
Citation: Choi, S.-W.; Lee, E.-B.

Contractor’s Risk Analysis of

Engineering Procurement and

Construction (EPC) Contracts Using

Ontological Semantic Model and

Bi-Long Short-Term Memory (LSTM)

Technology. Sustainability 2022, 14,

6938. https://doi.org/10.3390/

su14116938

Academic Editor: Andrea Appolloni

Received: 10 May 2022

Accepted: 4 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Contractor’s Risk Analysis of Engineering Procurement and
Construction (EPC) Contracts Using Ontological Semantic
Model and Bi-Long Short-Term Memory (LSTM) Technology
So-Won Choi 1 and Eul-Bum Lee 1,2,*

1 Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and
Technology (POSTECH), Pohang 37673, Korea; smilesowon@postech.ac.kr

2 Department of Industrial and Management Engineering, Pohang University of Science and
Technology (POSTECH), Pohang 37673, Korea

* Correspondence: dreblee@postech.ac.kr; Tel.: +82-54-279-0136

Abstract: The development of intelligent information technology in the era of the fourth industrial
revolution requires the EPC (engineering, procurement, and construction) industry to increase
productivity through a digital transformation. This study aims to automatically analyze the critical
risk clauses in the invitation to bid (ITB) at the bidding stage to strengthen their competitiveness for
the EPC contractors. To this end, we developed an automated analysis technology that effectively
analyzes a large amount of ITB documents in a short time by applying natural language processing
(NLP) and bi-directional long short-term memory (bi-LSTM) algorithms. This study proposes two
models. First, the semantic analysis (SA) model is a rule-based approach that applies NLP to extract
key risk clauses. Second, the risk level ranking (RLR) model is a train-based approach that ranks
the risk impact for each clause by applying bi-LSTM. After developing and training an artificial
intelligent (AI)-based ITB analysis model, its performance was evaluated through the actual project
data. As a result of validation, the SA model showed an F1 score of 86.4 percent, and the RLR model
showed an accuracy of 46.8 percent. The RLR model displayed relatively low performance because
the ITB used in the evaluation test included the contract clauses that did not exist in the training
dataset. Therefore, this study illustrated that the rule-based approach performed superior to the
training-based method. The authors suggest that EPC contractors should apply both the SA and RLR
modes in the ITB analysis, as one supplements the other. The two models were embedded in the
Engineering Machine-learning Automation Platform (EMAP), a cloud-based platform developed
by the authors. Rapid analysis through applying both the rule-based and AI-based automatic ITB
analysis technology can contribute to securing timeliness for risk response and supplement possible
human mistakes in the bidding stage.

Keywords: AI; EPC contract risk extraction; NLP; ontological semantic model; EPC contract lexicon;
deontic logic; bi-LSTM; risk level ranking; digital transformation

1. Introduction

The lump sum turn key (LSTK) contract for engineering, procurement, and con-
struction (EPC) projects is a typical contract type used in large-scale and complex plant
projects [1]. The EPC plant project combines manufacturing and services such as knowledge
service, design, equipment, and construction. In addition, it is a complex industry with
various front and back sectors. Furthermore, it includes global supply chains throughout
the entire cycle, from bidding to maintenance [2]. In particular, the LSTK contract, in
which the EPC contractor bears all liabilities related to design, purchase, construction, and
commissioning, is an unbalanced contract as it pays more risks to the EPC contractor due
to the increase in complexity when the size of the project expands [1]. Overseas EPC plant
projects of Korean companies have been growing in earnest since the mid-2000s, and the
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number of orders has continued to increase due to market expansion [3]. However, the
need to improve project risk management emerged as the EPC plant industry experienced
an earnings shock, such as a decline in cut yields due to a decrease in oil prices. The
development of intelligent information technology in the Fourth Industrial Revolution is
currently evolving into the digital transformation of all industries. Thus, it is required to
increase productivity and strengthen competitiveness using convergence technology to
respond to the EPC business environment that is becoming more extensive and complex.
Accordingly, the authors’ research team considered applying artificial intelligence (AI)
technology to manage the risk of bidding documents in the bidding stage of the project.

Invitation to bid (ITB), contract, and claim, mainly used during the EPC project, are text-
based unstructured data that describe the client’s requirements and significant contractual
issues. Furthermore, failure to adequately review the risks of ITB in the bidding stage may
result in future disputes. Nevertheless, EPC contractors struggle with ITB analysis and
detection of risk clauses due to the large volume of documents, tight schedules, and lack
of experienced practitioners during the bidding phase. To this end, research on a system
that can analyze bidding documents, especially ITB risk factors, is required at the project
bidding stage. It is necessary to convert text data in natural language form into a script that
the computer recognizes. In addition, there were not many cases of NLP and AI in the EPC
industry compared to other fields, such as medicine; therefore, it is relatively incomplete.
Since EPC project documents consist of a large portion of unstructured text data, there
is ample space for the NLP application. NLP is a branch of AI that utilizes AI to enable
computers to process natural language text [4]. This paper explores a novel approach to
automating risk analysis of EPC contracts and computational developments in NLP.

The purpose of the study is to effectively analyze a vast amount of ITB documents in a
short period and reduce the uncertainty of decision-making based on human experience
and judgment. In addition, it is aimed to support the quick decision-making of EPC
contractors and enhance competitiveness by automatically analyzing the critical risks of
the ITB in the bidding stage of the EPC project. In this paper, a novel framework of the
NLP-based semantic analysis (SA) model and the bi-directional long short-term memory
(bi-LSTM) method-based risk level ranking (RLR) model is proposed to analyze the contract
risk clause of EPC ITB automatically.

The proposed SA model is an approach that applies the EPC contract lexicon to
SVO tuples to develop semantic rules. Then, it extracts risks according to whether the
analysis target sentence matches the rules. This study applied the ontology-based seman-
tic information extraction (IE) technique, which maps heterogeneous contract clauses to
ontology-based lexicons. Ontology expresses the relationship between objects in a form
that a computer can process, and by linking domain knowledge, it becomes the basis for
developing semantic rules. In ontology-based semantic IE, the lexicon configuration is
significant because it determines the risk clauses by considering the semantic relationship
of sentence elements based on the information stored in the lexicon, rather than using a
simple keyword search method. Therefore, ontology-based semantic IE performs better
than syntactic IE [5]. The EPC contract lexicon was developed along with EPC contract
experts through this study. In addition, a PDF structuralization module that recognizes
and formalizes text data in documents separately was designed to improve the accuracy of
text data analysis. The RLR model was created to address the issue of using the bi-LSTM
algorithm, check the risk of each sentence in the ITB, and classify the risk class. Further-
more, the RLR model classifies and extracts each sentence of the EPC contract document
into five levels according to the degree of risk. Moreover, a dataset for model training was
developed, and hyperparameters were optimized to maximize model performance.

This paper consists of eight sections. Section 1 includes the background and the
necessity of the study. The prior research review on knowledge-based risk extraction,
contract analysis using AI, and text classification is in Section 2. Section 3 describes the
overall architecture and process of the SA and RLR models. Data collection and data
conversion for analysis are shown in Section 4. Sections 5 and 6 are the core of this paper, as
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they illustrate the development of EPC contract lexicon, introduce the semantic rules for the
SA model, and explain the RLR model using bi-LSTM. In addition, the sections discuss the
SA and RLR model development, model testing with actual data, and validation. Section 7
analyzes the system application of the developed model, while Section 8 describes the
conclusion and implications of this paper. Additionally, Section 8 discusses the limitations
and future research directions. In essence, it is expected that rapid risk analysis through
AI-based automatic ITB analysis technology will secure timeliness for EPC project bidding
risk response.

2. Literature Review

Previous studies reviewed three aspects: (1) a knowledge-based risk extraction method
in a construction project, (2) automatic extraction of contract risk by applying AI technology
to an EPC project, and (3) text classification. Although this study targets the EPC plant
project, the prior research also included the construction field.

2.1. Knowledge-Based Risk Extraction for EPC Projects

Ebrahimnejada et al. [6] proposed the extended VIKOR method based on the fuzzy
set theory as a new risk evaluation approach in large-scale projects. They applied it to
the Iranian power plant project to compare the differences with the traditional version.
Hung and Wang [7] conducted a study to identify the main risk factors that cause delays
in hydropower construction projects in Vietnam and analyze the degree of impact of each
risk factor on construction. Jahantigh and Malmir [8] identified, evaluated, and prioritized
significant financial risks of EPC projects in terms of national development in developing
countries. Furthermore, their work was based on the fuzzy TOPSIS model and they
applied the refinery project as a case study. Kim et al. [9] developed the Detail Engineering
Completion Rating Index System (DECRIS) that minimizes the rework of EPC contractors
and supports schedule optimization for offshore EPC projects. This model improved
existing theories, such as the Project Definition Rating Index (PDRI) and front end loading
(FEL). Their study verified the effect of schedule and cost through 13 megaprojects. Kabirifar
and Mojtahedi [10] studied the most critical factors in EPC project execution by applying
the TOPSIS method to a large-scale residential construction project in Iran. In addition,
they derived that procurement is the most vital risk factor. Gunduz and Almuajebh [11]
ranked 40 critical success factors (CSFs) after reviewing the literature on CSFs considering
stakeholder impacts in construction projects. Their collected data were analyzed using
the relative importance index (RII) and analytic hierarchy process (AHP) method with
Saaty random index. Koulinas et al. [12] proposed a simulation-based approach to estimate
the project schedule’s delay risk and predict in-time project completion. This approach,
implemented through a hotel renovation project, showed better uncertainty expression and
superior predictions in comparison to the classic PERT method when estimating budget and
time-critical overruns. Okudan et al. [13] developed a knowledge-based risk management
tool (namely, CBLisk) using case-based reasoning (CBR). As a web-based tool, this system is
characterized by applying the project similarity list in the form of fuzzy linguistic variables
for effective case search.

