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Abstract: A customer’s next-items recommender system (NIRS) can be used to predict the purchase
list of a customer in the next visit. The recommendations made by these systems support businesses
by increasing their revenue and providing a more personalized shopping experience to customers.
The main objective of this paper is to provide a systematic literature review of the domain to analyze
the recent techniques and assist future research. The paper examined 90 selected studies to answer
the research questions concerning the key aspects of NIRSs. To this end, the main contribution of the
paper is that it provides detailed insight into the use of conventional and deep learning techniques,
the popular datasets, and specialized metrics for developing and evaluating these systems. The
study reveals that conventional machine learning techniques have been quite popular for developing
NIRSs in the past. However, more recent works have mainly focused on deep learning techniques
due to their enhanced ability to learn sequential and temporal information. Some of the challenges
in developing NIRSs that need further investigation are related to cold start, data sparsity, and
cross-domain recommendations.

Keywords: recommender systems; next-items; next basket; personalization; systematic literature
review; deep learning

1. Introduction

A point-of-sale (POS) system is considered an integral part of a store. A typical POS
system supports several core business functions, including inventory control, invoicing,
sales management, payment processing, and managerial reporting [1]. A POS system in a
typical brick-and-mortar store usually stores the sales data anonymously. However, the
stores also use loyalty programs to record individual customers’ purchase history.

The recent outbreak of COVID-19 has motivated customers to adopt online shopping
modes to limit physical contact and reduce the chances of contracting coronavirus in
physical stores [2]. In some cases, such as home isolation, customers were left with no
option but to shop online. Online shopping has great potential to collect even more data
than brick-and-mortar stores [3]. As online shopping is usually done by logging into the
store system, the store can also collect other valuable data such as customer browsing
history, interests, and frequently purchased items [4].

Data are considered to be an essential asset by businesses today. It can be used to gain a
competitive advantage [5]. A recommender system is one popular application of exploiting
sales data to enhance sales [6]. A recommender system can be used for cross-selling, up-
selling, and down-selling. Businesses commonly use these techniques to enhance sales,
build customer loyalty, and increase revenue [7].

Sustainability 2022, 14, 7175. https://doi.org/10.3390/su14127175 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14127175
https://doi.org/10.3390/su14127175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4238-8093
https://orcid.org/0000-0001-9974-9537
https://orcid.org/0000-0003-0917-0615
https://orcid.org/0000-0001-5047-1108
https://doi.org/10.3390/su14127175
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14127175?type=check_update&version=2


Sustainability 2022, 14, 7175 2 of 28

The next-items (or next basket) prediction is a recommender system that can be built
using data collected by a POS system. The system predicts the items most likely to be
purchased by a customer in the next visit based on the past purchase history. Formally, the
next-basket recommendation problem can be stated as follows [8–10]:

Let C = { c1, c2, c3, . . . cm} be a set of distinct customers, and I = {i1, i2, i3, . . . in} be
a set of items/products. Let Bu

t = {i1c
t , i2c

t , i3c
t , . . . ijct } be a shopping basket at time t and

every ixc
t ∈ I is an item purchased by customer c in this basket. The set of all baskets of

a customer c sorted by time is represented as Bc =
{

Bc
t1

, Bc
t2

, Bc
t3

. . . Bc
tk

}
. The next-items

recommendation task attempts to predict Bc
tk+1

= {i1c
k+1, i2c

k+1, i3c
k+1, . . . ilc

k+1} through a
prediction function that recommends top l items in descending order of their probabilities
to be purchased by the customer c at time k + 1.

A next-items recommender system (NIRS) can serve businesses and customers in
several ways. These recommendations can be used to support targeted marketing and
advertisement. One-size-fits-all is not applicable in most businesses today. Customized
and user-centric services have become mainstream in the last decade. Such a personalized
shopping experience is much more enjoyable for a customer, increasing customer loyalty
and revenue. These recommendations also help reduce the possibility of lost revenue be-
cause of forgetful customers, as such customers may buy these products from a competitor,
affecting future sales. Personalized recommendations greatly enhance customers’ shopping
experience, resulting in customer satisfaction. Improved customer satisfaction improves
customer loyalty, ultimately resulting in an improved reputation and increased revenue for
the business. These recommender systems can also be used for cross-selling and up-selling.
The most recent application of such recommender systems is to dynamically generate
online brochures and websites highlighting recommendations for every customer.

Several techniques have been proposed to develop NIRSs. The main purpose of
this study is to provide a thorough and unbiased review of these techniques to help
researchers in proposing improved solutions. In order to achieve this goal, we adopted
the systematic literature review (SLR) technique proposed by Kitchenham et al. [11]. SLRs
provide a framework for defining the scope and objectives of a study, selecting relevant
resources, conducting the review, and reporting its results. To the best of our knowledge,
NIRSs have not been reviewed using the aforementioned approach. Following the SLR
framework, the current study defines a number of research questions related to NIRS and
investigates the existing literature to answer them. The main contribution of the paper is
to investigate the key aspects of the NIRSs, including the use of conventional and deep
learning techniques, the popular datasets, and the specialized metrics for developing and
evaluating these systems.

The rest of the paper is organized as follows. Section 2 gives an overview of the related
works. Section 3 presents the methodology used for conducting this study. Sections 4 and 5
explore conventional and deep learning techniques for a customer’s next-items recom-
mendations, respectively. Section 6 presents commonly used datasets, while Section 7
introduces evaluation measures for next-items recommender systems. Finally, Section 8
highlights challenges and future directions for such systems, and the paper is concluded in
Section 9.

2. Related Work

As revealed by the results of an exhaustive search of the selected digital sources, no
previous SLR has been reported on NIRSs. However, since NIRSs can be viewed as a
specialized case of recommender systems, this section describes the SLRs related to the
latter type of systems. Table 1 gives a summary of these works.
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Table 1. Summary of related works.

Study Focus Publication
Year

Studies
Reviewed Years Covered

Alyari and Jafari [12] Recommender systems 2018 51 2005–2018

Portugal et al. [13] Recommender systems 2018 121 2001–2016

Monti et al. [14] Multicriteria recommender systems 2021 93 2003–2018

Villegas et al. [15] Context-aware recommenders 2017 87 2004–2016

Murciego et al. [16] Context-aware recommender systems in the
music domain 2021 100 2010–2021

Jesse and Jannach [17] Digital nudging in recommender systems 2021 63 2009–2021

Da’u and Salim [18] Deep learning methods in recommender systems 2019 99 2007–2018

Khan et al. [19] Recommender systems for e-tourism 2021 143 2012–2020

Hamid et al. [20] Recommender systems for e-tourism 2021 65 2013–2020

Mohammadi et al. [21] Trust-based recommender systems
in Internet of Things 2019 59 2011–2018

Rahayu et al. [22] Use of ontologies in recommender systems 2022 28 2010–2020

Alyari and Jafari Navimipour [12] provide a comprehensive review of recommender
systems. They used 51 studies and covered various types of recommender systems such as
collaborative filtering, content-based filtering, demographic filtering, knowledge-based,
and hybrid systems. The study’s main limitation is a lack of coverage of the latest trends in
deep learning for developing recommender systems. Portugal et al. [13] also conducted an
SLR about recommendation systems. The study was also published in 2018 and reviewed
121 papers published from 2001 to 2016. Monti et al. [14] conducted an exhaustive review
of multicriteria recommender systems using 93 studies published between 2003 and 2018.
A brief introduction to the primary recommendation approaches is followed by an in-depth
analysis of multicriteria recommender systems, their applications, evaluation protocols,
metrics, and datasets. The authors suggest integrating user-based, item-based, and context-
aware approaches based on item characteristics for future studies. Villegas et al. [15]
surveyed context-aware recommenders and provided a reference framework characterizing
the recommendation processes in recommendation techniques, methods of incorporating
context, and the process stages at which integration of context into the systems would
be reasonable. The study included 87 papers and classified them as context-based, col-
laborative filtering, and hybrid approaches. Murciego et al. [16] also studied contextual
recommender systems. However, the focus of their study was the music domain.

