterogeneous multi-core systems based on the relationship between the energy con-
sumption and the reliability of task execution, as well as the energy saved while satisfying
hard reliability requirements.

3. System Model
3.1. Task Model

As shown in Figure 1, an application is represented by a DAG G. Let G = (V, E), where
V is a set of v tasks, which is represented by V = {v1, v2, . . . , vn}, and E is a set of directed
edges among tasks. Each edge ei,j represents task vi, dependency constraints between
vj, i.e., task vi must finish its execution and transfer the resulting data to solve the data
dependency before task vj starts. The weight of each edge ei,j represents the communication
cost between task vi and vj and is denoted by cpi,j.

As a supplement to DAG, W is a matrix of n * m, n is the number of tasks in the
application, and m is the number of processors in this processor system. wi,k represents the
estimated execution time of taskk on processor uk.
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Figure 1. DAG diagram shows the application.

3.2. Processor Model

This paper adopts a heterogeneous multi-core processor structure, and the cores in
the processor are connected together by a bus, as shown in Figure 2. The processor is
expressed as U = {u1, u2, . . . , um}, uk(αk, λk, dk, ck, Pind,k, Ps,k, fmax,k, fmin,k) ∈ U represents
a core of a processor, where ck indicates the conversion capacitance of the processor,
which is a hardware parameter. αk indicates the dynamic power index, while Pind,k, Ps,k
indicates frequency-dependent dynamic power and frequency-independent static power.
fmax,k, fmin,k indicates the maximum and minimum frequencies of processor core operation.
According to DVFS technology, the processor core operating frequency can be adjusted
between the minimum and maximum frequencies. λk indicates the processor core failure
rate, dk is a static parameter related to the hardware. The above parameters will be used
in the reliability model and the energy consumption model in the following sections. The
related parameters of the processor structure in Figure 2 are shown in Table 1.

Figure 2. Three-core processor architecture.

Table 1. Hardware parameters.

Pind Ps c α d λ fmax fmin

u1 0.03 0.005 0.8 2.9 2.0 0.00020 1 0.2583

u2 0.03 0.005 0.9 2.9 2.0 0.00013 1 0.2480

u3 0.03 0.005 1.0 3.0 2.0 0.00050 1 0.2466
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3.3. Reliability Model

Due to hardware failure, high temperature, and other unknown reasons, the task
may fail to complete. This paper proposes a reliability model based on transient failure
probability, which is based on previous reliability scheduling research. The model uses the
exponential function based on execution time and fault rate to express mission reliability.

When a task is executed, the fault rate can be expressed by λ, and fault rate is only
related to the hardware parameter. When the processor is executed at the frequency f , the
fault rate can be expressed as follows:

λ(k, f ) = λk × 10
dk(1− f )
1− fmin,k (1)

where λk is the fault rate executed at frequency fmax,k of the processor uk; dk is a static
parameter related to the hardware, reflecting the sensitivity of the probability of failure to
frequency changes; and fmin,k is the minimum frequency of uk. Furthermore, the reliability
of the task replica could be expressed by r, and the reliability of task vi executed at frequency
fi,k on the processor uk is expressed as follows:

r(i, k, fi,k) = e
−λ(k, fi,k)×wi,k×

fmax,k
fi,k (2)

In particular, when fi,k = 0, it means that the task has no replica on this processor,
r(i, k, fi,k) = 0. The reliability of task vi is calculated by the reliability of each replica of the
task, which is expressed as:

ractual(i) = 1−
m

∏
k=1

(1− r(i, k, fi,k)) (3)

Therefore, the reliability of the application could be represented as follows:

Rtotal =
n

∏
i=1

ractual(i) (4)

Our target is to let
Rtotal ≥ Rreq (5)

Since the reliability Rtotal given by the application represents the reliability of the
entire application, and each task is dynamically allocated both processor and operating fre-
quencies during the scheduling process, Rtotal needs to be decomposed into task reliability
requirements rreq(i), expressed as:

rreq(i)

=
Rreq

∏j∈allocated(i) ractual(j)×∏j∈unallocated(i) rreq(j)

=
Rreq

∏j∈allocated(i) ractual(j)×∏j∈unallocated(i)
n
√

Rreq

(6)

where allocated (i) represents the applications that have been allocated before task vi in
the priority queue, and unallocated (i) represents the applications that have not been
allocated after task vi in the priority queue. Then, if each task vi in the application satisfies
ractual(i) ≥ rreq(i), then the inequality (5) can be satisfied, that is, the reliability requirement
of the application can be satisfied.