2.2. Automatic Extraction of Contract Risks Using AI Technology in EPC Projects

In recent years, research on extracting contract risk from legal documents has been
actively conducted by applying AI technology. Surden [14] studied the method of represent-
ing specific contractual obligations in computer data for financial contracts, such as stock
option contracts. Automated manual comparison has significantly reduced transaction
costs associated with contract monitoring compared to traditional written contracts as it ap-
plies a technology that transforms specific contract terms into a set of computer-processable
rules. In 2018, LawGeex [15] collaborated with 20 experienced lawyers educated in the
United States to conduct a study of a contract review platform developed with the AI
application. The study, which looked at non-disclosure agreements (NDAs), showed that
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AI was 94 percent accurate compared to experienced lawyers, who were 85 percent ac-
curate. Their study improved the quality of legal human resources through faster and
more reliable contract management. Cummins and Clack [16] reviewed the concept of
“computable contracts”, which both humans and computers can understand as the con-
cept exists in text form in natural language. Furthermore, they proposed an integrated
framework of various technologies and approaches to model their concepts. Dixon Jr. [17]
described the application cases of various AI technologies used in the legal field, such
as crime prediction, prevention, detection, and contract drafting and review. Clack [18]
studied the problems of converting natural language into computer code that occurred
when developing a “smart legal contract”, which automates legal contracts using computer
technology. His study explained the importance of language design in smart contracts, such
as computable language, natural language, and the meaning of the language expression.
Salama and El-Gohary [19] studied an automated compliance-checking model that applied
deontic logic to the construction domain.

EPC documents consist of a significant portion of text-based unstructured data, while
NLP technology is mainly used for text information extraction and retrieval. NLP is an
AI-related field of human–computer interaction that enables a computer to interpret human
language through machine learning [20]. Zhang and El-Gohary [21] presented a semantic
rule-based NLP approach using information extraction (IE) from complex construction
regulations. Their study was meaningful as it allowed an advancement in the existing
method of selectively extracting only some information from documents. Williams and
Gong [22] proposed a risk model to predict cost overruns using data-mining and classifi-
cation algorithms in bidding documents for construction projects. However, there was a
limitation in analyzing only simple keyword-oriented text data, such as project summary in-
formation for text analysis. Lee and Yi [23] proposed a bidding risk prediction model using
construction project bidding information text mining. However, there was no quantitative
explanation of how much the cost should reflect. Zoua et al. [24] proposed an approach that
combines two NLP techniques, a vector space model (VSM) and semantic query expansion,
to improve search efficiency for accident cases in a construction project. As a result of the
study, the problem of semantic similarity remains a significant challenge. Lee et al. [25]
proposed a contract risk extraction model for construction projects by applying NLP’s
automatic text analysis method to the Fédération Internationale Des Ingénieurs-Conseils
(FIDIC) Redbook. Their study showed the performance of extracting only about 1.2 percent
of the whole sentence as a risk, and their model cannot be applied to other types of contracts
other than FIDIC-based, such as offshore plants. Moon et al. [26] proposed an information
extraction framework that used Word2Vec and named entity recognition (NER) to develop
an automatic review model for construction specifications when bidding for infrastructure
projects. Their model targeted only the text data of the construction specification document
and it could not analyze the text data shown in the tables or drawings included in the doc-
ument. Choi et al. [27] developed the Engineering Machine Learning Automation Platform
(EMAP). This integrated platform supports decision-making by applying AI and machine
learning (ML) algorithms based on data generated throughout the EPC project cycle. Their
study is meaningful because it is the first integrated platform for risk extraction of the
entire EPC project life cycle. Choi et al. [28] developed a model for checking the presence
of a risk clause in an EPC contract using NER and a phrase-matcher. Park et al. studied an
ML-based model to extract technical risks from EPC technical specification documents [29].
Choi et al. [27] and Park et al. [29] were interrelated as they created the parts of the sub-
element constituting the EMAP system. Fantoni et al. [30] utilized state-of-the-art computer
language tools with an extensive knowledge base to automatically detect, extract, split, and
assign information from technical documents when tendering for a railway project. The
implementation of the methodology was utilized during a high-speed train project.
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2.3. Text Classification

Text classification classifies text data into meaningful categorical classes and is one
of the leading research areas of NLP [31]. Traditional text classification methods include
dictionary-based and basic machine learning methods [31]. Since the 2000s, it has been re-
placed by deep learning such as recurrent neural network (RNN), long short-term memory
(LSTM), and convolutional neural network (CNN) [32]. Currently, a more powerful text
classification technique, such as BERT, has emerged [33]. RNN is one of the neural network
architectures used for text mining and classification. Additionally, RNN is a kind of artificial
neural network in which directed edges connect hidden nodes to form a directed cycle [34].
Furthermore, it is suitable for processing time-series data that appear sequentially, such
as speech and text [35]. However, RNNs have a problem of long-term dependencies in
which past learning results disappear. Thus, LSTM was designed to overcome this issue
of RNNs [36,37]. The LSTM model proposed by Hochreiter and Schmidhuber [37] is in-
ternally controlled by the gating mechanism called input gate, output gate, and forget
gate. By improving the long-term dependency problem of RNN, it processes massive data
such as time-series data without any problem. However, the unidirectional LSTM has the
disadvantage of preserving only past information [38]. Schuster and Paliwal [38] proposed
a bi-LSTM model that extends the unidirectional LSTM through introducing a second
hidden layer to compensate for this problem of LSTM. Bi-LSTM uses LSTM cells in both
directions, therefore past and future information can be exploited [39]. In addition, it is
mainly used for text classification due to its excellent performance on sequential modeling
problems [33]. Li et al. [40] reviewed text classification methods from 1961 to 2021 and
created a taxonomy for text classification tasks from traditional models to deep learning.
They also introduced the datasets with a summary table and provided the quantitative
results of the leading models. Minaee et al. [41] provided a comprehensive review of
deep-learning-based models for text classification developed in recent years and discussed
their technical contributions, similarities, and strengths. They also explained a summary of
more than 40 popular datasets for text classification.

The research that analyzes the risks of EPC contracts by applying AI technology is
relatively insufficient. As a result of the review of previous studies, a majority of the
research is focused on construction projects. In addition, most studies have selected and
analyzed either rule-based or training-based approaches. However, research that applies
both techniques to contract analysis is lacking. This study automatically extracts the
contract risk of the EPC contract document by using the rule-based approach of NLP. In
addition, it is a study on a training-based method of deep learning that ranks the risk level
of contract clauses in the ITB by applying the text classification technique of bi-LSTM.

3. Research Framework and Process
3.1. Model Framework and Development Process

There are two main types of approaches used in NLP: rule-based and training-
based [42]. This study applied both rule-based and training-based methods. The rule-based
approach uses manually coded rules for text processing. Although it requires a large
amount of human effort, it tends to show higher performance than training-based mod-
els [42]. The training-based approach is to learn a text processing model through an ML
algorithm so that the machine can understand the meaning of the text expressed in natural
language. Recently, the proportion of training-based methods has gradually increased.
Furthermore, the SA model was developed by applying a rule-based approach, while the
RLR model is training-based and applies the bi-LSTM.

The SA model uses NLP to extract risk clauses that are not found by keyword search
through two steps. First, the risk clause is extracted by applying the relationship of the
lexicon and subject–verb–object (SVO) tuples. Second, it utilizes deontic logic to formulate
the extracted risk clause into obligation, permission, and forbidden. The SA model was
developed by a rule-based approach and is expected to have high performance. When
applying the rule-based method, ITB composed of a proper sentence shows higher sentence
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extraction results than informal sentences such as blogs. The RLR model is classified into
five levels, according to the degree of risk, by applying bi-LSTM. This training-based model
developed a training dataset and was embedded as a sub-element of the EMAP system, an
integrated platform. Figure 1 below is the overall architecture and development procedure
of the SA model and RLR model.

Figure 1. The overall architecture of the rule-based SA model and training-based RLR model.

3.2. Research Scope and Algorithm Development Environments

The scope of this study was limited as follows. First, this study analyzes the critical
risk clauses of the EPC ITB to support the quick and accurate decision-making of the
EPC contractor. Second, the subject of this study was restricted to contract documents for
onshore and offshore plants of the EPC project. Third, the contract risk defined in this
study was set as the key clauses to be confirmed by the EPC contractor in the bidding
or contract stage. Fourth, this study applied an AI technique to extract information from
contracts to analyze text data. In particular, an ontology-based NLP approach and bi-LSTM
of deep-learning were used to propose an automatic risk extraction model for ITB. Fifth,
this study does not include the documents generated during the design, procurement, and
construction stages of the EPC project. In addition, only contract documents, excluding
technical documents, were analyzed among ITB. Sixth, unstructured data such as drawings,
tables, images, and videos were excluded. Moreover, only text data among unstructured
data were analyzed. These SA and RLR models were applied with NLP and bi-LSTM
algorithms, respectively (Table 1). The SA model adapted the NLP technique and spaCy’s
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2.3.1 library, while the bi-LSTM, Keras 2.6.0, and Tensorflow 2.6.0 libraries were used in
the RLR model. The entire procedure was performed in Windows 10 OS and Python
3.7 environments. The system configuration and package information are shown in Table 1.

Table 1. Summary of algorithm package information.