Jesse and Jannach establish an analogy between automated recommendations and
nudging, as recommender systems subtly influence users’ decision-making process without
forcing a choice [17]. They argue that only a few types of nudges have been explored by
other researchers and present a comprehensive taxonomy of 87 mechanisms of digital
nudging. The authors propose investigating other forms of nudging, such as developing a
feeling of urgency or scarcity in users for quicker decision-making. Personalized nudging
is another area that needs further exploration and research. Da’u and Salim [18] provide an
exposé of deep-learning-based recommender systems. Using 99 publications from 2007 to
2018 in credible sources, they reviewed several deep learning techniques for automated
recommendations. The authors conclude that autoencoder models are the most popular
technique for developing recommender systems. CNN and RNN are also widely used
by researchers for developing such systems. The review also highlights datasets and
evaluation measures used in these systems. The authors highlight the data extraction
method as the study’s main limitation and argue that some critical attributes might have
been ignored from the study’s scope because of a limited number of sources considered
in the study. Khan et al. [19] explored the use of recommender systems in the e-tourism
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domain through 143 articles published from 2012 to 2020. In particular, the study focuses
on tourists’ preferences and location-based contextual recommendations in e-tourism.
The authors argue that automated recommendations not only help offer personalized
products to the tourists but also support sustainable tourism by reducing travel costs
and time. The authors identify diversity in tourism services and personalized and real-
time recommendations for travelers as future research directions. Hamid et al. [20] also
performed an SLR with a similar scope and objectives. Mohammadi et al. [21] performed
an SLR on trust-based recommender systems in the Internet of Things environments.
The authors reviewed 59 papers between 2012 and 2018 and highlighted challenges in
the trust-based recommendation for various architectures such as cloud computing, fog
computing, peer-to-peer, and service-oriented architecture. Rahayu et al. [22] studied the
usage of ontologies in developing e-learning recommender systems. The primary focus
of the study is learning objects. However, the authors have also reviewed the role of
ontologies in assessment and feedback to learners. The authors report a lack of awareness
among stakeholders in adopting ontologies in e-learning recommender systems. They also
highlight the lack of a systematic approach for ontology evaluation in these systems, which
raises questions about the effectiveness of such systems. Although the study considered
high-quality papers in their review, searches were performed only in computer science
and artificial intelligence domains. A more thorough search strategy, including sources
in engineering and multidisciplinary venues, could have resulted in a more thorough
review. This argument is also supported by a relatively fewer number of articles selected
for the study (28). The study also did not consider some critical factors in the e-learning
environment that affect recommender systems, such as devices, pedagogical theories, and
technology readiness in students and instructors.

3. Methodology

In this study, we have followed the SLR methodology for software engineering pro-
posed by Kitchenham et al. [11] and Wohlin et al. [23]. Figure 1 gives a pictorial represen-
tation of the phases and activities in each phase. In the following, we give details of each
phase and associated activities as they were performed for this study.
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3.1. Planning the Review

Careful planning is essential for conducting a successful SLR. This plan provides
a foundation for the subsequent phases and tasks of the SLR. This phase comprises the
following tasks:

1. Defining the need for the review
2. Formulating the research questions
3. Developing a review protocol

In the following, we provided details of each one of these tasks.

3.1.1. Defining the Need for the Review

As argued above, next-items recommender systems may assist businesses as well as
customers in various tasks. As no SLR exists for next-items recommender systems, to the
best of our knowledge, we conducted one to help other researchers contribute to this knowl-
edge area. A comprehensive SLR is performed to discuss existing techniques, datasets, and
evaluation measures to help other researchers further the research in this domain.
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3.1.2. Formulating the Research Questions

Research questions provide the foundation of an SLR as all activities in the subsequent
phases must be aligned with and answer these questions. We used the PICOC (Population,
Intervention, Comparison, Outcome, Context) framework proposed by Petticrew and
Roberts [24] to define the research question for the study, the elements of which are
given below:

• Population—Shopping baskets of customers;
• Intervention—Customers’ next-items recommender systems;
• Comparison—None;
• Outcome—Comparative study of next-items recommender systems;
• Context—Works related to next-items recommender systems in various domains;

The research questions defined for the study are as follows:

1. RQ1: How can a next-items recommender system support businesses and individuals
in their tasks?

2. RQ2: Which conventional machine learning techniques have been proposed for next-
items recommender systems?

3. RQ3: Which contemporary deep learning techniques have been employed for next-
items recommender systems?

4. RQ4: Which datasets have been used by researchers to implement their proposed solutions?
5. RQ5: In addition to the general evaluation measures used for prediction problems,

which special measures have been proposed by researchers for evaluating the next-
items recommender systems?

6. RQ6: What are some challenges and open problems in the next-items recommender systems?

3.1.3. Developing a Review Protocol

A well-defined review protocol is essential for an unbiased and thorough SLR. A
review protocol includes various criteria used to search and select the studies. These studies
are synthesized to conduct the SLR. In the following, we describe how we performed this
process in this study.

Resource Selection: Because of the quality of publications, popularity, and relevance
to the research topic as revealed by an analysis of related works, we conducted searches
using the following digital libraries:

1. IEEE Xplore (https://ieeexplore.ieee.org/, accessed on 7 June 2022);
2. Science Direct (https://www.sciencedirect.com/, accessed on 7 June 2022);
3. Springer Link (https://link.springer.com/, accessed on 7 June 2022);
4. ACM Digital Library (https://dl.acm.org/, accessed on 7 June 2022);
5. Web of Science (https://clarivate.com/, accessed on 7 June 2022);
6. Scopus (http://scopus.com/, accessed on 7 June 2022).

Keywords and synonyms: We used the following terms for searching for related papers:

1. The terms “predict,” “prediction,” “recommender,” and “recommendation systems”
for predicting the future shopping basket of a customer;

2. The terms “grocery,” “e-commerce,” and “shopping” for recommendations in the
domain of shopping;

3. The terms “next-items” and “next basket” for predicting the next-items list of items
for customers;

4. The terms “collaborative filtering”, “deep learning”, “kNN”, “neural networks”, and
“CNN” for specialized recommendation systems;

5. The term “machine learning” for survey papers or general solutions to the problem.

Query Strings: The following query strings were formed using various combinations
of terms given above:

1. (recommender OR recommendation) AND ((e-commerce OR grocery OR shopping
OR (next AND (item OR basket))) OR (predicting AND customer AND shopping);

https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://link.springer.com/
https://dl.acm.org/
https://clarivate.com/
http://scopus.com/
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2. (collaborative filtering) AND (Predict*) AND (e-commerce OR grocery OR shopping
OR (next AND (item OR basket)));

3. (machine learning) AND (prediction AND customer AND shopping) AND (e-commerce
OR (next AND (item OR basket)));

4. (deep learning) AND (predict* AND customer AND shop*) AND (e-commerce OR
grocery OR shopping OR (next AND (item OR basket))).

Note that the search-related features and the exact syntax used vary from one data
source to another. Therefore, the search strings above were used to construct strings
semantically equivalent to the given string but specific to each data source. The query
strings were applied to the title, abstract, and keywords.

Inclusion Criteria: the papers satisfying the following inclusion criteria passed the
first selection filter before going through the more rigorous quality assessment given below:

1. Peer-reviewed papers that have been published;
2. Papers published between 2017 and 2022 to ensure the inclusion of recent studies;
3. Papers published in journals and conferences only;
4. Papers written in the English language;
5. Papers related to customers’ next-items recommender systems;
6. Papers related to one or more research questions of this study;
7. Studies presenting recommender systems for customers’ next-items recommendations

using any conventional machine learning approach;
8. Studies presenting recommender systems for customers’ next-items recommendations

using any deep learning approach.

Exclusion Criteria: the papers satisfying the following criteria were excluded from
the review:

1. Papers not related to next-items recommender systems;
2. Papers published in any language other than English;
3. Papers published prior to 2017;
4. Papers published in journals or conferences not following a peer-review process;
5. Papers unrelated to any one of the research questions of this study;
6. Any types of documents other than research articles such as thesis, white papers,

reports, commentaries, and editorials;
7. Repeated papers found in more than one source.