3.4. Power Model

The power consumption of a processor is mainly composed of frequency-related
dynamic consumption, frequency-independent dynamic consumption, and static con-
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sumption. Among these, the frequency-related dynamic power consumption is the main
component, and the total power of the processor is represented by P; thus, the power model
is expressed as follows:

P(k, f ) = Ps,k + g(Pind,k + Pd,k)

= Ps,k + g
(

Pind,k + ck × f α(k)
) (7)

Ps,k means frequency-independent static power, Pind,k means frequency-independent
dynamic power, Pd,k means frequency-dependent dynamic power, g means system state,
g = 0 when the system is in sleep, g = 1 when the system is running, and ck means the
switching capacitance of the processor, which is a hardware parameter, and αk represents
the dynamic power exponent. Furthermore, the dynamic energy consumption of the
replicated task vi executed on the processor uk at frequency fi,k can be expressed as follows:

Ed(i, k, fi,k) = (Pind,k + ck × f αk )× wi,k ×
fmax,k

fi,k
. (8)

The scheduling dynamic energy consumption of task vi is calculated by the dynamic
energy consumption of each replica of the task.

Ed−actual(i) =
m

∑
k=1

Ed(i, k, fi,k) (9)

The static energy consumption of application is related to the SL (schedule length) of
the task.

Es = SL× Ps (10)

The total energy consumption of the application is expressed as follows:

Etotal =
n

∑
i=1

Ed−actual(i) + Es. (11)

In particular, when fi,k = 0, it means that the task has no replica on this processor,
Ed(i, k, fi,k) = 0.

4. Algorithm

Our algorithm consists of three parts: task priority calculation, task replication, and
task scheduling. In the task priority calculation stage, the task priority sequence of the
application is obtained, and in the task replication stage, the reliability requirements of the
tasks are first calculated according to the task priority sequence. Then, the tasks are copied
according to the determined reliability requirements. Finally, a group of task replicas that
meet the requirements and save energy is screened out. In the task scheduling stage, the
scheduling scheme of tasks in the application and in the task replica of the processor is
obtained according to the previous two stages.

4.1. Calculation of Task Priority

Before replicating tasks in the application, its reliability requirements should be de-
termined first. According to Formula (3), which was derived in the reliability model, we
know that the reliability requirement of tasks is related to the processing order of tasks in
the application, so we need to give the method of calculating tasks priority in the first step
of the scheduling algorithm to determine the priority sequence of the tasks.

Because our scheduling algorithm will combine DVFS technology to scale the ex-
ecution frequency of the tasks, the execution time of tasks on the processor cannot be
determined in the priority calculation stage. Therefore, in the task priority calculation stage,
we ignore the influence of task execution time and focus on the influence of communication
cost between tasks.
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We use the rank value to express the ranking weight of tasks, and the rank is calculated
as shown in Formula (12). The priority sequence can be obtained by ranking tasks in
descending order of rank value.

Rank(vi) =
max

vjεsucc(vi)

(
Rank

(
vj
)
+ cpi,j

)
(12)

Taking the application in Figure 1 as an example, the task sequences calculated by
Formula (12) are v1, v3, v4, v2, v5, v6, v7, v9, v8, and v10.

4.2. Task Replication

In the previous section, we obtained the priority sequence of tasks. In the task repli-
cation stage, we first need to decompose the reliability requirements of the application
into the reliability requirements of the tasks, and then replicate the tasks according to
their reliability requirements. The algorithm for the task replication phase is shown in
Algorithm 1.

The first function of the task replication phase is to take out the first task from the
priority sequence vi according to the reliability requirements in the reliability model, then
perform Equation (3) to calculate the rreq(i) reliability requirements, as shown in line 3 of
Algorithm 1.

Taking task v1 as an example, the calculation of the reliability requirements is as
follows:

rreq(1) =
0.95

( 10
√

0.95)9
= 0.994884

After determining the reliability requirements of the tasks, how to use task replication
to meet the reliability requirements has become a problem to be considered. According
to the research in [2], given the task reliability requirements, the number of task replicas
and the execution frequency of the task replicas are negatively correlated; that is, if the
number of task replicas increases, the minimum execution frequency of each task replica
will decrease. Therefore, the key to task replication is how to select the number of replicas
and the frequency of the task replicas.