Module Semantic Analysis Risk Level Ranking

AI technology NLP Bi-LSTM
Libraries spaCy’s 2.3.1 Keras 2.6.0, Tensorflow 2.6.0
Language Python 3.7.7 Python 3.7.11
Input data EPC Contracts EPC contracts

Operation system Window 10 Window 10

Purpose
To extract the risk clauses

using the semantic rules based
on the lexicon

To classify each sentence of
the EPC contracts into five

levels by risk degree

4. Data Collection and Conversion
4.1. Data Collection

Data were collected for contracts with legal contents to extract the risk of EPC contracts.
Among EPC projects ordered over the past 18 years (2003–2020) in North Sea, Australia,
Middle East, South and North America, and Africa—eight onshore projects, ten offshore
projects, and three Fédération Internationale Des Ingénieurs-Conseils (FIDIC) contracts—a
total of 21 contract documents were collected. After converting the data through the PDF
structuralization module, the collected contract documents were used for risk analysis.
Table 2 summarizes and lists the EPC contracts collected for this study.

Table 2. List of the collected ITBs from EPC projects and FIDIC contracts.

Category No. Project Type Location Year

1 Refinery Kuwait 2005
2 Coal-fired Power Plant Chile 2007
3 Refinery Peru 2008

Onshore 4 Combined Cycle Power Plant Kuwait 2008
5 Petrochemical Saudi Arabia 2011
6 LNG Terminal USA 2012
7 Thermal Power Plant Bangladesh 2015
8 Combined Cycle Power Plant Georgia 2020

9 FPSO 1 Nigeria 2003
10 Drillship For Chartering 2007
11 FPSO Angola 2009
12 FLNG 2 Brazil 2010
13 FPSO Angola 2011

Offshore 14 FPSO Nigeria 2012
15 FPSO Australia 2012
16 TLP 3 Congo 2012
17 Semi-submersible Gulf of Mexico (US) 2012
18 Fixed Platform Norway 2012

19 FIDIC Red 2017 2017

FIDIC 4 20 FIDIC Silver 2017 Standard form of
Contract 2017

21 FIDIC Yellow 2017 2017
1 FPSO: floating production storage and offloading. 2 FLNG: floating liquefied natural gas. 3 TLP: tension leg
platform. 4 FIDIC: Fédération Internationale Des Ingénieurs-Conseils.

4.2. Data Conversion through PDF Structuralization

In order to analyze a document composed of text, such as a contract, it is necessary to
delete unnecessary ITB information and structure the data [25]. In this study, a separate



Sustainability 2022, 14, 6938 8 of 32

module was developed to extract data for analysis from portable document format (PDF).
Furthermore, the documents were composed of text and the module was named PDF
structuralization. PDF structuralization is used for removing noise data such as headers,
footers, page numbers, and watermarks that are not required for analysis from documents
and converting text data into a data frame with sentence units. The data extracted in PDF
format were then used for analysis. This study performed data conversion through PDF
format before SA and RLR analysis. Figure 2 shows the process of extracting text data from
a PDF document.

Figure 2. Text data extraction process from PDF documents using PDF structuralization module.

The process of extracting text from PDF files was divided into two methods: PDF
parser and optical character recognition (OCR). The easy-to-recognize parser is used first,
while the OCR is used for text data that the Parser cannot decipher. PDF parser is a
compiler that builds in the PDF file structure and allows internalized data to be imported.
Through parser, PDF metadata or text data can be read into a computer [43]. OCR is a
technology that reads text engraved on a document using light [44]. It extracts text from
a scanned image through an OCR character recognition and is utilized for ITB analysis.
Furthermore, the structuralized text data were converted into Excel or CSV format for DB.
Figure 3 showcases the result of the structuralization of PDF documents in CSV format
using PDF parser.

Figure 3. Example of text data conversion using PDF structuralization (PDF to CSV). (a) Original text
contents from the ITB (.PDF); (b) automatically extracted text contents (.CSV).
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The parser technique was used to define relationships and identify the composition of
sentences in text data. The position code shown in Figure 3b is a number for tracking the
table of contents. The position name corresponds to the table of contents in the document
as well. This structuralization makes it easy to find the affiliation of each sentence. The
data conversion result was automatically generated as a CSV file and was used as input
data for ITB analysis.

5. Semantic Analysis Model

In recent years, research on information extraction of construction contracts using
AI has been actively conducted. Various studies applying the NLP technique have been
attempted, such as a study to check the presence or absence of a risk clause using a phrase-
matcher [28] and an NER model that finds similar texts through training [26]. A limitation
of the NER study is that an error in similar phrase tagging occurs in the case of a label
with insufficient learning due to the lack of a training dataset. Most of the risk clauses in
the contract can be extracted by keyword search through phrase-matcher. However, risk
clauses cannot be extracted through a simple keyword search, such as the structuralization
Fail-Safe clause. Thus, the SA model is used to extract specific contract clauses that are not
extracted with NER or phrase-matcher. This study proposes an ontology-based lexicon and
semantic rule mapping approach. The SA model is a method of automatically extracting
the key risk clauses based on NLP rules and the knowledge of the EPC contract. Although
this model has low efficiency in analysis time compared to ML, it has an advantage in
higher information extraction accuracy, as it applies human knowledge to the system [21].

The model also provides a high-level description of the knowledge base (KB), the
lexicon, that we built for risk extraction. In this study, the lexicon classifies the contract
clauses of the EPC contract and shows the relationship of subsumptions with related
terms. In addition, the SA model follows the rule-based NLP pipeline. Text data that
have undergone preprocessing is in the order of syntactic analysis, EPC contract lexicon
development, semantic rule development, rule matching, risk clause extraction, deontic
formalization, and classification. Figure 4 illustrates an analysis procedure of the SA model
that extracts contract risk based on this approach.

Figure 4. The SA model algorithm and implementation process.

As shown in Figure 4, the raw data of the ITB text were converted into data that
can be analyzed through the PDF structuralization module. For the structured text data,
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preprocessing was performed, such as text tokenization, lemmatization, POS tagging, and
dependency parsing. SVO tuples in the sentence were extracted by performing syntactic
analysis on the preprocessed data to understand the sentence’s grammatical structure.
We developed a semantic rule by applying the EPC contract lexicon to the extracted SVO
tuples and removed the risk according to whether the rule matched. Then, the procedure
of formalizing the extracted risk clause resulted in obligation, permission, and forbidden,
which was determined by using deontic logic.

5.1. Text Data Preprocessing

Text data that have completed PDF structuralization cannot be used directly for
syntactic analysis. A separate preprocessing was required for the basic structure analysis
of sentences to perform syntactic analysis [20,25]. Preprocessing techniques for text data
consist of various computing techniques such as tokenization and stop word removal [45].
The purpose of preprocessing for syntactic analysis is to refine the text data converted
through the PDF structuralization module into the smallest sentence unit. Preprocessing
such as text tokenization, lemmatization, POS tagging, and dependency parsing was
performed. The above process used the programming language Python and spaCy, an
open-source NLP library.

Tokenization is the division of the text into meaningful segments, which are called
tokens [46]. Furthermore, it is a type of document segmentation in which a given text
is divided into smaller and more specific informational segments. It not only divides a
document into paragraphs but also divides a paragraph into sentences, a sentence into
phrases (or clauses), and a phrase into tokens (words) and punctuation marks, which are
all types of segmentation [5]. In linguistics, a lemma means the original form of a specific
word (e.g., the original form be of is and are). Lemmatization means determining and
normalizing the lemma of words inflected in various forms in a sentence [5]. Lee et al. [25]
applied lemmatization to reduce sentence noise using SyntaxNet. However, unlike previous
studies, this study, using spaCy’s NLP model, identified each word’s part of speech (POS)
through an artificial neural network model when performing lemmatization. Then, the
lemma was restored based on that information [47].

After tokenization, spaCy predicts the POS of each word through an artificial neural
network [48]. The NLP model provided by spaCy uses an artificial neural network trained
to predict the correct POS of each word in the context based on numerous sentence data.
As a result, one word is assigned one POS information. When analyzing POS in English,
spaCy utilizes the Universal Dependencies v2 POS tag set applied, regardless of language,
and the Onto-Notes 5 version of the Penn Treebank tag set specialized for English. In this
study, the Universal POS tag was applied, and when difficulties arise, OntoNote 5 version
Penn treebank tag was used additionally.

Dependency parsing is necessary for preprocessing syntactic analysis. The syntax
analysis method uses dependency parsing and phrase structure parsing [49]. Dependency
parsing analyzes the relationship and dependency of POS tagged words [5]. In addition, it
analyzes the role of each word in the sentence and receives information about it. This study
used dependency parsing, in which word order is relatively free, and subject or object can
be omitted. In spaCy’s basic pipeline, when tokenizer and POS tagging are completed,
syntactic dependency, which is syntactic dependence between each word in a sentence,
can be identified through another artificial neural network different from POS [50]. Since
the dependency relationship between words is not determined by one scheme, clearNLP’s
CLEAR Style was used to classify English grammatical dependence [51]. Although the
above procedure yields syntactic analysis results similar to human interpretation, continu-
ous efforts to improve accuracy are required.

5.2. Syntactic Analysis with Sentence Segmentation

Based on the depth and level of analysis, NLP techniques can be classified into lexical,
syntactic, and semantic analysis [52]. Syntactic analysis is a sentence-level analysis that
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identifies the grammatical relationship of each word in a sentence [52]. The SA model
requires the understanding and analysis of the entire context of a sentence rather than
extracting only a few risk words from ITB. As a result of dependency parsing, the primary
dependency relationship of a sentence can be identified, but the analysis of complex sen-
tences such as ITB has limitations. Therefore, this study applied a syntactic analysis method
to define the subject, verb, and object as information extraction factors to understand the
semantic relationship between each word in a sentence.

In terms of sentence structure, there are short sentences with only one subject, verb,
and object; however, most of the sentences in ITB documents are complex with a parallel
structure. Given such a complex sentence, if it is not divided into several simple sentences
with one verb and one object, the accuracy of SVO-based grammatical analysis is lowered.
To reduce the complexity, sentence segmentation was performed before syntactic analysis
to separate and simplify complex sentences. Then the subject, verb, object, and modifiers
were separated from the isolated simple sentences. Since it is unrealistic to investigate
all grammars in syntactic analysis, this study was limited to finding the main elements
of a sentence, such as the subject, verb, and object. Furthermore, this study determines
modifiers and clauses that modify each element.

