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Abstract: Recent studies have shown how motion-based biometrics can be used as a form of user
authentication and identification without requiring any human cooperation. This category of be-
havioural biometrics deals with the features we learn in our life as a result of our interaction with
the environment and nature. This modality is related to changes in human behaviour over time.
The developments in these methods aim to amplify continuous authentication such as biometrics to
protect their privacy on user devices. Various Continuous Authentication (CA) systems have been
proposed in the literature. They represent a new generation of security mechanisms that continuously
monitor user behaviour and use this as the basis to re-authenticate them periodically throughout a
login session. However, these methods usually constitute a single classification model which is used
to identify or verify a user. This work proposes an algorithm to blend behavioural biometrics with
multi-factor authentication (MFA) by introducing a two-step user verification algorithm that verifies
the user’s identity using motion-based biometrics and complements the multi-factor authentication,
thus making it more secure and flexible. This two-step user verification algorithm is also immune to
adversarial attacks, based on our experimental results that show how the rate of misclassification
drops while using this model with adversarial data.

Keywords: behavioural biometrics; continuous authentication; motion-based user verification

1. Introduction

Maintaining the security of digital and non-digital assets requires the capacity to
identify or authenticate a person. Passwords or physical tokens (such as ID cards) are
frequently used to offer security, although they are easily stolen or reproduced. Biometric
approaches, which are based on a person’s unique physical or behavioural features, do
not suffer from these drawbacks [1]. The fingerprints or iris of a person are used in most
physical biometric systems. Such methods can be difficult to use at times, and behavioural
biometrics offers a viable alternative. Popular mobile devices, such as smartphones and
smartwatches, feature motion sensors that can be used as the foundation of a biometric
system, making motion-based biometrics an especially appealing option. Biometrics based
on these devices can be employed as a main authentication and identification technique
or as part of a multi-factor system. It was recently studied that the accelerometer and
gyroscope sensor in both smartphones and smartwatches can be used in combination to
perform motion-based behavioural biometrics [2].

Due to numerous security-oriented threats, it has previously been demonstrated
that authentication with a single element is insufficient to provide effective protection for
users’ identities. To impose robust authentication based on biometric and other forms of
identification, multi-factor authentication systems are required [3]. MFA (Multi-Factor
Authentication) is a safe authentication process that requires the use of multiple authentica-
tion mechanisms from distinct and independent classes of credentials. MFA is primarily
based on biometrics, which is the process of automatic identification of users on the basis
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of their behavioural and biological characteristics. This step improves the security of the
authentication system by requiring users to produce proof of their identification, which
might be based on two or more independent criteria [4,5].

Since motion-based biometrics rely heavily on user data and machine learning models,
it is essential to ensure that these models cannot be easily corrupted; therefore this work
also analyses the impact of adversarial attacks on the developed continuous and adaptive
user verification algorithm by performing a Zero Order Optimisation attack on user data
and then formulating a strategy to defend the model against such attacks.

1.1. Aim and Objectives

This paper aims to push the ongoing research towards introducing behavioural
biometrics for user verification by proposing a user verification model that can be integrated
with the current multi-factor authentication systems. It also examines the risks associated
with using motion-based biometrics by performing an adversarial attack and formulating a
defence strategy to defend the model against the attacks.

This work would make the following research contributions:

• This work leverages the relative value of smartphone- and smartwatch-based accelerome-
ters and gyro sensors for motion-based biometrics. It presents a continuous and adap-
tive user verification algorithm that can be integrated with multi-factor authentication.

• It analyses the proposed continuous and adaptive user verification algorithm for its
vulnerability towards adversarial attacks.

• It also provides a strategy to defend the continuous and adaptive user verification
algorithm against adversarial attacks as well as future prospects leading to the safe
integration of motion-based biometrics for user verification.

1.2. Structure

The rest of this paper is structured as follows. We start by presenting a literature
review of motion-based biometrics before describing the topic’s background and related
work. Then, we put forward the problem statement, which is followed by a brief on the
proposed algorithm and explain the proposed user verification approach along with the
design and methods utilised in this work and empirical analysis of its implementation, and
discuss its vulnerability towards adversarial attacks before summing up with a conclusion.