Quality assessment: The selected papers were passed through the quality assessment
criteria given below for final selection for the review:

1. The study has well-defined objectives.
2. The study reports the model and findings consistently and coherently.
3. The research methods and process are detailed clearly.
4. The study applies the proposed model/algorithm to a dataset.
5. The evaluation metrics are clearly described and measured.
6. The findings of the study are credible.
7. The findings of the study are important.
8. The study compares its findings with the most suitable and most recent alternatives.
9. The study provides sufficient information to replicate its findings.

3.2. Conducting the Review

After defining the research questions and developing a review protocol, we adopted
a systematic process for study selection, as shown using a PRISMA [25] flow diagram in
Figure 2. We executed the search queries on the six sources given above to identify and col-
lect research papers. The initial search resulted in 2733 papers. A total of 2514 papers were
selected for screening after removing 219 duplicate papers. The inclusion and exclusion
criteria defined above were applied to obtain 260 available studies in this next step. Finally,
the quality criteria were applied to exclude 170 studies, and the remaining 90 studies were
selected to be included in the review. Thus, by applying the filtering process given above,
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9.6% of the search results were included as the primary studies. This means that only a
fraction of the studies from initial search results could meet the study’s inclusion, exclusion,
and quality criteria. It indicates that the selected studies are of high relevance and quality.
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The chronological distribution of the selected papers is shown in Figure 3. Most of
the included papers (24 studies) were published in 2020, closely followed by 2021, when
22 papers were published. The number of papers published in 2019 and 2018 was 18 and
10, respectively. There were 8 papers published in both 2017 and 2022.
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3.3. Reporting the Review

The last phase of SLR comprises a write-up of the findings and sharing them with
the scientific community. We reviewed the selected papers thoroughly to provide answers
to the research questions given above. As far as the specific research questions (RQs) are
concerned, the RQ1, which relates to highlighting the applications of NIRSs in supporting
individuals and businesses in fulfilling their tasks, has been addressed in the Introduction
section. Following this, each of Sections 4–8 is aimed at addressing RQ2 to RQ6, respectively.
In this way, the following discussion provides details about the proposed conventional
and deep learning techniques for predicting future baskets of customers and highlights the
strengths and weaknesses of each strategy. Furthermore, we also discuss the most popular
datasets and evaluation measures relevant to the problem.

4. Conventional Techniques for Customer’s Next-Items Recommendation

This section aims at answering the RQ2, which is related to examining the role of
conventional machine learning techniques for the development of NIRSs. The most pop-
ular techniques in this category include Markov chains, collaborative filtering, and k-
nearest neighbors.

4.1. Markov Chains (MC)

Sequential models [26,27], based on Markov chains, can be used to predict the next
purchase based on the last purchase in sequential transaction data. Pattern-based models
can refine the next purchase based on the previous purchase in general and the user’s
preferences in specific cases. Hybrid models combine sequential models with pattern-
based models. When a Markov model is used for sequential recommendation, future user
behaviors are presumed to depend only on the last or last few behaviors [28]. The general
model makes recommendations based on a customer’s complete purchase history rather
than on sequential behavior [29]. This model has a significant advantage because it captures
sequential behavior to give better recommendations. However, the MC models, which
rely only on the last behavior or several behaviors in a long sequence, are inadequate to
capture the intricate dynamics of more complex scenarios by taking account of only the
final behavior or some behaviors. Additionally, data sparsity may limit their effectiveness.

Markov models are stochastic models where data are sequentially generated and
randomly changing states, presuming that future states will be determined by the present
state, not the previous states. We are concerned at each step with sequential measures
and the optimization approach to make the best decision out of many options when we
use a Markov chain model where we can observe the states directly. The input for these
models is a timestamped or ordered list of users’ past interactions, and Markov-based
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RS is sometimes called sequence-aware RS or time-aware RS. As the sequence-aware RS
incorporates context in the form of users’ short-term actions gauged from their long-term
past moves, it can be considered a special case of the context-aware recommender system
(CARS) [30]. Table 2 provides a summary of the Markov chain techniques used for a
customer’s next-items recommender systems.

Table 2. Markov chain techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[31]

Considering interactions in the
historical sessions and the

changing semantics of an item
over time

MC

Hybrid representations allow
dynamic attention to each factor

while maintaining a balance
between general preferences and

sequential patterns

Sparsity IEEE/J/
2021

[32]

Comparing the mixed model
with state-of-the-art methods

for evaluating the music
predictions

Hidden Markov
model (HMM)

Developing a large-scale
real-world dataset in a Kaggle

competition

Poor Markov
property for general

cases;
Missing real-time

user feedback

IEEE/CP/
2019

[33] Proposing an intelligent
recommender system

MC and grouping
genres

The merger of two different
techniques improves the quality

of RS
Data sparsity SD/J/

2020

[34] Utilizing social and temporal
information in RS MC

Addresses user cold-start issue by
a two-level model founded on
MC at both user-level and user

group level to consider user picks
dynamically

Data sparsity SD/J/
2019

[35]
Developing a context-aware

recommendation approach to
handle data sparsity issue

MC/CARS Embedded features selection to
handle the data sparsity issue Scalability Springer/J/

2021

[36] Solving the data sparsity
problem of the transition matrix MC

Integrating interest-forgetting
attributes,

social trust relation and item
similarity in personalized Markov

model

Single-user transition
matrix data
sparseness;
cold start

Springer/C/
2019

[37]

Exploiting the hierarchical
hidden Markov model

(HHMM) to extract latent
context from the data

Hidden Markov
model

The proposed model significantly
improves performance both in

terms of accuracy and the
diversity of recommendations

Scalability Springer/J/
2019

[38]

Proposing sequential offers to
users based on a succession of

the user’s prior reaction to
recommendations

MC

The study proposes the dynamic
model learning technique for a

time-dependent next-basket
recommendation, which together
sports the dynamic character of

user selections and item relations

Sparsity; scalability Springer/J/
2019

[39]
Handling personalization and a

lack of semantics among
recommended items

MC

The study proposes a model to
enhance e-commerce product

recommendation using semantic
context and sequential

chronological acquisitions

Scalability Springer/J/
2021

[40]

Interactive sequential basket
recommendation, which

iteratively predicts
next baskets by learning the

intrabasket/interbasket
couplings between items and

both positive and negative user
feedback on recommended

baskets

MC

Intrabasket/interbasket
couplings,

incorporating the user selection
and nonselection

A large number of
items in the next

basket lead to unfair
comparison,

underfitting, and
poor performance

ACM/J/
2021

4.2. Collaborative Filtering

Generally, collaborative filtering (CF) methods forecast the user’s preferences based
on previous interactions between users and items. Thus, they collaborate on the ratings of
several related users to make recommendations. Additionally, a few approaches employ
optimization techniques to devise a training model in the same manner as classifiers create
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a training model using marked data. The CF, which has become one of the most popular
and widely used applied models in recommender systems (RSs), refers to connecting the
applier’s data with that of similar applications based on purchasing customs to recommend
for the next basket [41,42]. When Amazon recommends an item to a client based on their
previous buying history and buying activity of those who purchased that same item, it uses
CF techniques. A market segmentation method based on customer behavior corresponding
to demographic and psychographic metrics is applied to e-commerce platforms. A critical
aspect of CF is its scalability and accuracy. Customer satisfaction requires trendy processing
space and speed optimization on an international scale to address demand scalability
and efficiency.

CF approaches are classified into two groups: memory-based technique [43] and
model-based technique [44,45]. The memory-based approach identifies similarities between
the applications by computing a similarity function comparable to the cosine formula. The
model-based strategy seeks patterns in the datasets and utilizes data from that pattern to
construct new models. It also employs some methods such as matrix factorization [46].

4.2.1. User-Based Collaborative Filtering (UBCF)

A client set is chosen by the UBCF algorithm based on clients with similar ratings [47].
Based on others’ evaluations in a similar client set, it can anticipate the client’s opinion
about another item. Finding the best set of clients for the selected client is one of the most
challenging tasks of this calculation. A neighbor record is constructed after distinguishing
the client’s likeness to others based on their closeness and assessing the likeness to other
neighbors [47]. To obtain the proposed suggestion results, one can forecast client appraisals
of specific things based on the rating history of neighbors.