The sentence segmentation rules used various logic based on “if–then”. Additionally,
regular expressions are utilized to separate with delimiters such as (a), (b), (c), or (i), (ii), (iii):
*\({0,1}[a-h]\) or *\((?!\))(?:m{0,4}(?:cm|cd|d?c{0,3})(?:xc|xl|l?x{0,3}) (?:ix|iv|v?i{0,3}))(?<!\()\).

For the data that have completed sentence segmentation, the SVO is separated to
identify the related entities in the sentence through dependency parsing. Afterwards,
all elements of the sentence are defined to be assigned to at least one of the SVOs. In
particular, the principal and conditional clause SVO were extracted for sentences containing
conditional clauses such as if and unless, which are often used in contracts. If the main
clause and the conditional clause were analyzed without separation, it will result in an
error occurring when tagging the verb and object of the if clause.

In this paper, the Fail-Safe clause related to liquidated damages (LD) in the EPC
contract is set as a proof of concept (POC) for applying the SA model. LD is one of the
most severe risks in EPC contracts because it is a crucial contractual clause in which the
EPC contractor promises to compensate the owner for losses if the contractually promised
delivery date or performance is not met [1]. Among them, the Fail-Safe clause is the
owner’s two-tier backstop if the LD fails to work correctly, and it is one of the extremely
dangerous clauses for the contractor. What makes the Fail-Safe clause more severe for
the contractor is that the word Fail-Safe does not exist in the ITB; therefore, it cannot be
found through a simple keyword search. This paper focused on extracting risk clauses that
could not be found through keyword search and used the Fail-Safe clause as an example.
In addition, it was applied as a case to the lexicon development in Chapter 5.3 and the
semantic rule development in Chapter 5.4. The following is an example of the original
sentence of Fail-Safe shown in the actual ITB and the rules used to separate the sentences.

[Original sentence]
If liquidated damages are found not to be payable or the Articles in this Contract in relation to

liquidated damages are found to be invalid or unenforceable for any reason, then the Parties agree
that Contractor’s liability to Company will instead be for general damages at law for Contractor’s
failure to comply with the relevant obligation.

[Sentence segmentation rules]
If
If-clause [If <subject> + (<MD>) + <verb> + <object>] + Main-clause [<subject 1> + (i)

+ <verb 1> + <object 1>]
Then,
<subject> + (<MD>) + <verb> + <object>, <subject 1> + <verb 1> + <object 1>
When the syntactic analysis is completed, each contract sentence is divided into key

elements such as subject, verb, object, and modifiers. Figure 5 shows the results of the
original PoC sentences and extracted SVO tuples separated by syntactic analysis.
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Figure 5. The result of sentence segmentation and SVO tuples applied for syntactic analysis.

5.3. Ontology-Based EPC Contract Lexicon
5.3.1. EPC Contract Taxonomy

Taxonomy is a classification system that classifies structural relationships between
concepts used in a specific domain according to a hierarchical structure [53]. Research on
taxonomy and lexicon for ontology-based construction contracts have only been studied
until the taxonomy development [53]. Alternatively, the glossary was defined by adding the
vocabulary used to the existing lexical dictionary [25]. These prior studies on construction
contracts are not taxonomy through professional analysis. Therefore, when constructing a
lexicon, the vocabulary is limited due to the lack of lexical analysis by domain. To overcome
this limitation, we first organized the EPC contract taxonomy through a workshop targeting
subject matter experts (SMEs) with 10 to 20 years of experience in the EPC field. The
EPC contract taxonomy in this study was classified into seven categories beneath Class 1
(Figure 6).

Figure 6. Class 1 of the EPC contract taxonomy for the EPC contract lexicon.

Seven SMEs participated in the workshop, consisting of EPC executives, academia, and
EPC lawyers. These SMEs also participated in developing a gold standard for verification
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of the SA model. Details for SMEs are described in the model test. A total of seven groups
were set as Class 1, including:

1. Project information including the subject and general matters of the contract.
2. Project requirement for contractual requirements.
3. Project liabilities for contractor’s liability and damage compensation.
4. Project payment for progress.
5. Variations including construction changes.
6. Project rights and termination of contracts.
7. Legal process, which includes disputes between contractors and owners.

5.3.2. Development of EPC Contract Lexicon

For the EPC contract taxonomy, Class 4 was set as the lowest level. A lexical dictionary
was developed among them by finding a synonym of the word corresponding to the lowest
level. Then, the lexicon was defined by connecting the lowest level to the lexical dictionary.
The EPC contract lexicon consists of 32 items and 79 details in this study. Numeric terms
are excluded from this lexicon because their expression is infinite.

The EPC contract lexicon developed from this study is to be optimized for NLP appli-
cation through the analyzation of the semantic correlation between contract phrases. EPC
contract experts verified the developed lexicon. As a result, compared to the existing con-
struction glossary, a highly detailed lexicon was designed and supported a more accurate
ITB risk extraction model. In particular, it is significant as it was the first to systematize the
entire EPC contract for AI applications. Table 3 is a part of the EPC contract lexicon that
was newly developed through this study. It shows the terms related to Fail-Safe set by PoC
which belong within the taxonomy.

Table 3. An example of EPC contract lexicon based on the EPC contract taxonomy liquidated damages
and fail-safe.

Class 1 Class 2 Class 3 Class 4 Terms

Liquidated
Damages General

Liquidated damages, LD, reasonable and
genuine pre-estimate of loss, damages for any
loss, pre-estimate of loss, not a penalty, not as
a penalty, not meet, fail to complete, not ready

for delivery

Direct Damages Liquidated
Damages

Delay Liquidated
Damages

Delay liquidated damages, DLD, liquidated
damages for delay, delay damages, liquidated
damages for such delay, liquidated damages

for any delay, liquidated damages for
late completion

Project Liabilities
Performance
Liquidated
Damages

Performance liquidated damages,
performance of the plant, PLD, liquidated

damages for insufficient failure of the plant to
achieve the performance tests, performance
liquidated damages, damages for failure to

pass tests on completion

Remedy

Exclusive
Remedy

Exclusive remedy, sole and exclusive remedy,
sole and exclusive financial remedy, remedy,
remedies, obligation to complete the work

Fail Safe Invalid, unenforceable, validity, enforceability,
no challenge, remit, refund, reimburse

5.4. Semantic Analysis Modeling Based on Rules

Semantic analysis is a method to understand the meaning of language. It is also used
to grasp the contextual meaning and morphological elements of a natural language [42].
The SA model is an approach that maps SVO tuples extracted from syntactic analysis and
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the lexicon. Syntactic analysis and EPC contract lexicon alone have limitations in extracting
risk sentences; therefore, a semantic rule was developed. The semantic rule sets the subject,
verb, and object elements to match the lexicon class. Then, it defines the class using various
aspects of domain ontology (i.e., concepts and attributes). Applying these rules makes it
possible to grasp the sentence’s contextual meaning and identify the correlated risks. The
SA model was developed in the following two steps.

First, we developed semantic grammars to match SVO tuples and contract lexicons.
A semantic grammar is required to make a semantic rule by matching each sentence’s

SVO tuples and lexicons. Additionally, the semantic grammar in this study is a standard
for applying lexicon and corresponds to the SVO when developing semantic rules.

Semantic grammar uses the following regular expressions:

• <Class name>: True if there is a term included in the class of lexicon (e.g., <Liquidated
Damages>).

• ( ): Give preference to operations in parentheses (e.g., (<employer-side> or <contractor-
side>) and “contract”).

• or: True if any of the preceding and following elements is True (e.g., <contractor-side>
or <both party>).

• and: True only when both preceding and following elements are True (e.g., <Liqui-
dated Damages> and <Exclusive Remedy>).

• <POS: XXX>: True if there is a word corresponding to the part-of-speech of XXX (e.g.,
<POS: PRON>).

Next, we developed a semantic rule that matches the lexicon’s subject, verb, and
object by applying the regular expression of the semantic grammar. The general form of a
semantic rule is as follows: IF (Precondition) THEN (Postcondition).

The precondition (v) indicates the conditions for rule application. The specific class
name corresponding to the subject, verb, and object (SVO) is designated to determine the
risk. The precondition of the rule is based on the comparison of specific terms specified
by SVO and lexicon. As a result, the postcondition extracts only cases where the SVO and
the corresponding term match the class to which it belongs. The following are examples of
various semantic rules for Fail-Safe sentence extraction.

• Example 1 [S1-1]:
IF,
Subject == <Liquidated Damages>.
Verb == <Liquidated Damages> or (“not” and <Legal-action>).
Object == <Fail-Safe> or <General Damages>.
THEN,
“Fail-Safe” clause is extracted.

In the above Example 1 matching rule, the subject is a term included in the liquidated
damages class. While the verb consists of the liquidated damages class and legal-action
class. Furthermore, the word “not” is included as well in the sentence. If the Fail-Safe class
or General Damages class is included in the object; then the rule is to extract the sentence as
a Fail-Safe clause. Here, subject, verb, and object do not necessarily all exist in the semantic
rule. The rule is established even if only some of the SVOs are present.

• Example 2 [S1-1]:
IF,
Subject == <Liquidated Damages>.
Verb == <Liquidated Damages> or (“not” and <Legal-action>) or <Legal-action>).
Object == <Fail Safe> or <General Damages>.
THEN,
“Fail-Safe” clause is extracted.