Algorithm 1: Task replication phase.

Input: G(N, E), W, Rreq, U, task_queue
Output: frequency[]

1: while (task_queue is not empty) do
2: vi ←− first task in task_queue
3: rreq(i)←− calculated from Equation (3)
4: while(ractual(i) < rreq(i)) do
5: f (i, k)← flow,k
6: for k = 1:m do
7: f (i, min) find the min ϕ

(
i, k, fi,k

)
8: end for
9: frequency[i, min]←− f (i, min);

10: update the value of ractual(i)
11: end while
12: end while
13: return frequency[]

Because the hardware parameters of each core in the processor system being consid-
ered are different, it is impossible to calculate the execution frequency of each replica when
determining the task reliability requirements and the number of replicas. We assume that
the task has a task replica on each core, and that the initial execution frequency is 0. Search
for the task execution frequency on each core until we find the replica combination that
meets the requirements of task reliability. In the final result, if the execution frequency of a
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task replica fi,k is equal to 0, it means that there is no replica of the task vi on the processor
ui.

If energy savings is not considered, we can always choose the most reliable replica
for the next iteration when traversing the execution frequency of task replicas on each
core. However, with regard to energy savings, we need to define a comprehensive index
that includes reliability and energy consumption, and which is used to screen the task
replicas that are able to enter the next iteration. For a group of task replicas that have finally
been screened out, we hope it can achieve high reliability with low energy consumption.
Hence, we take the energy consumption required to achieve the unit reliability goal as our
comprehensive parameter, and the calculation method applied is as follows:

ϕ(i, k, fi,k) = Ed(i, k, fi,k)/r(i, k, fi,k) (13)

According to Formulas (2) and (8),

ϕ(i, k, fi,k) =
(Pind,k + Ck × fi,kαk)× wi,k ×

fmax,k
fi,k

e
−λ(k, fi,k)×wi,k×

fmax,k
fi,k

(14)

We assume that the task has a task replica on each core. In the process of task replica
screening, our algorithm selects each task replica ϕ, a replica with the lowest value, so that
its frequency is increased; the reliability of tasks is calculated according to Formula (3). If
the reliability requirement is met, this group of task replicas will be output; otherwise, the
screening process will continue. This is shown in lines 5–9 of Algorithm 1.

Figure 1 shows the tasks in the application vi. An example of the screening process for
task replicas is shown in Table 2.

Table 2. Tasks v1—task replica filtering process.

u1 u2 u3

f1,k 0.2583 0.2480 0.2466
ϕ
(
i, k, fi,k

)
3.4514 3.8598 2.9508

frequency[1,k] 0 0 0.2466

Substitute f1,3 in the frequency ϕ(1, 3, f1,3) as the smallest of the three, determine
ractual(1) = 0.5565 < rreq(1), and continue the iteration while f1,3 is increased by 0.01.

f1,k 0.2583 0.2480 0.2566
ϕ
(
i, k, fi,k

)
3.4514 3.8598 2.8165

frequency[1,k] 0 0 0.2566

Substitute f1,3 in the frequency ϕ(1, 3, f1,3) as the smallest of the three, determine
ractual(1) = 0.5840 < rreq(1), and continue the iteration while f1,3 is increased by 0.01.

. . . . . .

f1,k 0.4283 0.2480 0.5666
ϕ
(
i, k, fi,k

)
3.5869 3.8598 3.5686

frequency[1,k] 0 0 0.5666

Substitute f1,3 in the frequency ϕ(1, 3, f1,3) as the smallest of the three, determine
ractual(1) = 0.9951 > rreq(1), then end the iteration and output the result.

4.3. Task Scheduling Stage

In the task scheduling phase, we need to schedule the tasks based on the previously
obtained task priority queue from task replication scheme. Tasks are scheduled according
to the following rules.

1. The task replica has the same priority as the primary task.
2. When all replicas of the task have successfully been executed, its child nodes can start

to receive the data of the task.
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3. The task cannot be preempted during execution.

Taking the application in Figure 1 as an example, the final scheduling result obtained
by our scheduling algorithm is shown in Table 3. AST is the start execution time of the task
replica on the corresponding core, and AFT is the end execution time.