4.2.2. Item-Based Collaborative Filtering (IBCF)

An IBCF approach is used to resemble the comparability of objects. It anticipates
the rating of a related item by considering the user’s current rating of the corresponding
item [47]. A parameterized model recommends the item having the highest rank to a
user [48].

4.2.3. Pros and Cons of CF Approaches

Compared with content-based filtering (CBF), CF methods are often used for RS. CF
models offer several advantages over CBF approaches, including the capacity to handle
domains where content-related items are scarce and in cases where contents, such as
opinions, are hard to process. It also provides serendipitous recommendations, another
advantage of the collaborative technique. However, the CF filtering methods have some
potential drawbacks, which are listed below.

Cold-start problem: occurs when there are insufficient details about an item or user
to make precise forecasts [49]. Because of this, the RS’s performance reduces drastically.
Since the system does not have a rating with the new item or the new user, there will be an
empty profile, limiting the ability to recognize their preference.

Data sparsity: RS experiences a data sparsity problem when there are few or no users
or ratings, causing recommendations to be inaccurate. This results from a lack of informa-
tion about users and item purchase history [50]. A sparse user–item matrix is created when
the number of items rated by users is relatively low [49]. Additionally, it impairs the ability
to locate successful neighbors and ultimately deteriorates the recommendation process.

Scalability: Scalability is another aspect of RS to take into account. In recommender
systems, scalability is a crucial factor. The scalability of a system can be determined by
measuring the average response time it takes for it to process and respond to a request.

Serendipity: By producing and presenting unexpected and valuable recommenda-
tions, serendipity indicates that the RS has been able to amaze the user. In e-commerce,
for example, the system can also recommend one or more items that are likely to satisfy
the user according to the serendipity theory. The serendipity is determined by whether a
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recommendation is novel or not and whether or not it positively surprises the user. Con-
sequently, a typical investigation thinks that, in this case, the recommendations will not
become monotonous. However, a system might want to attempt to estimate the prospects,
where a user can determine a relevant item [51]. Through a serendipitous recommendation,
the user can discover a compelling item that might otherwise go unnoticed. Table 3 below
summarizes the advantages and disadvantages of collaborative filtering techniques, and
Table 4 provides a summary of these techniques.

Table 3. Comparison of collaborative filtering techniques for recommender systems.

Techniques Representative
Algorithm Advantages Disadvantages

Memory-Based
Collaborative
Filtering (CF)

User-Based CF;
Item-Based CF

Efficient scalability; Easy
to implement; Adding
data is straightforward;
Content is not a factor

Cold start, data
sparsity and

scalability issues;
Relying on the precise

recommendations;
Biased for massive

dataset

Model-Based
Collaborative

Filtering
Slope one CF

Improves the prediction
efficiency; Enhances

sparsity and scalability
issues

Model is pricey; Loss
of details in a

factorization matrix

Hybrid
Collaborative

Filtering

A blend of
memory-based and

model-based

Controls the sparsity
constraints; Enhances the

prediction efficiency

Raised complexity;
Challenging for
implementation

Table 4. Collaborative filtering (CF) techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[52]

Proposed innovator-based
collaborative filtering

(INVBCF) for
recommending cold items

Collaborative
filtering

Cold items can be managed in the
recommendation list via innovators,

achieving the balance between
serendipity and accuracy

Poor performance on
sparse data

IEEE/J/
2019

[53]

To help customers acquire
recommendations on the

purchase of desired
products

Collaborative
filtering, clustering,
and association rule

mining

The item-to-item collaborative filtering
is selected as it furnishes

recommendations to all customers
regardless of the number of

buyers and in the ratings given already
on priority

Cold start, data
sparsity

IEEE/CP/
2020

[54]

This article concerns
diverse issues faced by

recommender systems and
proposes solutions to them

Classification,
collaborative filtering,

association rule
mining and sequence

rule mining

User classification Cold start, data
sparsity, scalability

IEEE/CP/
2017

[55]
Users’ purchase prediction

using clicking behavior
features

CF

Evaluation of the proposed system with
the dataset provided by Ali Mobile

Recommendation
Competition held in 2015

Cold start IEEE/CP/
2017

[56] A book recommender
system User-based CF A user-user similarity matrix Cold start, data

sparsity
IEEE/CP/

2020

[57] To make accurate and
efficient recommendations CF

Multiple algorithms are used to
generate user-based recommendations

and item-based recommendations

Cold start, data
sparsity

IEEE/CP/
2020

[58] AI-based recommender
system CF A thorough review of CF-based

recommender systems Data sparsity IEEE/CP/
2020

[59]
Transition-based

cross-domain collaborative
filtering

CF Overcomes the cold-start problem
Cross-domain review

analysis, data
sparsity

IEEE/CP/
2020
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Table 4. Cont.

Study Objective Method/Model/
Features Strength Weakness Source

[60] Improvement of item-based
CF algorithm CF Proposed group weighted rating

method to improve item-based CF
Cold start, data

sparsity, scalability
IEEE/CP/

2020

[61] Enhancement of item-based
CF recommendation CF

Proposed similarity-based algorithm
using modified cosine similarity

algorithm
Cold start IEEE/CP/

2020

[62]

Predicting the ratings for
cold-start items by

exploiting items’ textual
descriptions

CF The study focuses on the item cold-start
problem

User cold-start
problem, data

sparsity, scalability

SD/J/
2018

[63]

Suggesting fashion goods
for clients by enhancing the

existing CF procedure to
consider the features of

fashion products

CF Both online and offline purchase data
used to generate recommendations

Experimental results
cannot demonstrate
the effects of using
online and offline

data, as well as the
effects of a decline in
preference over time

SD/J/
2018

[64] Curtailing the size of the
recommendation list CF

Used item weight generator block to
rank recommended items at the
appropriate position in the list

Cold start, data
sparsity

SD/J/
2020

[65]

Considering users’ retrieval
intentions for more

personalized
recommendations

CF
Incremental strategy for the

collaborative filtering recommendation
algorithm

Cold start, data
sparsity

Springer/J/
2020

[66]
To overcome the data

sparsity problem of the CF
algorithm

CF Optimizing biclustering and
information entropy Scalability, cold start Springer/J/

2019

[67]
Serendipity-oriented

location-based
recommender system

Association rule
mining and CF

A personalized recommender assistant
which offers both precise and

spontaneous points of interest (POIs)
Cold start Springer/CP/

2018

[68] Striking a balance between
accuracy and serendipity CF

The proposed strategy employed user
records and feedback to optimize and

balance serendipity and accuracy
Cold start Springer/CP/

2017

[69]

Improving search query
analysis by using

collaborative filtering and
naive Bayes algorithms

CF, naïve Bayes Improved F1 measure by 14% compared
to simple naïve Bayes technique

Cold start, data
sparsity

Springer/CP/
2017

[70]

Improving the quality of
the user–item matrix by

normalizing the frequency
of item purchase

Clickstream-based
CF recommender

system
Improved quality of ratings

Poor integration
between sequential

patterns of the
user–item matrix.

Springer/J/
2018

[71] Developing a hybrid
recommender system CF

Improved recommendations through
better customer behavior modeling and

enhanced user–item matrix

Inability to
incorporate multiple

data source-based
sequential patterns;

no provision for
infrequent users

Springer/J/
2019

[72]

Proposing a neural
network-based

collaborative filtering
framework

CF

The proposed model merges the
strength of the linearity of MF and the

nonlinearity of multilayer perceptron for
modeling the user–item latent structures

Data sparsity ACM/J/
2017

[73]

Implementing social,
collaborative mutual

learning
for recommender system

CF
Combining item-based CF and social CF

to improve the recommendation
performance

Scalability ACM/J/
2020

4.3. kNN

The k-nearest neighbors (kNN) algorithm classifies a given set of instances based
on their similarity with k-closest training examples in a given dataset. Thus, a typical
application of kNNs for recommender systems consists in finding clusters of similar users
based on common item ratings and making predictions based on the average rating of
top-k nearest neighbors. In this way, kNNs have been adopted to find users or items
similar to their neighborhood. The existing methods use different approaches to apply
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kNN algorithm-based filtering, e.g., by applying filtering to each criterion separately or
jointly considering all criteria [14].