• Example 3 [S1-2]:
IF,
Subject == <Both-party>.
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Verb == <Liquidated Damages> or <Legal-action>.
Object == <Fail-Safe> or <General Damages>.
THEN,
“Fail-Safe” clause is extracted.

Each sentence may have simple or complex semantic matching rules. Based on
Examples 2 and 3 above, even for one sentence, one or several semantic matching rules can
be defined according to SVO tuples elements’ diversity. We developed 79 lexicon classes
and 87 corresponding semantic rules through this study.

5.5. Risk Clauses Extraction

For each sentence of ITB, the lexicon item corresponding to the SVO tuples of the
semantic rule is checked. If the lexicon item in each SVO tuples element is not registered
in the lexicon, then the semantic rule is not applied. The result of checking the lexicon
for each SVO appears as true/false. When the detailed items of each subject, verb, and
object in the semantic rule are all true, the entire rule appears as true; otherwise, it is false.
Taking the above Fail-Safe rule as an example, if the subject has a vocabulary belonging to
liquidated damages class, then the verb will also contain a term belonging to liquidated
damages. If a sentence with words belonging to Fail-Safe class is entered in the object,
the result will appear as true. The semantic rules are sequentially applied to all sentences
during document analysis. If a sentence matches the practice, it is recognized as a risk
clause. Therefore, it requires extraction and needs to be set to the following rule.

5.6. Deontic Classification

Deontology is a theory about rights and obligations. In addition, deontic logic (DL) is
a branch of modal logic dealing with obligations, permissions, and prohibitions [54]. This
section is focused on formalization by applying DL to the risk clauses of the extracted EPC
contract, and the extracted contract clauses are divided into O (obligation), P (permission),
and F (prohibition/forbidden). An off-the-shelf deontic logic reasoner could not be used;
thus, this study utilized DL for the logical formulation of contract risk clauses.

The deontic model helps distinguish between legal contracts and contractual clauses
by evaluating whether a particular action or condition is correct, incorrect, permissible, or
prohibited [54]. Furthermore, the DL uses deontic operators such as O, P, and F to indicate
whether a subject complies with [19].

A deontic rule of this study was classified into four modalities and was matched with
the class of SVO tuples and EPC contract lexicon.

• Agent: the accountable agent, corresponding to the actor in the lexicon (e.g., contractor,
owner).

• Predicate: represent concepts, relations between objects, corresponding to action in
the lexicon (e.g., legal-action, obligated-action, permitted-action, payable-action).

• Topic: the topic it addresses, corresponding to class level 2 in the lexicon (e.g., safety,
environment, cost, quality).

• Object: the object it applies to, corresponding to the class level 3 in the lexicon.

A deontic classification (DC) was used to formalized DL statements based on these
deontic rules and classify them into three types: O, P, and F.

The basic notation of DL is to express the normative form, and it was used in this study
for the logical formulation of contract sentences [55]. Logical formalization means logical
expression through deontic logic. Additionally, DL statements consist of predicates or
functions combined using two types of operators [19]. The DL formalization of this paper
is expressed using two types of operators: deontic operators and first-order logic (FOL)
operators [56]. For example, Pα in deontic operators means that α is a member of permitted
actions. The detailed descriptions of the two types of operators and their representations
are given in Table 4.
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Table 4. Deontic representations with the corresponding descriptions.

Operator Type Deontic
Representation Descriptions Examples

O Obligation ‘Oα’ means α is obligated

Deontic Operators 1 P Permission ‘Pα’ means α is permitted
F Forbidden/Prohibition ‘Fα’ means α is forbidden
I Indifferent ‘Iα’ means α is indifferent

∧ Conjunction ‘A ∧ B’ means A is true and B
is true

First-Order Logic ∨ Disjunction ‘A ∨ B’ means A is true or B
is true

Operators 2 ¬ Negation ‘¬A’ means A is not true

⊃ ⋂
Implication ‘A ⊃ ⋂

B’ means A implies B
(if A is true then B is true)

1 McNamara 2022; 2 Salama and El-Gohary 2013.

In the universe of discourse, true (T) and false (F) can be discriminated according to
the range of a variable. DL statements specify the variables range by using quantifiers (i.e.,
∀ and ∃) [19]. A universal quantifier (∀ or for all) asserts true (T) only if all instances of a
variable are valid, whereas an existential quantifier (∃ or exists) evaluates to true (T) if at
least one instance of the variable satisfies true. In addition, logical equivalence is denoted
by ≡. The DL formal representation expressed is based on the quantifier, and two types of
operators for the S1-1 Fail-Safe clause are as follows.

• Deontic formalization for [S1-1]:
∀x, y, z, h (Liquidated Damages (x)
∧ Both-party (y)
∧ Permitted-action (z)
∧ General Damages (h) ⊃ ⋂

P(Fail Safe (z, h))

Deontic formalization supports the reasoning of contract sentences; however, a sys-
tematic deontic reasoner has not yet been developed [55,57]. As an alternative to a deontic
reasoner for classification applying DL, this study proposes a DC approach that converts
DL statements into SPARQL queries, then classifies them into O, P, and F. SPARQL queries
are suitable for extracting risk clauses in contracts because of their capabilities of semantic
understanding and contextual building information in a knowledge base [58]. The DC
approach proposed in this study formalizes the previously developed semantic rules into
DL statements and then converts them into SPARQL queries. In the future, research that
enables direct DL reasoning through an FOL-based reasoner without additional conversion
to SPARQL is required. This study classifies by limiting it to only the obligation sentence.
The following is the expression of SPARQL queries for the S1-1 Fail-Safe clause.

• SPARQL queries for [S1-1]:
SELECT ?x ?y ?z ?h
WHERE {
?x a subject:Liquidated Damages. ?y a subject:Both-party. ?z a predicate:Legal-action.
?h a object: General Damages. FILTER (?z= obligated-action).
}

The SA model proposed uses Python for model implementation, the spaCy library for
risk extraction, and SPARQL queries for deontic classification.

5.7. Implementation and Validation of the SA Model

This study tested using the actual ITB to verify the performance of the SA model.
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5.7.1. Gold Standard and Test Dataset for the SA Model

The extraction accuracy of the SA model was verified by comparing the extraction
results of the automatic extraction model with the “Gold Standard” [42]. The Gold Standard
is a compilation of target information in text sources by experts such as SMEs. It evaluates
a model’s performance and extracts information intuitively constructed by humans [25].
The Gold Standard for this study is a standard manually developed by a group of experts,
not the semiautomatic gold standard of the study by Zhang and El-Gohary [42]. The Gold
Standard was developed through a workshop with a group of SMEs. The SMEs group
consists of seven people with more than 10 to 30 years of experience in the EPC plant field
and are experts in EPC contracts, including EPC executives, academia, and EPC lawyers.
The SMEs analyzed the presence or absence of risks for each contract clause, an affiliation
of risk, and the degree of risk impact through workshops. The taxonomy classification
and the class of the EPC contract lexicon were also set in workshops. The developed
Gold Standard was used to verify the performance of the model by comparing it with the
automatic extraction results of the SA model. Table 5 below summarizes information on
SMEs that participated in developing the gold standard in this study.

Table 5. Information on SMEs that participated in the Gold Standard development.

Expert Code Category Discipline Year of
Experiences Affiliation

A Offshore Contract 32 EPC company
B Offshore Planning 16 EPC company
C Offshore Engineering 18 EPC company
D Onshore/Power plant PM 17 EPC company
E Offshore/Onshore Contract 28 Law firm
F Onshore/Infra PM&IT 22 Academia
G Onshore/Infra PM&IT 24 Academia

For the test of the SA model, four offshore plant contracts, a total of 7119 records
(sentences), were selected as the test dataset and used for model evaluation. The dataset
information for model testing is shown in Table 6.

Table 6. Dataset information for testing risk extraction performance of the SA model.

Dataset
No. Project Name Domain Owner No. of

Records

1 ‘I’ project Offshore FPSO I & T companies consortium 1864
2 ‘C’ project Offshore FPSO T company 1894
3 ‘M’ project Offshore TLP T company 1371
4 ‘P’ project Offshore FLNG P company 1990

Total No. of Records 7119

5.7.2. Test Results and Validation of the SA Model

The SA model was evaluated using the test data, and the results of the model were
compared with the Gold Standard for the model validation. To verify the performance of
the risk clause extraction of the SA model, precision, recall, and F-measure indicators were
applied [24,27,42]. A confusion matrix is used to calculate precision, recall, and F-measure.
Table 7 shows the confusion matrix and the four variables that makeup it: true positive
(TP), false positive (FP), false negative (FN), and true negative (TN).
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Table 7. An evaluation criteria (confusion matrix) for the SA model.

Criteria Type
The Results of The Gold Standard

Positive Negative

The actual Extracted True positive (TP) False negative (FN)

extraction results Not extracted False positive (FP) True negative (TN)

True positive (TP) means that the risk results of both the gold standard and the SA
model are equally extracted as risks in the confusion matrix. False positive (FP) indicates
that a clause that is not an actual risk is extracted as a risk, and false negative (FN) shows
a result that the model did not extract, even though it is a risk clause. True negative (TN)
is a case in which the machine does not extract non-risk clauses and identifies irrelevant
information. TP and TN mean ground truth values, while FP and FN indicate errors due to
incorrect extraction. Utilizing the information from the confusion matrix, the equations for
precision, recall, and F-measure are as follows. PrecisionE is the ratio of the values extracted
correctly divided by the risk from the results extracted through the model. RecallE is the
ratio of the values correctly extracted by the model divided by the total positive results.
Lastly, F-measureE is defined as the harmonic mean between precision and recall. The given
equations are equal to (1), (2), and (3), respectively [24,27,42]:

PrecisionE =
TP

(TP + FP)
× 100% (1)

RecallE =
TP

(TP + FN)
× 100% (2)

F−measureE = 2× (Precision× Recall)
(Precision + Recall)

× 100% (3)

High precision implies that the extraction results of the SA model are highly correlated
with the Gold Standard. High recall illustrates that risk clauses defined by experts in the
Gold Standard are relatively extracted the same as from the model. Table 8 summarizes the
validation results for the SA model.