Table 3. Application task replication results.

u1 u2 u3 ractual Eactual

frequency 0.428323974 / 0.566621207
v1 AST 0 / 0 0.995 6.583

AFT 32.685 / 15.883

frequency 0.608323974 0.288042393 /
v2 AST 106.498 78.840 / 0.995 8.272

AFT 127.868 144.802 /

frequency 0.468323974 0.348042393 /
v3 AST 32.685 27.884 / 0.995 5.482

AFT 56.173 65.235 /

frequency 0.258323974 0.588042393 /
v4 AST 56.173 65.235 / 0.997 5.338

AFT 106.498 78.840 /

frequency 0.448323974 0.368042393 /
v5 AST 127.868 144.802 / 0.995 5.705

AFT 154.634 180.124 /

frequency 0.438323974 / 0.526621207
v6 AST 154.634 / 15.884 0.994 6.068

AFT 184.293 / 32.974

frequency 0.748323974 0.248042393 /
v7 AST 184.293 180.124 / 0.999 6.278

AFT 193.647 240.598 /

frequency 0.658323974 / /
v8 AST 263.327 / / 0.993 2.035

AFT 270.922 / /

frequency 0.258323974 0.608042393 /
v9 AST 193.647 240.598 / 0.995 7.979

AFT 263.327 260.333 /

frequency / 0.628042393 /
v10 AST / 281.922 / 0.992 2.937

AFT / 293.068 /

Etotal = 56.68 + 2.98 = 59.66, Rtotal = 0.9501, SL = 293.068

5. Experiment

For this paper, we used MATLAB, a mighty data processing tool, to conduct simu-
lation experiments in task scheduling. Since the EFSRG algorithm and HRRM algorithm
are similar to the models in this paper, we will compare the performance of the EFSRG
algorithm, HRRM algorithm, and HDFE algorithm in the experiments. The range of the
relevant parameters of the processor in the simulation experiments is shown in Table 4.
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Table 4. Relevant parameter range of the processor in the simulation experiment.

Parameter Lower Limit Upper Limit

Pind 0.03 0.07
Ps 1× 10−3 5× 10−3

c 0.8 1.2
α 2.5 3.0
d 1 3
λ 1× 10−4 1× 10−3

5.1. FFT (Fast Fourier Transform) Application Scheduling Experiment

The Fourier transform is mainly used in signal processing to convert time domain
signals to frequency domain signals. The Fast Fourier Transform is an efficient algorithm
for computing the discrete Fourier transform in a computer. The use of the Fast Fourier
Transform allows the number of multiplications required for the discrete Fourier transform
to be greatly reduced. As shown in Figure 3, the dependencies between tasks when using
the Fast Fourier Transform with four size of input vectors are plotted. The number of tasks
n in the Fast Fourier Transform application is related to the number of size of input vectors
N, as shown in Equation (15) [23], where N = 2ρ.

n = (2× N − 1) + N × log(N) = (2 + ρ)× 2ρ − 1, ρ ∈ Z+ (15)

Figure 3. Fast Fourier Transform application when the number of size of input vectors is four.

We randomly generated the FFT application when the number of size of input vectors
N = 16, 32, 64, and 128 (that is, the number of tasks is 95, 223, 511, and 1151), and when
the number of processor cores was set to eight. We increased the reliability requirement of
the application from 0.90 to 0.99 in steps of 0.01, randomly generated 100 FFT applications,
and compared the average energy consumption of various algorithms for scheduling
applications with various reliability goals. Then, we scheduled the application by using the
EFSRG algorithm, the HRRM algorithm, and our proposed HDFE algorithm and compared
the scheduling results. The comparison index is the energy consumption required to meet
the reliability requirements. The experimental data were subsequently drawn into a bar
chart, as shown in Figure 4.

To study whether the number of processor cores has an impact on the experimental
results, we randomly generated a Fast Fourier Transform application with size of input
vectors n = 4 and N = 95 and compared the experimental results when the number of
processors m was 4, 8, 16, and 20. The experimental results are shown in Figure 5.