Kuo et al. [74] adopted a perturbation-based kNN with an imputation technique to
manage the data sparsity problem. The main idea of the technique is to search for optimal
weights among similarities with the help of metaheuristics to obtain better recommendation
performance. Hu et al. [75] based their proposal on the argument that RNN-based methods
do not directly capture important patterns related to item frequency and thus result in
lower performance in next-basket recommendation scenarios. Their kNN-based model
utilizes two patterns, i.e., repeated purchase pattern and collaborative purchase pattern in
relation to the personalized item frequency (PIF), by incorporating them into the temporal
dynamics of the repeated purchase. Given the model’s simplicity, the model performs well
for the NBR.

Table 5 provides a summary of KNN techniques used for customers’ next-items
recommender systems.

Table 5. The kNN techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[74]

Addressing the
problems of data

sparsity and
similarities selection

kNN with the
densest

imputation
Model simplicity

High
computational time
to build the model;

Low scalability;
Limited validation

SD/J/
2021

[75]

Enhancing NBR
recommendation by

capturing two
important patterns

associated with
personalized item

frequency (PIF)

kNN

Effective use of
personalized

item frequency
(PIF) with a

simple method

Low scalability ACM/C/
2020

5. Deep Learning Techniques for Customer’s Next-Items Recommendation

This section aims at answering the RQ3, which is related to reviewing the role of
deep learning techniques for the development of NIRSs. Deep-learning-based recom-
mender systems [18,76] possess some critical advantages over traditional content-based
and collaborative filtering methods, as briefly described in the following:

(i) Deep learning (DL) enables modeling of nonlinear interactions found in data using
nonlinear activations (e.g., ReLU and Sigmoid). Unlike conventional methods that
are linear in nature, nonlinear modeling of interactions allows capturing of more
complex user–item interaction patterns. Consequently, users’ preferences can be more
precisely reflected.

(ii) DL techniques can learn the descriptive information about items and users efficiently
and thus enhance the recommender system’s understanding of items and users.

(iii) DL techniques have been shown to be a perfect fit for sequential modeling tasks
(e.g., natural language processing) and thus work well for the temporal dynamics
associated with user and item behavior.

(iv) DL is highly flexible and allows combining different neural structures to construct more
powerful hybrid models. This capability can be exploited to develop hybrid recommen-
dation models that can capture and process varying characteristics simultaneously.

In the following, we discuss how deep learning has been employed in the context of
recommender systems.

5.1. CNN

Convolutional neural networks (CNNs) are deep architectures that enable pattern
classification via a discriminative function. A CNN typically uses a perceptron to handle
high-dimensional data. The modules within a CNN comprise stacked convolutional and
pooling layers. A convolutional layer applies some filter to an input that results in an
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activation. A map of repeated activations achieved in this way indicates the detection of
a specific feature and is called a feature map. Alongside convolutions, various pooling
operations such as max pooling and average pooling are applied to subsample the output
of the convolutional layers. In general, CNNs are highly capable in tasks that involve the
detection of highly specific features in input data [77]. So far as recommender systems
are concerned, CNNs have been used to extract distinguishing deep features from textual
review and thus enhance the representation of user and item.

Haihan et al. [78] developed a data crawler to obtain user reviews and product infor-
mation from the database of a mall. A CNN-based model then extracts salient features to
learn and predict matching rates between users and commodities. Khan et al. [79] used
a word2vector to capture the semantics of the text in user and item embeddings and a
CNN to extract the contextual details. The model handles both user and item metadata
concurrently to deal with the sparsity problem. Some studies have developed end-to-end
systems for recommending products for a specific context. Kavitha et al. [80] proposed
a simple system that takes text or images as input and recommends choices of fashion
outfits or accessories. The recommendation model is trained with a CNN using images and
related text data. In a similar study, Reyes et al. [81] augmented the product recommenda-
tions using scores pertaining to preferences from past user interactions with the system.
Yuan et al. [82] proposed a convolutional generative model based on a stack of holed conv
layers to efficiently increase the receptive fields without depending on pooling operation. A
residual block structure is employed to optimize the network depth. The model optimizes
the training time and demonstrates the efficacy, particularly when long sequences of user
feedback are involved. Table 6 provides a summary of CNN techniques used for customers’
next-items recommender systems.

Table 6. CNN techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[78]

Improving
recommendations using
salient visual features of

products

CNN Use of real-user and
commodity dataset

Low scalability;
High operation cost;
Limited parameters

considered

IEEE/C/
2021

[79] Addressing the sparsity
problem CNN, Word2Vec

Concurrent handling
of semantics and

contexts of user and
item data

Temporal effect not addressed;
Data noise issue may

seriously affect performance

SD/J/
2021

[80]
Offering a recommender

system based on text
and image inputs

CNN Simplicity of the
system.

Low scalability;
Limited features considered;

Limited validation

SD/C/
2020

[81]

Improving
recommendations using

the score from past
interactions

CNN Simplicity of the
system.

Low scalability;
Limited features considered;

Limited validation

SD/C/
2020

[82]

To keep an ordered
collection of all items the

user interacts in a
session

Generative CNN

Effectively addresses
the problems with a
typical session-based
CNN recommender

Low scalability;
Limited use for long

sequences of user feedback

ACM/C/
2019

5.2. RNN

Recurrent neural networks (RNNs) are a class of deep learning models specifically
suitable for modeling sequential data. In their purest form, RNNs use temporal layers
to capture sequential data. Therefore, they naturally become an effective way of dealing
with the temporal dynamics involved in user behavior and item evolution [83]. RNNs
contain loops and memories to retain former computations and changes. As the primary
form of RNNs suffers from vanishing gradient issues, which means decreased performance
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in modeling long-term activities and temporal dependencies, its variants, including long
short-term memory (LSTM) and gated recurrent unit (GRU), are often deployed to address
such problems.

Choe et al. [84] incorporated item usage sequence and related time-series data from user
history using a hierarchical structured RNN to improve recommendations. Chen et al. [31]
aimed to infer the user’s general preference based on the most relevant items over his-
torical sessions and used this information to recommend the next items in the context.
Rabiu et al. [85] enhance recommendation accuracy by quantifying the sentiment bias to
extract the user’s true opinion and thus deal with data sparsity and imbalance problems.
Their adaptive LSTM models the drifting of users and item features dynamically, enabling
more accurate rating predictions. Wang et al. [86] performed a rigorous projection of
users’ individual preferences with all user interactions. The former was modeled using
tensor product operation, while the latter used the quantum many-body wave function
(QMWF). Lo et al. [87] proposed a two-stage RNN model that combines information from
the user, item context, and several shopping signals to optimize relevance and conversion.
Han et al. [88] developed an on-device deep learning framework that provides sequential
recommendations while uploading no raw data or intermediate results. Table 7 provides a
summary of RNN techniques used for customers’ next-items recommender systems.

Table 7. RNN techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[84]
Enhancing the use of

temporal properties of the
user history

Multilayered RNN,
long- and

short-term time
series

Effectively uses temporal
properties in time-series

data to improve
recommendation quality

Review content and
ratings not considered;

Low scalability

IEEE/J/
2021

[31]

Balancing the combination
of general preference and

the sequential patterns
factors in

recommendations

LSTM
Deducing high-level

preferences of users based
on the observed sessions

High operation cost;
Limited validation

IEEE/J/
2021

[85]
Dealing with problems of

data unbalance and
sparsity

LSTM Dynamic modeling of user
and item features High operation cost SD/J/

2022

[86]

Learning user preferences
by leveraging the

mathematical formalisms
of quantum theory

RNN, quantum
many-body wave
function (QMWF)

The mathematical
formalism of QT is

exploited

Low scalability;
Limited validation

ACM/C/
2019

[87]

Enhancing
recommendations for
relevant items on the

items details page and
increasing discoverability

of relevant items

Two-stage RNN

Formulates page-level
optimization problem as a

sequential ranking
problem and

accommodates
heterogeneous feature

types

Low scalability;
Limited validation

ACM/C/
2021

[88]

Enhancing sequential
recommendation while

ensuring privacy by
sending no raw data out

of the mobile device

RNN, Automated
Gradual Pruner

(AGP)

Addresses privacy as the
primary concern and

addresses issues specific
to mobile devices

Low scalability;
Limited validation

ACM/C/
2021

5.3. Graph Neural Networks

Graph neural networks (GNNs) use graph data to aggregate features from neighbors it-
eratively. Next, they employ a propagation process consisting of stacks of layers to integrate
the aggregated feature information with the current central node representation [89]. The
data commonly used by recommender systems, such as user interaction and item evolution
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data, can essentially be represented in the form of a graph. Therefore, GNNs provide a
unified perspective for effectively modeling heterogeneous data found in recommender
systems. Additionally, instead of only capturing the collaborative signals in recommender
systems, GNNs enable the encoding of the complete topological structure of the user and
item representations.