2. Literature Review

In recent years the user authentication model is gradually shifting from “something
the user knows” to “something the user is”. Behavioural biometrics (BB) and continuous
authentication (CA) are used in this method [6,7]. As mobile devices grow increasingly
technologically capable, it is evident that the built-in sensors can be utilised to effectively
capture most users’ activity, enabling behavioural biometric user authentication. By contin-
uously monitoring user behaviour and re-authenticating user identification throughout
a session, CA technology adds an extra layer of protection to the original login proce-
dure [8,9]. Behavioural biometrics authentication approaches are based on a person’s
behavioural characteristics such as walking stride, touch gestures, keystroke dynamics,
behaviour profiling, hand waving, and power consumption and fusion. However, due to
some key flaws, such as the possibility of false positives/negatives, the balance between
security and usability, privacy concerns, and so on, behavioural biometrics authentication
is limited. To address these flaws, it is vital to increase accuracy and look into how to strike
a balance between security and usability. Because users’ habits and behaviour may vary
over time, authentication systems must be able to adapt to these changes. It has also been
studied that adversarial examples can be crafted for machine learning and deep learning
models, which, when fed to these models, result in high misclassification errors [10]. There-
fore, in this paper, we present a two-step motion-based user authentication model, which,
although reliant on a pre-trained model, verifies the user each time. Since user verification
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is treated as a classification problem in this work, we also assess the model’s vulnerability
to adversarial examples and propose a defence strategy.

Although there are a great number of studies proposing several different methods
of identifying and verifying users based on their device interactions and the range of
motion-based activities recorded by the sensors in their devices, the field of Continuous
Authentication (CA) using behavioural biometrics needs a strategy to evaluate its efficiency
and a framework to implement the theoretical background that has been developed as
a result of vast research in the field. A viable framework for employing behavioural
biometrics as a means for user authentication will not only boost a high degree of confidence
in the field but also help produce results that match the expectations and requirements
of authentication systems. Most of the observations made with behavioural biometrics
support the hypothesis that a person’s behavioural profile can be developed by utilising
their device usage/interaction patterns. However, this has also been a consistent point
of scepticism, as human behaviour tends to change or evolve with time. This work also
talks about the prospect of how behavioural biometrics can adapt to the changes in human
behaviour with time.

It is also important to consider the risks that come with using behaviour profiles and
motion-based biometrics, apart from the data collection and its safe and ethical usage, as
human behaviour can be imitated. Stylios et al. [7,11] talks about the various kinds of
zero-effort attacks that can be planted in a behavioural biometrics system. The attacker does
not take any complex action in the zero-effort attack. It is predicated on the attacker’s and
legitimate user’s templates being sufficiently similar, and it is related to the ‘uniqueness’
property of a biometric trait. An adversary attack entails the attacker doing specific
actions in order to convincingly mimic a real user. The amount of sophistication of an
adversary attack is highly dependent on the resources available, such as digital or physical
means, time, and information about the biometric system and the victim. This reinforces
the importance of real-time monitoring and evaluation of the results produced by the
underlying machine learning/deep learning models in these methods. This work also
dives into analysing the vulnerability of the proposed user verification model by testing it
against an adversarial attack. One way of minimising the risk and enhancing the reliability
of behavioural biometrics is to combine the authentication or verification process with
other approaches to confirming the user’s identity. Authentication accuracy is improved by
combining behavioural biometrics with a password or token-based authentication, which
has been intensively researched in the literature. A plethora of studies has emphasised the
superiority of multimodal biometric approaches to single biometric methods [12–14].

3. Background and Related Work

Biometrics-based identification is the next frontier in user verification and authen-
tication, since it is more efficient than digital passwords/PINs or cryptography-based
digital signatures. Biometrics are not susceptible to theft and cannot be misplaced or
forgotten. They recognise a person based on their distinct traits and hence provide a
unique verification for each user. Biometrics-based identification and authentication can
be easily confirmed by using the underlying machine learning or deep learning model
alone or in combination with a multi-factor user authentication system. Aside from these
advantages, behavioural biometrics are favoured over pattern-matching-based biometrics
such as EEG/ECG matching, iris detection, or palm-veins matching because these require
specialised apparatus that might be costly and inconvenient. Behavioural biometrics are
based on sensors available in our smartphones and smartwatches and work to discover a
pattern based on a user’s daily actions. They may not even require human input to identify
a person. A strong user authentication system requires some key elements for a reliable
authentication, such as an aspect of ‘knowledge’ (something only the user knows; for ex-
ample, length or complexity), an aspect of ‘possession’ (something only the user possesses;
for example, a characteristic movement), as well as an aspect of ‘inherence’ (something
only the user possesses; for example, a characteristic movement) (something the user is; a
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fingerprint or biometric specification). Using behavioural biometrics not only fulfils all of
these categories of a user’s credentials but also considerably reduces the chance of these
authentication aspects being compromised. Therefore, behavioural biometrics permits
enhancing the user experience as user authentication/identification can be transparent
for them.