The analysis results show that in the same processor environment, the same Fast
Fourier Transform application is scheduled. The HDFE algorithm proposed in this paper
satisfies the required reliability requirements with a lower energy consumption than the
other two algorithms, and this result is not affected by the number of task nodes and the
number of processors.
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(a) m = 8, n = 95 (b) m = 8, n = 223

(c) m = 8, n = 511 (d) m = 8, n = 1151

Figure 4. Comparative experimental results of energy consumption required by different specifica-
tions of FFT application under different reliability requirements.

(a) m = 4, n = 95 (b) m = 8, n = 95

(c) m = 16, n = 95 (d) m = 20, n = 95

Figure 5. Comparative experimental results of energy consumption required by the same FFT
application specifications under different reliability requirements for different numbers of processor
environments.
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5.2. Ge (Gaussian Elimination) Application Scheduling Experiment

The Gaussian elimination method, an algorithm in linear algebraic programming, can
be used to solve linear equations, find out the rank of the matrix, and find out the inverse
matrix of the reversible equation. Figure 6 is a 5 × 5 dependency diagram of Gaussian
elimination calculation based on the matrix. The relationship between the number of tasks
n of the Gaussian elimination application and the number of size of input vectors n is
shown in Formula (16) [23].

n =
(

N2 + N − 2
)

/2, N ∈ Z+ (16)

Figure 6. Gaussian Elimination application when the number of size of input vectors is four.

We randomly generated the Gaussian elimination application when the number of size
of input vectors n = 13, 21, 32, and 48 (i.e., the number of tasks is 90, 23, 05, 27, and 11, 75).
We increased the reliability requirement of the application from 0.90 to 0.99 in steps of 0.01,
randomly generated 100 GE applications, and compared the average energy consumption
of various algorithms for scheduling applications with various reliability goals. Then, we
scheduled the application by using the EFSRG algorithm, the HRRM algorithm, and our
proposed HDFE algorithm and compared the scheduling results. The comparison index is
the energy consumption required to meet reliability requirement. The experimental data
were subsequently drawn into a bar chart, as shown in Figure 7.

To study whether the number of processor cores affects the experimental results, we
randomly generated the Gaussian elimination application with matrix dimensions of n = 13
and n = 90 and compared the experimental results when the number of processors m was 4,
8, 16, and 20. The experimental results are shown in Figure 8.

The experimental results show that the same Gaussian cancellation application is
scheduled in the same processor environment, and that the energy consumption of the
HDFE algorithm proposed in this paper to meet the given reliability requirements is lower
than that of the other two algorithms; this result is not affected by the number of task nodes
and processors.
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(a) m = 8, n = 90 (b) m = 8, n = 230

(c) m = 8, n = 527 (d) m = 8, n = 1157

Figure 7. Comparative experimental results of energy consumption required by the GE application
with different specifications under different reliability requirements.

(a) m = 4, n = 90 (b) m = 8, n = 90

(c) m = 16, n = 90 (d) m = 20, n = 90

Figure 8. Comparative experimental results of energy consumption required by the GE application
with the same specifications under different reliability requirements for different numbers of processor
environments.
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6. Conclusions

In this paper, we tried to solve the problem of scheduling DAG applications with hard
reliability requirements in heterogeneous multiprocessor systems while keeping the energy
consumption as low as possible. Algorithms that adopt task replication techniques to meet
the reliability requirements performed well in terms of energy savings, but task replication
techniques led to a surge in overall energy consumption. In this paper, we also proposed
a static heuristic scheduling algorithm, HDFE, which can achieve energy savings while
satisfying the hard reliability requirements of applications. The algorithm combines task
replication technology with DVFS technology based on a thorough study of the correlation
between task reliability and energy consumption, it performs task replica selection based
on the combined parameters of task energy consumption and reliability, and finally, it
selects application replicas that meet the reliability requirements and have low energy
consumption. In the experimental part, we designed a comparison experiment based on
the FFT and GE applications, and the comparison algorithm we used was the EFSRG
algorithm and the HRRM algorithm. Upon analysis of the experimental results, it can be
concluded that the scheduling which made use of the HDFE algorithm proposed in this
paper requires less energy to achieve the hard reliability requirements of the application. In
future research, we will consider complicating the task model with the processor model in
order to explore the task scheduling problem in complex environments.

Our proposed algorithm is for embedded, heterogeneous multi-core systems with
high, soft, real-time reliability requirements. In future work, we can put emphasis on
combining real-time performance, energy savings, and reliability. For example, the task
deadlines will be required in the model assumptions.
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