Table 8. Validation results of the SA model for risk clause extraction.

No. of Extractions Performance

Risk
Extraction TP FP FN TN Precision

(%)
Recall

(%)
F-measure

(%)

765 98 142 6444 88.6 84.3 86.4

The F-measure of the SA model was 86.4 percent, which showed higher risk extraction
performance than the previous study [25]. Of the 7119 sentences, 765 were extracted as
risk sentences (TP). Although 142 is a value extracted as a risk, in actuality it is not a risk
(FP). However, a value of 98 is a risk sentence even though the sentence is not extracted
(FN). The result of extracting non-risk sentences was 6444 (TN). In comparison to the
84.3 percent recall, the precision of 88.6 percent can be interpreted as extracting most of the
risks specified by experts, but not extracting approximately 4 percent.

A high precision value indicates that the results extracted from the model are highly
correlated with sentences confirmed as the risk of the gold standard. A high recall value
means that most of the risk clauses of the gold standard are extracted the same way in the
model. In the results of Table 8, FP and FN show errors in risk clauses extraction. There
were several types of extraction and causes of FN errors in the SA model. When adding a
completely different new sentence type not defined by the semantic rule into the test, the
model will not be able to extract the sentence. Furthermore, when developing a rule for risk
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clauses within the defined data, it is analyzed that the extraction accuracy for the existing
type of sentence is high. However, there are still difficulties in extracting a completely
different new kind of sentence. A case in which risk is incorrectly extracted even though
it is not a risk is called an FP error. When reducing the FP error, the FN error increases,
and conversely, when lowering the FN error, the FP error increases. Number-related terms
were excluded from the lexicon when developing the EPC contract lexicon. This is the
main cause of the lower recall value, and as a result, it is analyzed as a factor affecting the
F-measure.

The SA model proposed a more accurate risk extraction model based on the lexicon
defined by the EPC contract taxonomy to which the ontology concept was applied as the
knowledge base (KB). In particular, the contract clause extraction mechanism of the SA
model provided accurate and advanced performance compared to the poisonous clause’s
detection model proposed by Lee et al. [25]. Compared with the previous study of Lee et al.,
only 1.6% of toxin sentences were extracted out of 708 sentences, resulting in a risk clause
extraction rate of about 12% and a relatively high F-measure. It is interpreted that the cause
is due to detailed lexicon development and improvement of syntax analysis accuracy. In
many NLP studies, the parsing performance deteriorated as the complexity of the sentence
structure increased. Specifically, when the sentence structure is complex, such as in an EPC
contract, there are more errors in parsing than in typical sentences. Incorrect parsing affects
subsequent steps in applying semantic rules, which can directly affect the performance of
risk clause extraction. Syntax analysis of this study using the spaCy library shows a higher
extraction rate and accuracy than the previous study by Lee et al. due to the improvement
of spaCy’s performance. However, parsing of complex sentences still shows somewhat
poor results.

EPC ITB’s automatic risk clause extraction model is a challenging attempt to change
the contract review process performed manually by humans to an AI-based automatic
extraction process. Therefore, continuous improvement is required.

This study measured the performance of deontic classification in terms of accuracy,
and AccuracyDC was calculated using Equation (4) [59].

AccuracyDC =
TP + TN

TP + TN + FP + FN
× 100% (4)

DC’s evaluation data were for one FPSO project’ ITB, and the total number of records
was 1864. Table 9 displays the test results for classifying only DC’s obligation statement.

Table 9. Validation results of the SA model for deontic classification (Class_O).

The Classified Results (Class_O) Performance

Deontic
Classifica-

tion
TP FP FN TN Precision

(%)
Recall

(%)
F-measure

(%)
Accuracy

(%)

572 57 198 1037 90.9 74.3 81.8 86.3

Concerning the performance of DC, we achieved an accuracy of 86.3 percent. These
results showed the effectiveness of our approach in interpreting and classifying contract
clauses. The relatively low recall value (74.3 percent) was analyzed due to errors and
omissions in DL formalization. Another cause of the error is the existence of a syntactic or
grammatical factor that does not correspond to the four modal components of the deontic
rule in the contract sentence. In essence, recall errors may appear due to the omission
of extraction.

The SA model improves accuracy by describing linguistic phenomena through rules;
however, it is impossible to extract all the numerous linguistic phenomena from the usage
of rules. Both the risk clause extraction function and the deontic classification function
have the problem of generating a rule for every sentence in the contract. Since language
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has many exceptional aspects, it is impossible to cover all linguistic phenomena using a
simple rule-based approach. In addition, it is challenging to express the entire sentence
of the contract document as a rule. As a result, it is expected that extraction cannot occur
when a sentence that is not in the rule is inputted.

6. Risk Level Ranking Model
6.1. Preprocessing for RLR Model

ITB sentences that were text data preprocessed before using the RLR model were
converted through the usage of the PDF structuralization module. Preprocessing was
embedded through word embedding after stop-word removal. Word embedding is a
vectorization process that maps a word to a specific R-dimensional vector in NLP analy-
sis [20]. Embedding plays a vital role in NLP because high-quality embeddings increase
the document classification accuracy and learning speed [60].

In this study, the text data preprocessing was performed by applying the Keras frame-
work in the Python library. In addition, the bi-LSTM model, a deep learning model [61],
was implemented and the Keras tokenizer was utilized for word embedding [62]. Keras is a
deep learning framework for Python that makes it convenient to develop and train almost
any deep learning model [63]. Backend engines such as Theano, Google’s Tensorflow, and
Microsoft’s CNTK can be seamlessly integrated with Keras [63]. In this study, Keras is
designed to operate on Tensorflow. An index was assigned to the Keras tokenizer in the
order of the word frequencies. For example, “1” was assigned to the out-of-vocabulary
(OOV). However, this specific vocabulary is not assigned an index. As a preprocessing
for inputting sentences into the artificial neural network, it is converted into an integer
sequence that lists the indexes assigned to the words of each sentence. Furthermore, Keras
embedding is a function that converts an integer sequence into a dense vector of a fixed size
by inputting a vector that has completed one-to-one correspondence with a word through
the Keras tokenizer [61].

6.2. Risk Level Ranking Modeling with Bi-LSTM

The RLR model is a model developed by applying the bi-LSTM algorithm. The model
performs the first classification of ITB sentences according to the presence of risk and
true/false (T/F). Then, it divides the sentences classified as true into five levels. The first
T/F classification is a binary classification that divides the preprocessed ITB sentences
into risky sentences and non-risky sentences. The second classification, risk level, is a
multi-class classification that categorizes the true sentences ranked as a risk in the first
model into five risk levels. Figure 7 showcases the process of the RLR model that classifies
the risk level of sentences by applying the bi-LSTM architecture.

As shown in Figure 7, the trained model for first classification classifies T/F when
inputted to an RLR model that has completed PDF structuralization. Sentences classified as
true are categorized into five risk levels through a trained secondary classification model.
For risk level, the five-point Likert scale was applied to increase statistical reliability [64].
The five-point scale applied to the training dataset in this study is “very high, high, mod-
erate, low, and very low”, with very high being level 5 and very low being level 1. In
summary, the RLR model is learned through a training dataset and sequentially performs
first and second classification.

The bi-LSTM algorithm used in the RLR model includes two LSTM layers (i.e., for-
ward and backward), and the output sequences of the two layers are combined using a
concatenating function (σ) as depicted in Figure 8 [65]. The bi-LSTM uses a forward LSTM
layer that sequentially reads the sentence from the word on the left, then uses a backward
LSTM layer that reads from the right in reverse order to consider its context. As a result,
it shows better performance than RNN or LSTM by minimizing the loss of the output
value and learning all parameters simultaneously. Traditional machine learning algorithms,
such as neural networks, support vector regression (SVR), and ensembles, cannot handle
sequential data or hierarchical representation learning of time series; thus, using bi-LSTM is
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more desirable. Moreover, the bi-LSTM approach is suitable for sequential data modeling,
based on previous observations, which performs the learning process in both directions [66].
The advantage of the bi-LSTM is that its performance does not deteriorate even if the data
length is long. However, the disadvantages of bi-LSTM are high cost, because it has double
LSTM cells, and that it is not suitable for speech recognition.

Figure 7. The RLR model with bi-LSTM algorithm and implementation process.

Figure 8. The architecture of bi-LSTM: (a) Unfolded architecture of bi-LSTM with three consecutive
steps; (b) the detailed structure within an LSTM cell. Source: Cui et al. 2018; Moon et al., 2021;
modified by the authors.

Looking at the detailed structure of the LSTM cell, it consists of three gates (forget
gate, input gate, and output gate) and two memory states (cell state and hidden state).
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If it is time t, then xt of the LSTM unit is the input vector and ht is the layer output.
Additionally, ft denotes a forget gate, it represents an input gate, and ot represents an output
gate (Figure 8b). In the cell state, the previous cell output is Ct−1, the new cell output is
Ct, and the cell input is C̃ t, where tanh is a value between −1 and 1. Furthermore, Ct, a
memory cell, stores all necessary information from the past to time t. The ht-1 is the hidden
state, and ht is the next hidden state. The Ws and Us are the weight matrices, and bs are bias
vectors. Lastly, σg stands for the activation function, and X plays the role of opening and
closing information, showing the gate mechanism of the LSTM [26,65] (Figure 8).