3.1. Behavioural Biometrics

Behavioural biometrics-based user identification or verification based on a single
activity has been detailed in various research. Sudhakar et al. [15] offer one such framework
for user identification, in which they show how a person’s hand motions while walking
may be recognised using the accelerometer and gyrosensor in their smartwatch. For the
goal of identifying a user, the framework uses a correlation-based feature evaluation and
selection method, as well as a sliding window-based voting classifier. As a result, it meets a
number of key design requirements for gait authentication on resource-constrained devices,
such as lightweight and real-time classification, high identification accuracy, and a small
number of sensors. However, it only focuses on GAIT-based identifying activities.

Oak et al. offer another architecture for continuous authentication using behavioural
biometrics, in which they suggest a novel approach for authentication based on the concept
of a logical DNA that integrates many factors to generate a user profile. Using machine
learning models such as k-Nearest Neighbors, Random Forests classifiers, and a 1D Convo-
lutional Neural Network [16]. Luca et al. explain how inertial data from accelerometers
may be utilised to authenticate a user by identifying users using data from walking and
computational activities [17]. Su et al. offer a strategy for GAIT identification that can grad-
ually merge temporal features while extracting spatial features to achieve spatiotemporal
feature extraction. By forwarding partial channels of feature maps and fusing features from
consecutive frames, the model extracts temporal information, and it modifies the part-based
method to split the feature map into numerous parts, which refines the spatial features [18].
As can be seen, GAIT is the focus of the majority of behavioural biometrics research.

3.2. Adversarial Attacks for Machine Learning Based Biometrics

Malicious applications and attacks on user devices and data have become common.
An attacker’s main goal is to take control of mobile devices that are protected by authen-
tication systems in order to obtain access to a user’s private information or to perform
non-permitted operations. Adversarial examples are data samples with minor modifica-
tions that, when fed into machine learning or deep learning models, result in inaccurate
predictions. Different approaches to creating adversarial instances can have different
outcomes. The purpose of creating an adversarial example from a real one is to induce
a misclassification error, i.e., the adversarial attack is about making erroneous predic-
tions [19]. White-box and black-box attacks on machine learning classifier models are the
two types of adversarial approaches. The attacker is assumed to have complete access to a
fully differentiable target classifier in white-box attacks (weights, architecture, and feature
spaces) whereas in the case of black-box attacks, without access to the target models to
compute gradients, the adversary attempts to generate malicious perturbations. However,
it is unrealistic to assume that the adversary has access to the authentication model when
considering adversarial attacks in the domain of machine learning or deep learning-based
authentication [20]. For example, in a highly secure setting, the model could be located on
a distant server, away from the target machine. As a result, the attacker would be unable to
undertake the black-box attacks, being recommended by the authors in [21] because they
would be unaware of the outcome of the authentication computed by this remote server
and the black-box adversary can only observe outputs given by the model to chosen inputs.
White-box attacks that rely on gaining access to the model’s architecture and weights are
also unfeasible. Therefore, for this experiment, a black-box attack has been chosen, which
relies on the data to create adversarial samples and does not require any information about
the underlying model.
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Although knowledge-based user authentication has been the most popular means
of validating the identity of the users for a long time, a fusion of basic physiological and
behavioural biometrics have attracted a lot of research lately as a medium to reduce the vul-
nerability of knowledge-based authentication. When used alone, physiological biometrics
need expensive equipment and are therefore not the most widespread, whereas behavioural
biometrics have low accuracies when used on their own. By fusing one or more of these
techniques according to efficiency and availability, multi-factor authentication can assist
in overcoming the limitations of these approaches and hence enhance the security of the
authentication process. Furthermore, by combining behavioural biometrics, the amount of
user involvement required for each session when the user’s identification must be validated
can be reduced. According to Wang et al., the trend in mobile device authentication is
multi-factor authentication, which determines a user’s identification by integrating (rather
than just combining) multiple authentication metrics. For example, when the user inputs
the knowledge-based secrets (e.g., PIN), the user’s behaviour biometrics (e.g., keystroke
dynamics) could be extracted simultaneously, providing enhanced authentication while
sparing the user the trouble of conducting multiple inputs for different authentication
metrics [19].