The underlying idea of Liu et al. [90] is the understanding that an adequate represen-
tation of relationships among products as product graphs can incorporate the strengths of
the graph’s topological structure and improve relationship prediction. They utilized an
item relationship graph neural network to learn multiple complex connections in items.
Wong et al. [91] used information about users, items, and conversations using a conversation
knowledge graph to make click-through rate prediction models aware of the states associ-
ated with users, dialogues, and items. Tao et al. [92] aimed to improve the recommendation
accuracy by integrating item trend information obtained from the user’s interaction history
with the user’s short-term preference. They used a gated graph neural network jointly
with a self-attention layer to enhance the representation of item trends. Zhang et al. [93]
argued that the similarity resulted in node-embeddings because over-smoothing of graph
convolutions leads to a decrease in recommendation performance. To solve this issue,
their approach enhances the graph convolutional network by unifying it with the label
propagation algorithm in a way that the former focuses on the basic recommendation
model while the latter consistently regularizes the training edge weights. An attention
network is used to retain the information of each user–item pair. In order to improve the
click-through rate prediction, Zhao et al. [94] have attempted to alleviate the difficulties
related to the sparseness of user behaviors. To this end, they developed a model for jointly
learning both search and recommendation scenarios by sharing information between the
two scenarios using a unified graph. The information from the two heterogeneous scenarios
is aggregated using a dedicated layer in the graph neural network model. Table 8 provides
a summary of GNN techniques used for customers’ next-items recommender systems.

Table 8. GNN techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[90]

Improving product
relationship representation by

exploiting the graph’s
topological structures

Graph neural
network, edge

relational network,
multihop

dependencies

Improves inference of
complex dependencies in

item relationships
Limited validation IEEE/J/

2021

[91]

Solving the problems of data
scarcity and sparseness

related to click-through rate
prediction

Conversation
knowledge graph,
deep convolution

network

Utilizes various types of
information from user

states and dialogue
interactions

Low scalability;
Entity descriptions

and knowledge
schema are not

considered

IEEE/C/
2021

[92]

Improving the modeling of
the current item by

incorporating the item trend
information

Gated graph
neural network,

self-attention layer

Item trend information
from the implicit history
of the user incorporated

into subsequent
recommendation tasks

Low scalability;
Cold-start problem

Springer/J/
2021

[93]

Solving the problem of
over-smoothing of graph

convolutional networks to
improve the recommendation

performance

Graph
convolutional
network, label
propagation
algorithm,

attention network

Improved
recommendation

performance by the
unification of GCN and

LPA

Static preference
modeling;

Low training
performance

Springer/J/
2022

[94]

Alleviate the sparseness of
user behaviors by jointly
learning from search and

recommendation scenarios

Graph neural
network with the
aggregation layer

Search and
recommendation

scenarios are jointly
learned

Low scalability;
Limited validation

ACM/C/
2022
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5.4. Other Deep Networks (DNN)

In addition to the more common deep learning techniques described above, other deep
networks are also often implemented [18]. The main idea is to develop a deep network
architecture containing stacked layers of nonlinear transformation. Some of the techniques
include: (i) a feed-forward neural network having multiple hidden layers between the input
and output layer (e.g., a multilayer perceptron), (ii) stacks of two-layer neural networks
containing a hidden layer and a visible layer (e.g., restricted Boltzmann machines), and
(iii) an autoencoder model that attempts to recreate its input data in the output layer. In
the context of recommender systems, these models generally view a recommendation as
a two-way interaction between users’ preferences and items’ features and model it by
constructing a dual neural network.

Wang et al. [95] aimed to solve the user cold-start problem by modeling users based
on a mechanism that takes a common set of users from online shopping and ads domains
and utilizes it to initialize recommendations. Similarly, Ahmed et al. [96] addressed the
cold-start problem by learning features common to users from different domains and
thereby identifying similar users. Some studies have developed end-to-end systems for
recommending products for a specific context. Abinaya and Devi [97] address the conflicts
found in rating scores and user sentiment in reviews by incorporating both into a context.
The item splitting method is used to model context by creating fictitious items based on the
context. In Qin et al. [98], a denoising generator is proposed to decide whether each item in
the historical basket is relevant to the target item or not. It creates positive and negative
sub-baskets for each basket of each user.

Further, a context encoder determines if it is a relevant preference or noise. An anchor-
guided contrastive learning process is used. Ngaffo and Choukair [99] aimed to manage the
problems of data sparsity and cold start by incorporating an enhanced matrix factorization
technique used to extract the user’s and item’s features within a deep learning structure
employed for the prediction. The technique effectively alleviates the limitations of the
matrix factorization process. Liu and He [100] improve the recommendation performance
by two techniques. First, they improve the initialization of latent feature vectors by learning
the initial values of users and items using a deep autoencoder. Next, a users’ social-
trust learning model is proposed to augment the recommendation by considering the
recommendations of trusted friends and related communities. Table 9 provides a summary
of DNN techniques used for customers’ next-items recommender systems.

Table 9. DNN techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[95] Alleviating the cold-start problem DNN, Stacking model,
Word2Vec Enhances user modeling High operation cost;

Limited validation
IEEE/J/

2020

[96] Alleviating the cold-start problem
DNN, latent factor
model, multilayer

perceptron

Models relationships in
cross-domain scenarios;

Generates useful
recommendations in high

sparsity scenarios

Implementation
complexity

SD/J/
2021

[97]
Deriving sentiment by merging

ratings and reviews to enhance top-n
recommendations

Context-specific
sentiment-based stacked
encoder (CSSAE), item

splitting

Computing concrete
preferences of the user by

integrating rating and review
for a given context

Low scalability Springer/J/
2021

[99]
Solving problems of data sparseness

and cold start to increase
recommendation quality

Matrix factorization,
combination of
multilayer and

single-layer perceptron

Effectively solves issues with
latent factors

Low scalability;
Limited validation

Springer/J/
2022

[100]

Solving the problem of random
initialization of latent features, which
play an important role in obtaining a

good local minimum

Deep autoencoder,
social-trust holistic

learning model, item
classification

Effective integration of users
and items in latent feature

vectors

High operation cost;
Limited validation

Springer/J/
2022

[98]
Enhancing NBR by denoising the

baskets and extracting credibly
relevant items

Context encoder,
contrastive learning

Item-level denoising for a
basket

Low scalability;
Limited validation

ACM/C/
2021
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5.5. Hybrid Networks (Attention+)

The flexibility of deep neural networks is often exploited to integrate different neural
building blocks to construct models that are much more powerful and expressive for specific
tasks. To this end, one of the most commonly used models in recommender systems is
the attention model [101]. Motivated by human visual attention, these models provide
differential architectures to filter the informative features from input data. Recommendation
systems leverage the attention mechanism to select the most expressive items from inputs
such as user reviews. Zhang et al. [102] incorporated aggregations of sequential behavior
records and personalized tastes of users within an adaptive attention mechanism to handle
sparse interaction data effectively. The model improves parallelism in handling correlations
without increasing its complexity. Thaipisutikul and Shih [103] aimed to capture the
hierarchies of relationships between context and items affecting the users’ preferences
considering long-term representation. To this end, they adopted an attention network
to combine the information from users’ short-term sessions with the relevant long-term
representations. An attentive neural network was then proposed to identify the highly
relevant items to the recent session.