In the RLR model of this study, the data are inputted to the t-th cell, while xt, is a
vector in which the t-th word of a given sentence of ITB is embedded. The output yt of the
t-th cell has the following values (Figure 8a):

1. T/F classification (the first classification): Classify whether the sub-sentence cut to
the t-th word of the input sentence is a risk.

2. Risk level classification (the second classification): Classify where the risk level of
the sub-sentence cut up to the t-th word of the input sentence belongs among the five steps.
In this study, classification was performed up to yt, the output of the last cell.

The RLR model was developed using Python and embedded as a component tech-
nology of the EMAP system [27]. The RLR model is meaningful in that it attempted an AI
technique to analyze the risk impact of an EPC contract and developed a system for it.

6.3. Development of Training Dataset

The training dataset generation of the RLR model was performed in two ways: (1) the
development of the risk analysis method for the ITB contract clause, and (2) the training
dataset development by the expert group. Considering the complexity of the EPC contract,
the adjustment index was added to the evaluation criteria for the risk assessment. As
for the risk assessment method, a three-dimensional risk matrix with a new standard of
coordination was added to the probability and impact (PI) matrix. In addition, a traditional
two-axis evaluation method was applied [67]. The feature can remove the redundancy
of risk ranking at the point where P and I meet; however, this is a disadvantage of the
PI matrix [68]. Jang et al. showed that the main influence variables were concentrated
on impact because of the PI 2-axis evaluation. However, according to the PIC 3-axis
evaluation, it was shown that the main influence variables were evenly distributed in
probability, impact, and coordination compared to 2-axis [68]. The equation for the PIC
3-axis evaluation is as follows (5).

Rik Degree =
√
(P2 + I2 + C2) (5)

where
P: Risk probability, likelihood that a risk will occur;
I: Risk impact, impact on project objectives;
C: Coordination index.
Each contract clause of the ITB converted through the PDF structuralization module

was evaluated on a five-point Likert scale according to its effect on P, I, and C. Figure 9
is a part of the evaluating results of the contract clause of the “I” FPSO by the PIC
three-axis method.

An expert group conducted a non-face-to-face workshop to develop the training
dataset. The experts consisted of seven SMEs, including EPC lawyers and contract practi-
tioners. Each SME was asked to score risk probability and impact for each sentence in the
ITB document. The analysis results were received by e-mail.

Figure 10 below is an example of a training dataset for the RLR model. The train-
ing dataset consists of 9520 records with ten integrated EPC ITB documents, and it was
converted to DB in CSV format. Risk T/F means either true or false, depending on the
presence of risk in the sentence, while risk degree is a classification of the level according to
the degree of risk impact among the true sentences where risks exist. After ranking the risk
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by the final risk degree score for each sentence through the PIC three-axis evaluation, it
was converted into five levels. The risk degree level approaches 5 when the risk is high and
approaches 1 when the risk is low (Figure 10).

Figure 9. An example of risk degree analysis of EPC contract applying PIC 3-axis method.

Figure 10. An example of the training dataset for the RLR model.

6.4. Fine Tuning for the Risk Level Ranking Model

Hyperparameters refer to the values set by the model user directly in the deep learning
model and are used to control the training process [69]. Furthermore, hyperparameters
are optimized to maximize the performance of deep learning models. Examples include
values such as epoch, the number of nodes (neurons) inside the cell, learning amount, and
learning rate that mainly determine how far to proceed. In addition, the performance of
the deep learning model varies depending on the combination of these values. In this
way, exploring the combination of hyperparameters to maximize model performance is
called hyperparameter optimization [70]. Epoch indicates the number of passes in the
entire training dataset that the algorithm has completed. When epoch = 1, it indicates
that training has been completed once for the entire dataset [71]. It is possible to prevent
underfitting and overfitting only by setting an appropriate epoch value when training the
model. Overfitting is when a deep learning model learns the training data in too much
detail. It occurs when the training data are insufficient, or the model is too complex for the
characteristics of the data. Moreover, the result of this problem is that the general model’s
performance is reduced due to excessive adaptation to the training data. This results in
excellent learning performance, but poor responsiveness to untrained data [72]. Keras
supports the early stopping of training via a callback called EarlyStopping, even if the
specified epoch is not filled [73].

This study performed early stopping after 14 epochs were categorized to secondary
classification. A loss function refers to a function that calculates the error between the
expected and current output of the algorithm [74]. The closer to the actual value, the
smaller the value appears. Cross entropy is one of the methods to measure the difference
between two probability distributions [75]. Binary cross entropy is used when only two
label classes are in cross-entropy and performs best in equal data distribution among class
scenarios, while categorical cross-entropy is used when two or more label classes exist
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among cross-entropy. Binary cross-entropy is derived from the Bernoulli distribution,
and categorical cross-entropy is derived from the multinoulli distribution [75]. In deep
learning, optimization refers to the process of finding the extremum of a specific objective
function [76]. When optimizing hyperparameters, the parameter that changes the model
performance most dramatically and easily is the optimizer. Adaptive moment estimation
(Adam) is an optimization algorithm that improves the accuracy of deep learning and, thus,
was used as the optimizer in this study. The Adam function is a function that finds the
minimum value for the objective function by applying optimization according to size [76].
The bi-LSTM model of this study uses the text sentence of the contract as input, the primary
output is returned as T/F classification, and the second is returned as a five-level multi-
class. Of the total 9520 records of 10 ITBs, 80 percent were used as training data, and the
remaining 20 percent were used for the test. Table 10 shows the hyperparameters used for
the RLR model.

Table 10. Hyperparameters of the RLR model using bi-LSTM.

Type of Model Hyperparameters Value Determined

Epoch 10

T/F Classification Early stopping -

(Binary) Loss function Binary cross entropy

Optimizer Adam

Train data: Test data 8:2

Epoch 100

Degree Ranking Early stopping 14 epoch

(Multi-class) Loss function Categorical cross entropy

Optimizer Adam

Train data: Test data 8:2

6.5. Implementation and Validation of Risk Level Ranking Model

We used 2380 test data records to evaluate the RLR model, and we verified the test
results. Based on the testing of the bi-LSTM model, 1806 true values and 574 false values
were classified in the first classification. As a result of the second classification, risk level
1 was classified into 489, 434 for level 2, 572 for level 3, 288 for level 4, and 23 for level 5.
Table 11 illustrates the test results for the first and second classification of the RLR model.

Table 11. Test results for the first and second classification of the RLR model.

Category Type of Model Test Result

1st T/F Classification T/F True False

(Binary) No. of sentences 1806 574

2nd Risk Level Classification Risk level 1 2 3 4 5

(Multi-class) No. of sentences 489 434 572 288 23

The performance test was implemented by inputting the actual EPC ITB. When a user
inputs a new ITB, the level of risk is extracted for each sentence. Figure 11 showcases the
result of inputting the actual ITB into the RLR model after data conversion in the PDF
structuralization module. Furthermore, the figure displays how each sentence is classified
according to the level of risk.
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Figure 11. An example of analysis results of the RLR model in the EMAP.

The position code makes it easy to find the affiliation of a sentence, and it matches the
table of contents number in the document. RISK T/F indicates the risk of each sentence
separated based on the position code. If there is no risk, it is displayed as false, and the
RISK LEVEL does not exist. The output result on the UI of EMAP can be downloaded as a
CSV file, and it is set to show the summary of the risk level classification results in a bar
graph. Accuracy was used as a performance evaluation index since the class ratio of the
dataset used in the RLR model test is the same at 1:1. In addition, the accuracy formula is
the same as the above Equation (4).

As a result of measuring the accuracy of the trained bi-LSTM model, the performance
of the second classification model was lower than that of the first classification model. In
particular, the second classification, multi-class classification, showed an accuracy rate of
approximately 47 percent. Table 12 displays the validation results for the first and second
classification of the RLR model.

Table 12. Validation results for the first and second classification of the RLR model.

Category Type of Model Performance

Train Set Test Set

1st T/F Classification (Binary) Loss: 0.141
Accuracy: 0.955

Loss: 0.356
Accuracy: 0.882

2nd Risk Level Classification
(Multi-class)

Loss: 0.547
Accuracy: 0.888

Loss: 2.522
Accuracy: 0.468

The rule-based approach generally tends to show better text processing performance
than the train-based approach [42]. The low performance of multi-class classification, the
second classification of the RLR model, can be attributed to the lack of a training dataset.
Specifically, when a sentence that did not exist in the model training process occurred
during the test, accuracy was lowered due to the untrained sentence. Moreover, the lack
of table recognition of the ITB is also interpreted as the cause of the low performance.
Documents of a specific domain, especially contract documents such as EPC ITB, have
limitations from data collection. In addition, developing a training dataset can be difficult.
For example, a task such as assigning a risk rating to a contract sentence by a legal expert
may pose a challenge in terms of both accessibility and economic feasibility. Although this
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study developed the training dataset together with SMEs specialized in the contract field,
the performance evaluation result recognized the limitations of the lack of the training
dataset. Nevertheless, when first- and second-year junior engineers performed ITB analysis,
the RLR model derived analysis results similar to those of senior engineers with 8 to 9
years of experience. In essence, the RLR model is significant in that it was developed by
simultaneously applying traditional risk assessment methods and AI techniques to the risk
analysis of EPC contracts.

7. System Application on Cloud Platform

In this study, the EMAP system, a cloud-based engineering machine learning in-
tegrated analysis platform, was developed to support the decision-making of the EPC
project [27]. Software development, system integration, and cloud computing are the core
of EPMA implementation. The software development was integrated with various software
such as text analysis tools, web application server (WAS), engineering machine learning
platform, decision support system, and data open system. EMAP was developed using
HTML, Cascading Style Sheet (CSS), JavaScript, and Tomcat applied to WAS [77]. The
data entering interface was created for a local server through the open-source MySQL
DataBase Management System (DBMS) to access the database [78]. The system-to-system
linkage used the application programming interface (API) [79], and the data were linked
in the form of JavaScript Object Notation (JSON) [80]. The detailed analysis module of
the decision support system was developed using the Python programming language. In
addition, user convenience was improved by applying cloud services to allow users to
analyze on the web.