4. Problem Description

Research on the performance of behavioural biometrics with daily activities for both
users and identification of activities has been extensive and can thus be used to identify
users or their activities. However, today, the authentication systems are multi-step, contin-
uous and adaptive, as the diversity of device use develops daily. This combination was
developed to improve security and to provide an easy and smooth activity session of the
user–device interactions. It has also been studied that various forms of authentication can
be used as an aggregate to validate the identity of the users. This research is built on the
same idea of using different forms of user identification to match various elements of a
secure authentication system (knowledge, possession and inherence), and so introducing
behavioural biometrics into existing multi-factor authentication systems. In this work,
we outline how behavioural biometrics can be modelled and readily incorporated into
present-day user authentication systems to enhance their security by utilising the theoretical
observations and results obtained from research in this area.

Apart from the high accuracies of user and activity recognition using behavioural
biometrics, research in this field has also shown how the machine learning and deep learn-
ing models behind these identification or verification algorithms are highly susceptible to
various risks and attacks. These attacks are simple in nature, resulting in low confidence to-
wards employing these algorithms for user authentication. It is, therefore, essential that the
verification algorithms are analysed for their exposure to such attacks. This paper proposes
an algorithm to integrate behavioural biometrics as a part of the multi-factor authentication
process, thus paving the way for the evolution of motion-based biometrics and future re-
search in this area. Not only do we formulate a way to identify or verify a user, but also anal-
yse the risks associated with implementing this process of user verification (which largely
entails the use of machine learning models) in a real-time environment and develop a strat-
egy based on the model’s prediction score to mitigate this risk by empirically evaluating if
the model is safe to be trusted or not. Through this algorithm, we propose how behavioural
biometrics can be implemented as a means of user verification while minimising the risk of
misclassification when identification and authentication tasks are modelled as classification
problems. Continuous authentication reviews the legitimacy of a user during each ses-
sion, thus reducing the risk of session hijacking [22]. These authentication techniques are
aimed mainly at the ability to authenticate a user’s identification conveniently and reliably
and to continually reconfirm the user’s identity. Integrating behavioural biometrics with
multi-factor authentication will provide a secure ground for their foundation in real-time
authentication systems and will motivate further research in this area. The idea behind
multi-factor authentication is to use multiple ways to confirm the user’s identity. This work
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enables the use of behavioural biometrics as a part of the multi-step authentication process.
It has been studied how motion-based biometrics from accelerometers and gyrosensors are
easy and no-interaction-based techniques to validate the identity of a user, and this study
uses the transformed WISDM dataset (https://archive.ics.uci.edu/ml/datasets/WISDM+
Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+), which contains user
records sampled at a rate of 10 s, thus implying that the process of authentication can be
based on a short sample of data from the user, such as 10 s. We present how motion-based
biometrics can be used to improve the ease and reliability of the multi-factor authentication
process.

5. Proposed User Verification Model

This work utilises the recently published WISDM dataset (https://archive.ics.uci.edu/
ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+)
(publicly available) and its experimental results based on four sensors (accelerometers and
gyro sensors from both smartphone and smartwatch) and 18 activities (Table 1) to develop
a mechanism to implement continuous and adaptive user verification using behavioural
biometrics as a part of multi-factor authentication [2].

Table 1. The physical activities.

Non-hand oriented activities

A walking
B jogging
C stairs
D sitting
E standing
M kicking a ball

Hand-oriented activities

F typing
G teeth
O catch
P dribbling
Q writing
R clapping
S folding

Hand-oriented eating activities

H soup
I chips
J pasta
K drinking
L sandwich

Weiss et al. in 2019 described how simple machine learning models achieve high
rates of accuracy on the task of identifying and authenticating users based on their motion
biometrics using activities of daily life. They performed the experiment on the WISDM
data (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+) where they categorised the recorded activities into
three classes, namely: non-hand oriented activities (for example walking, jogging, etc.);
general hand-oriented activities (for example clapping, typing, etc.); and hand-oriented
eating activities (for example eating a sandwich, pasta, etc.) [2,23]. Since the WISDM
dataset (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+) contains data from both the smartphone and smart-
watch, they conducted the experiment on various combinations of four sensors (phone
accelerometer, phone gyrosensor, watch accelerometer and watch gyrosensor). For both
the tasks, i.e., user identification and authentication, they trained a separate machine learn-
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ing model for each activity. The analysis tested three different machine learning models,
namely Random Forest, Decision Tree and K-nearest neighbours, out of which Random
Forest performed the best for all activities and every sensor combination. This was one
of the first studies focusing on daily life activities for the purpose of user identification or
authentication.