Furthermore, there are different ways to integrate attention mechanisms with other
mainstream techniques to develop a hybrid method. A majority of the recent techniques
have combined RNN with the attention mechanism. Che et al. [104] improve the recom-
mendation performance by incorporating the historical information from all historical
baskets of the user with the item-level inference from the most recent basket. An adaptive
attention mechanism has been combined with an RNN. Similarly, Liu et al. [105] focus on
the attributes of items within a basket and exploit their relationships within a single basket
and the past baskets of the user to improve the recommendations. Dau and Salim [106] have
utilized a topic model to extract the domain-specific aspect of the product and associated
sentiment lexicons fed into an LSTM encoder via an interactive neural attention mechanism.
Additionally, they used neural coattention to improve the learning of finer interactions.
Ouyang and Lawlor [107] developed a character-level model based on LSTM with attention
to generate personalized reviews to manage common problems (e.g., noise and unrelated
content) in reviews. Cui et al. [108] aimed to alleviate the difficulties of RNNs in acquiring
the short-term interest of a user based on recent engagements. They extend an RNN to form
a context by capturing and modeling multiple adjacent factors. An attention mechanism is
then used to find the most likely items contributing to short-term interest in that particular
context. Zhang et al. [109] argued that the accuracy of next-item recommendations often
suffers because users’ long-term behavior is processed only sequentially, and their attention
to individual items is not considered. To solve these problems, their method equips the
combination of a bidirectional LSTM and a gated recurrent unit (GRU) module with a user-
based attention mechanism. Thus, the Bi-LSTM keeps track of users’ long-term behavior,
whereas the GRU captures their latest intent.

Some techniques have also included a CNN with the combination of RNN and atten-
tion. Li and Xu [110] extract aspects from textual reviews and build two separate paths to
deal with user and item reviews. Each path comprises a CNN, an LSTM, and the attention
mechanism to process local and global features. Similarly, some other techniques have
adopted a CNN with the attention mechanism. Du et al. [111] used two parallel networks
to enhance user and item feature representation. The two networks model users and
items in the review text. The two models are incorporated into a hierarchical attention
mechanism. The network layer corresponding to item representation is further enhanced
by introducing a mechanism to produce highly relevant features. A CNN was used for
feature extraction. Table 10 provides a summary of hybrid techniques used for customers’
next-items recommender systems.
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Table 10. Hybrid techniques used for customer’s next-items recommender systems.

Study Objective Method/Model/
Features Strength Weakness Source

[102]

Utilizing knowledge from
aggregations of users’

behavior and taste records to
deal with sparsity and

improve recommendations

Attention layers
with position
embeddings

Effective time-sensitive
next-item

recommendation;
Low model complexity
with high parallelism.

Low scalability SD/J/
2021

[103]

Improving the extraction of
sequential behaviors from

contextual info and
representation of users’
short-term preferences

Hierarchical
attention network,

neural attentive
bidirectional GRU

with sequential
residual

connection

Gradual refining of user’s
preferences via a

hierarchical learning
process

High operation cost;
Limited context

information

Springer/J/
2020

[104]
Addressing the problems

resulting from static use of
attention-based RNNs

Adaptive
attention-based

RNN

Acts on all historical
baskets as well as at item
level in the most recent

basket

High operation cost;
Low scalability

IEEE/J/
2019

[106]

Enhancing the use of user
sentiments in reviews to

improve the performance of
recommendation

Attention-based
RNN, neural
coattention

Incorporation of
sentiments with

consideration of various
aspects of a product

High operation cost IEEE/J/
2019

[105]

Incorporating the context
(short-time interests and
long-term preferences) to

improve recommendations

Multilevel
attention, item

attributes

Enhanced basket-level
recommendation

performance

Low scalability;
Minimal attributes

information

IEEE/J/
2020

[108]
Alleviating the limitations of
RNNs in the acquisition of the

short-term interest

Attention-based
RNN, contextual

hidden states

Contextual modeling of
interest-based on recent

factors

Does not explicitly
model long-term

interest

SD/J/
2019

[109]
Capturing the user’s general

preferences as well as his/her
latest intent

Hybrid network
with Bi-LSTM and

GRU modules

Combining the usual
preference with the latest

intent

High operation cost;
Low training

efficiency

Springer/J/
2021

[110]
Improving the local and

global aspect representations
obtained from user reviews

Context
embedding, local

and global aspects
FE

Incorporates preferences
in different aspects;

Determines local and
global importance of each

word in review

Computational
expense;

Synonymity
problems

IEEE/J/
2020

[107]

Generating compelling
review-based explanations for

input to reviewer-aware
recommenders

Attention-based
RNN

High prediction
performance;

Deals with item sparsity
problems

Synonymity
problems;

Limited validation

IEEE/J/
2021

[111] Enhancing user and item
feature representation

Hierarchical
attention, CNN

High prediction
performance on

real-world datasets
High operation cost SD/J/

2021

6. Datasets

This section answers the RQ4, which is related to elaborating the commonly adopted
datasets for the development of NIRSs. Table 11 provides an overview of the commonly
used datasets within the problem domain. As evident from the table, several datasets have
been developed by researchers in the problem domain based on sales records from popular
online stores such as eBay, Amazon, or Taobao. The performance of machine learning tech-
niques is directly proportional to the size of a dataset. Hence, researchers prefer to use the
largest possible dataset available. There are three key features of datasets in the customer’s
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next-items recommender system: number of records, number of users (customers), and
number of items (products). With over 100 million records, the datasets Taobao18 and
UserBehavior have the highest number of records. AliExpress has the maximum number
of users (>1.5 million), followed by Taobao18 with about 0.9 million users. The maximum
number of products is gathered by the dataset Taobao20 (>0.9 million). All datasets are
publicly accessible except AliExpress, which is available on request. Amazon, Movielens,
JingDong, and Tafeng are the most popular datasets among the researchers’ community.

Table 11. Most popular datasets in the problem domain.

Name Used
By

No. of
Users

(1000/s)

No. of
Items

(1000/s)

No. of
Records

(Millions)
Availability URL Year

Taobao18 [93] 988 4162 100 Public https://tianchi.aliyun.com/dataset/dataDetail?
dataId=649, (accessed on 30 May 2022) 2018

UserBehavior [112] 970 4158 100 Public https://tianchi.aliyun.com/dataset/dataDetail?
dataId=649&userId=1, (accessed on 30 May 2022) 2017

Taobao20 [94] 83 9621 75 On request taobao.com, (accessed on 30 May 2022) 2020

MovieLens [113] 280 58 27 Public https://files.grouplens.org/datasets/movielens/
ml-latest.zip, (accessed on 30 May 2022) 2018

eBay [114] 40 5375 12 Public github.com/urielsinger/Trans2D, (accessed on
30 May 2022) 2021

ValuedShopper [98] 10 8 5 Public
https://www.kaggle.com/competitions/acquire-

valued-shoppers-challenge/data, (accessed on
30 May 2022)

2014

Instacart [98] 200 8 3 Public https://www.instacart.com/datasets/grocery-
shopping-2017, (accessed on 30 May 2022) 2017

Ali Express [96] 1507 49 2 On request https://doi.org/10.1016/j.eswa.2021.114757,
(accessed on 30 May 2022) 2021

Yelp [106] 169 63 2 Public https://www.yelp.com/dataset, (accessed on
30 May 2022) 2021

Outbrain [108] 66 69 0.83 Public
https:

//www.kaggle.com/c/outbrain-click-prediction,
(accessed on 30 May 2022)

2017

Epinions [100] 49 140 0.66 Public trustlet.org/downloaded_epinions.html,
(accessed on 30 May 2022) 2003

Dunnhumby [115] 36 5 0.52 Public https://www.dunnhumby.com/source-files/,
(accessed on 30 May 2022) 2014

Ta-Feng [104] 14 12 0.50 Public
https://www.kaggle.com/datasets/

chiranjivdas09/ta-feng-grocery-dataset,
(accessed on 30 May 2022)

2001

Amazon [116] 58 50 0.32 Public http://jmcauley.ucsd.edu/data/amazon/,
(accessed on 30 May 2022) 2018

JingDong [104] 10 9 0.21 Public https://www.datafountain.cn/competitions/24
7/datasets, (accessed on 30 May 2022) 2018

Book-crossing [93] 18 15 0.14 Public http://www2.informatik.uni-freiburg.de/
~cziegler/BX/, (accessed on 30 May 2022) 2004

Last.fm [93] 2 18 0.09 Public https://grouplens.org/datasets/hetrec-2011/,
(accessed on 30 May 2022) 2011

Note that some datasets are not named by their authors (such as TaoBao18 and TaoBao20); these names are given
in this table for identification purposes only.