The EMAP system consists of five main modules.: (M1) ITB Analysis, (M2) Design Cost
Estimation, (M3) Design Error Check, (M4) Change Order Forecast, and (M5) Equipment
Predictive Maintenance [27]. Among them, the SA model (Section 5) and RLR model
(Section 6) described in this paper are included in the (M1) ITB Analysis module. The
risk clause analysis model and the risk frequency analysis model are discussed in another
paper [28]. The user interface (UI) of the submenu composing the ITB analysis module is
shown in Figure 12.

Figure 12. UI of the ITB analysis module from the EMAP system.

Each model is analyzed according to its purpose, and the results are the output.
The results shown on the screen can be downloaded in Excel or CSV format. When
selecting the UI menu shown in Figure 12, the CSV format document that has completed
PDF structuralization requires uploading. Errors and bugs that occurred during system
development were improved through corrections.
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8. Conclusion and Future Works
8.1. Summary and Contributions

This study supports EPC contractor decision-making by analyzing ITB in the bidding
stage of the EPC project and applying NLP and machine learning technology. For this
purpose, two models were proposed. The SA model that extracts the critical risk clauses
of ITB is a rule-based approach to which the ontology concept is applied. The RLR model
classifies each ITB sentence into five levels, according to the degree of risk, through the
classification model to which bi-LSTM is applied. These two models were developed in the
following steps.

First, the contract documents of the EPC plant project were collected for this study.
Twenty-one contract documents, including the completed onshore and offshore plant
projects and FIDIC, were collected and used as primary data for model development.
Second, a PDF structuralization module was developed and used for analysis to convert the
text data from the original ITB into the digital data frame for NLP analysis, which was then
used as input for SA and RLR models by applying PDF parser and OCR technology. Third,
the converted data after the PDF structuralization were used for model development and
training through data preprocessing. The SA model automatically extracted key contract
clauses using NLP’s rule-based approach. The RLR model was developed and trained
based on deep learning technology by applying bi-LSTM with word embedding. Fourth,
collaboration with SMEs in the EPC field was carried out from the early stage of model
development to enhance the reliability of the model’s performance. To develop an ontology-
based EPC contract lexicon, the authors established a taxonomy of EPC contracts with
experts such as EPC lawyers and developed a very detailed lexicon. For the RLR model, a
training dataset was developed by seven through reviewing the risk impact rating of each
sentence of the contract.

Each model was validated through a pilot test using an actual EPC contract that was
not used in the model development. As a result of the model validation, the SA model
achieved 86.4 percent F-measure, which showed a higher performance of risk extraction
than the previous study [25]. Furthermore, the accuracy of DC reached 86.3 percent.
In particular, the even distribution of precision of 88.6 and 84.3 percent of recall can be
interpreted that the ground truth value and the automatic extraction result of the SA model
match more than 80 percent. The RLR model showed an accuracy of 88 percent due to
the first classification but 46.8 percent accuracy in the second classification. It is expected
that the accuracy of the RLR model will improve through additional data collection and
training. The SA and RLR models are embedded in the EMAP system, an engineering
integration platform. EMAP was provided on a cloud basis considering user convenience.

It is believed that this research has theoretical contributions. It has been confirmed in
previous studies that most studies apply either a rule-based or a training-based approach
when analyzing contracts and extracting information using AI techniques. This study
has theoretical significance in that both rule-based and training-based approaches were
used for contract analysis. It was applied to a cloud-based engineering machine learning
integrated analysis platform and provided a solution. In addition, this study contributes
to the literature on the contract lexicon development for the first time in the EPC field.
The EPC contract lexicon was based on the contract taxonomy systematized by contract
experts, and it can be said that it is the first detailed and systematic contract lexicon
in the EPC plant field. The lexicon developed through this study consisted of 32 items,
79 details, and was created with 87 semantic rules. The SA model, which shows significantly
improved risk clause extraction accuracy compared to the previous study proposed by
Lee et al. [25], is analyzed due to the accuracy of the detailed lexicon and semantic rule
associated with it. In the study of information recognition and extraction of documents,
the development of the PDF structuralization module suggests a practical alternative to
effective information recognition before text preprocessing. In most NLP studies, text
data recognition of documents is read as a text file. However, the data read into the text
file contain noise data, such as headers, footers, and page numbers, that are not required
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for analysis. It is also challenging to convert text data into data frames of a chapter and
sentence units. The PDF structuralization module developed in this study suggests a
method to resolve this problem. Additionally, it was explained to assist other researchers
who aim to build a similar tool in the future. From a risk management perspective, this
study contributes to an attempt to manage contract risk using AI. In particular, the RLR
model is significant as it developed a risk management model that analyzes the risk impact
of EPC contracts by applying AI techniques to the traditional risk management method.
The RLR model can improve the accuracy of the analysis result through additional data
and training of the model.

The practical implications of this study are as follows. First, the technical system that
can effectively support the EPC ITB document analysis work is developed. The senior
engineers tested the ITB analysis, and there was a high deviation in analysis accuracy,
depending on the individual engineer’s competency and experience. This study estab-
lished a technical system that prevents errors due to human mistakes and contributes
to improving the accuracy of risk analysis tasks. As a result, it is expected to improve
the work efficiency (time, quality) of inexperienced junior engineers in the risk analysis
of EPC contracts. Second, it was confirmed that the owner’s requirement clarification
time could be significantly reduced through the onsite voice of customer (VOC) of the
engineer in charge of ITB analysis. The automated management of the ITB analysis tasks
that previously depended only on engineers’ experience can shorten ITB analysis time and
reduce engineers’ workload in charge. Third, in general, when senior engineers change
their roles or reposition to another department, their knowledge and skills will not transfer
over. In comparison, the knowledge learned by AI can be converted into organizational
learning for a sustainable EPC industry. Lastly, this study contributes to the intelligence
of the sustainable EPC industry and the establishment of a digital workforce based on
AI technology.

8.2. Limitations and Further Study

Limitations exist in this study and will be discussed in the following. First, this study’s
scope was to support the EPC contractor’s decision-making in the bidding stage of the EPC
project. The subject of analysis was limited to the conditions of the contract among the
ITB documents. In addition, this study does not include technical specification documents.
Second, the SA model has some errors even though a rule-based approach improves the
automatic extraction accuracy. It was challenging to generate all the contract sentences
as a rule, and it was also impossible to extract numerous linguistic phenomena through
the rule. Continuous research is required to improve the performance of rule-based NLP.
Third, this study determined the risk through consultation with SMEs in the EPC field.
However, there was a difference in risk judgment for each expert, and accordingly, the
training dataset could not be considered perfect. In addition to adding data, research to
improve the reliability of training data will continue in the future. Fourth, there was a
limitation in data collection. Due to the availability of the collected data, the size of the
training dataset used for the RLR model was limited. Data collection is a big challenge in
the case of documents in a specific domain, especially with contracts. Despite the collection
of more than 20 EPC contracts, there were limitations to model training. The RLR model is
expected to increase performance accuracy through additional data collection and training.
Overall, research that can improve machine learning performance based on small data is
required in the future.

The discussion points for further research are as follows. First, the EMAP system
was developed as part of a three-year-long engineering research project. The ITB analysis
module was coded by a research team rather than a professional software company, and
there are some shortcomings related to response time. In particular, the phenomenon was
conspicuous in the training-based RLR model. Further research is required to solve the
response time delay of the RLR model. Second, the EPC contract lexicon was developed
based on an extensive literature review and brainstorming of experts. The developer can
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modify this lexicon if necessary, and there is still room for improvement. Third, this study
only targeted unstructured data, such as text format. Tables and drawings in ITB were
excluded from the analysis. In the future, active research is needed for further analysis of
the automation of preprocessing of tables and drawings, and improvement of recognition
accuracy. The integration of unstructured data preprocessing automation technology and
various unstructured data analyses is expected to enable the realization of a trustworthy
big-data-based engineering machine learning platform.

In recent years, the accuracy of text classification models such as the RLR model has
improved. However, it cannot indicate whether the model “understands” the text from
the semantic level in the same way as human beings. Therefore, the model’s semantic
representation ability and decision confidence robustness require further improvement.
Finally, despite the difficulty of collecting EPC contracts, the RLR model is expected
to increase the analysis accuracy through the additional collection and learning of EPC
contract data. Additionally, the RLR model’s performance can be further enhanced because
it is trained with an extensive training dataset. To conclude, research that can improve
machine learning performance based on small data is required in the future.
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Abbreviations
The following abbreviations and parameters are used in this paper:

Adam Adaptive moment estimation
AI Artificial intelligence
ANN Artificial neural network
API Application programming interface
CNN Convolutional neural network
CRC Critical risk check
CSV Comma-separated values
DC Deontic classification
DL Deontic logic
EMAP Engineering Machine-learning Automation Platform
EPC Engineering, procurement, construction
FIDIC Fédération Internationale Des Ingénieurs-Conseils
FOL First-order logic
IE Information extraction
ITB Invitation to bid
JSON JavaScript object notation
LD Liquidated damages
LSTM Long short-term memory
ML Machine learning
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NER Named entity recognition
NLP Natural language processing
OCR Optical character recognition
OOV Out-of-vocabulary
OPF Obligation, permission, and prohibition/forbidden
PDF Portable document format
PI Probability and impact
PM Project management
POC Proof of concept
POS tagging Part of speech tagging
RNN Recurrent neural network
RLR Risk level ranking
SA Semantic analysis
SMEs Subject matter experts
SVO Subject–verb–object
SVR Support vector regression
WAS Web application server
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