7. Evaluation Metrics

This section aims at answering the RQ5, which is related to investigating the spe-
cialized evaluation metrics used for NIRSs. Researchers have proposed several measures
to evaluate the quality and performance of recommender systems. These measures can
be classified into rating prediction metrics, classification accuracy metrics, and ranking
metrics [18]. We briefly describe the proposed measures under each of these categories in
the following.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
taobao.com
https://files.grouplens.org/datasets/movielens/ml-latest.zip
https://files.grouplens.org/datasets/movielens/ml-latest.zip
github.com/urielsinger/Trans2D
https://www.kaggle.com/competitions/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/competitions/acquire-valued-shoppers-challenge/data
https://www.instacart.com/datasets/grocery-shopping-2017
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https://doi.org/10.1016/j.eswa.2021.114757
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7.1. Rating Prediction Measures

These measures determine how correctly the recommender system relates the user
to the items. The three commonly used measures in this category are mean squared error
(MSE), root mean squared error (RMSE), and mean absolute error (MAE). Mean squared
error can be expressed by the following formula:

MSE =
1
P

P

∑
i=1

(xi −Yi)
2 (1)

where P, xi, and Ŷi are the total number of ratings, predicted ratings, and actual ratings, respectively.
As these measures are commonly used in machine learning, we refer a reader to

literature such as Chai and Draxler [115] for further information regarding RMSE and MAE.

7.2. Classification Accuracy Metrics

These metrics are used to determine the accuracy of classification, i.e., how correctly the
recommender system identifies items of interest for a particular user. The most commonly
used metrics in this category include precision, recall, F1 measure, and area under the curve
(AUC). Additionally, we are usually interested in top-K recommendations for a particular
user; hence, these measures are modified as prcision@K and recall@K, etc., to consider
evaluation for top-K recommendations. For brevity, we refer a reader to literature for these
measures, such as Powers [114], and focus on the specific metrics unique to the multilabel
classification problem of next-items recommendation [117].

Subset accuracy evaluates the fractions of correctly predicted items, i.e., the predicted
item set in a customer basket is identical to the ground-truth item set. It can be expressed
mathematically as:

SubsetAcc(h) =
1
P

p

∑
i=1
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where h(.) is a classifier for the next-items recommender system, xi is the ith item in a
customer’s basket x as predicted by this classifier, and Yi is the ith item in the basket
(ground truth). P denotes the total number of items in this basket.

Hamming Loss measures the fraction of misclassified in the customer basket, i.e.,
a relevant item is missed from the recommended basket, or an irrelevant item is recom-
mended. Mathematically,

HLoss (h) =
1
P

p

∑
i=1
|h(xi)∆Yi| (3)

where ∆ denotes the symmetric difference between both sets.

7.3. Ranking Metrics

As usually top-K items are recommended to a user by the next-items recommender
systems, the order of recommendations becomes important in predictions. The most com-
mon measures in this category include hit ratio, normalized-discounted-cumulative gains
(NDCG), mean reciprocals ranks (MRR), mean average precision (MAP), and one-error.

Hit ratio measures whether an item under consideration appears in top-K recommen-
dations to a user. It is defined as follows:

HR@K =
Number o f Hits@K

|T| (4)

where T denotes all interactions of the customer with the recommended items.
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Normalized-discounted-cumulative gains (NDCG) also considers the position of
items in the recommendation list and assigns higher scores to interactions with top-ranked
items. Mathematically,

NDCG@K =
K

∑
i=1

2ri − 1
log2(i + 1)

(5)

where ri = 1 if the target item is ranked at the position i, 0 otherwise.
Coverage is a metric used to measure the homogeneity of recommendations. It

measures the average number of steps required to move from the top of the ranked list and
cover all relevant items in the target customer basket. It can be expressed as follows:

Coverage@K =
|Uu∈U Ru|
|I| (6)

where U represents the user set, Ru represents top-K items recommended to the user u, and
I represents the set of all items.

Mean reciprocal rank (MRR) represents the reciprocal average of the number of items
in the recommended basket the user interacts with:

MRR@K =
1
|U| ∑

u∈U
max(

1
Ru, Gu

, 0) (7)

where Gu represents the ground truth; the function returns 1/Ru,Gu if Gu exits in top-K
recommendations, 0 otherwise.

Mean average precision (MAP) is used to calculate the precision of top-K recommen-
dation to a user. Average precision for one user (AP) can be given as follows:

AP@K =
∑K

n=1 Precision@n× rel(n)
min(K, Ru)

(8)

where Precision@n is Gu’s precision value at n in top-K, the function rel(n) = 1 if the item at
rank n is recommended, 0 otherwise.

MAP@K can be calculated by calculating the average of all users’ AP values.
One-error measures the fraction of recommended baskets whose top-ranked item is

not in the ground truth.

OneError@K =
1
|U| ∑

u∈U
(Ru1 /∈ Gu) (9)

where Ru1 denotes the K top-ranked items for the user u.

7.4. Other Metrics

Despite the popularity of these evaluation metrics, the complexity of a customer’s
next-items recommendation task calls for novel measures. Jannach et al. advocate the need
for devising new evaluation metrics such as serendipity, diversity, and domain-specific
metrics [118]. These measures may improve the effectiveness of recommendations in the
form of increased revenues for the businesses or higher customer satisfaction. Castells et al.
have provided a comprehensive discussion on the use of diversity and novelty in recom-
mender systems [119]. Another evaluation metric, exponential decay score, was introduced
by Breese et al. [120], which considers the position of items in the recommendation list,
similar to NDCG.

8. Challenges and Future Directions

This section addresses the RQ6 highlighting the key challenges and open issues in
the problem domain of NIRSs. A customer’s next-items recommendations is an exciting
research area with many challenges and potential for innovative and valuable enhance-
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ments. Cold start has been plaguing the recommender systems for a long time. Recently,
however, advanced techniques such as deep learning have reduced the severity of the
problem, although there is still room for improvement. Another common problem with
these recommender systems is data sparsity, when the number of items in a single basket
is negligible compared to the total number of items available for recommendations (e.g.,
number of products in a store). Some deep learning techniques have made significant
improvements, but the problem persists.

Currently, the systems make recommendations in a single domain. However, cross-
domain recommendations can be an exciting extension of these systems. This can be
achieved through analogical or transfer learning techniques, where a system applies the
learning in one system to make recommendations in another domain. This can significantly
assist in cold-start issues in the recommender systems too. Another possible enhancement
in the recommender system is to augment the learning techniques with user metadata such
as past purchase behavior and click-through rate. Lastly, sentiment analysis techniques can
be applied to recommendations presented to the user for further analysis and refinement
of future predictions.

9. Conclusions

This paper presented a systematic literature review of next-items recommender sys-
tems with the aim of providing an overview of the domain. The scope of the SLR was
limited to studies published between 2017 and 2022 to target the most recent works. The
search strategy included the major digital sources of publications including ACM Digital
Library, IEEE Xplore, Science Direct, Scopus, Springer Link, and Web of Science. After
applying the filtering criteria, a total of 90 studies were selected for review. We defined and
addressed research questions related to the key aspects of the NIRSs including: (i) motiva-
tion and applications of NIRSs, (ii) use of conventional ML techniques for developing NIRSs,
(iii) use of deep learning techniques in NIRSs, (iv) the commonly used datasets, (v) spe-
cialized metrics used for evaluating NIRSs, and (vi) the challenges and open problems
related to NIRSs. Recommender systems involve a different set of challenges pertaining to
the development and deployment phases. The scope of the current study was limited to
investigating mainly the former type of challenges. Future SLRs may address the issues
involved in the latter type such as reliability, scalability, and performance of NIRSs.
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