This work plans to take up the analysis by Weiss et al. and employ the results to
build a user verification system that is ready to be integrated and utilised as a part of the
current day user authentication systems. As the purpose of this algorithm is to authenticate
users, it is essential that the underlying machine learning models are tuned to achieve
better accuracy. In the hunt for achieving higher accuracy, various other machine learning
models were employed, however, the best results from Weiss’s analysis could not be
beaten for each activity. Similarly, when deep learning models were trained on WISDM
data (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+), high accuracy for every activity could not be produced
due to factors such as the size of the dataset (when factored for each activity).

The proposed user verification algorithm as shown in Figure 1 is a multi-step process,
which can easily be translated as a part of the multi-factor authentication system. Users
must first record their behavioural activity, just as they must with any other kind of
authentication (facial or fingerprint), where the users first record their features in order to
use them for authentication. Thereafter, they can perform the recorded activity when their
device needs to verify their identity. The “on demand” in Figure 1 represents an event when
the device needs to verify the user. The algorithm contains two machine learning models,
for identification and authentication. The identification model is different for each activity,
whereas the authentication model is different for each activity as well as for every user. The
idea is to identify the user and then verify the identification by confirming that it can be
differentiated from an impostor. It has also been taken into consideration that the machine
learning model cannot always be trusted; however, developing a completely reliable model
is a work in progress. As per our hypothesis, we have identified a threshold value for every
model (each activity has a different model), whenever the probability score of a model’s
prediction, i.e., identification or authentication (identification and authentication have been
modelled as classification problem) is equal to or greater than the threshold value, the
model can be trusted with behavioural biometrics and proceed for verification. If this is
not the state, it is safer to continue using normal means such as OTP or verification code to
verify the user.

Figure 1. User verification algorithm.

https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
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However, integrating this algorithm as a part of a real-time user authentication sys-
tem requires it to be secure and be able to enhance the reliability of the overall system.
Although the system hosting the machine learning models may not be easily accessi-
ble by the intruder, the data used to train the models is comparatively easier to dupe,
which, when perturbed, will significantly impact the performance of the models. There-
fore, in order to assess the vulnerability of these machine learning models to attacked
or altered data, the model was tested for black-box adversarial attacks. The WISDM
data (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+) was attacked with a zero-order optimisation attack
and, as predicted, the accuracy of the model was remarkably affected. On investigating
the misclassifications further, it was found that the model was misclassifying the samples
with a very low confidence score as compared to the classifications on the original data,
and hence it was ruled that the model cannot be trusted with adversarial data due to its
low confidence and prediction errors. Therefore, it was concluded that the confidence
score can be used as a threshold to determine when the model can be trusted. Thus, the
proposed user verification model works by validating this threshold each time to rule out
the possibility of intrusion.

6. Experiment Methodology

The data for 51 individuals were recorded over 18 different activities of daily life (Table 1)
in the WISDM dataset (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+
Smartwatch+Activity+and+Biometrics+Dataset+), which was released in 2019 [23]. The data
set includes low-level time-series sensor data from the phone’s accelerometer, gyroscope,
accelerometer, and gyroscope, as well as data from the watches’ accelerometer and gyroscope.
All of the time-series data is tagged with a subject identity in addition to the activity being
performed, allowing the data to be used for constructing and evaluating biometrics and
activity-recognition models [2]. This data was gathered from 51 subjects who were required
to perform 18 tasks for 3 min each, totalling 54 min of data per person. Each participant wore
a smartwatch on their dominant hand and carried a smartphone in their pocket. A custom-
made app that operated on the smartphone and smartwatch was used for data collection. The
accelerometer and gyroscope on both the smartphone and smartwatch were used to collect
sensor data, totalling four sensors [23]. Each row in the dataset is of the format: < subject-id,
activity, timestamp, x, y, z >, where subject-id is the unique identifier for each participant, the
activity is a code for identifying one of the 18 activities, timestamp is the time at which the
data was recorded and the x, y and z values are the sensor values for x, y and z spatial axes,
respectively. The dataset also contains 10-second segmented non-overlapping time series data
describing 43 features (including average sensor value for each axis, standard deviation per
axis, average resultant acceleration etc.). As Yang et al. demonstrate how features extracted
from a person’s finger-snapping motion can be used as a biometric signature [24], and Hong
et al. propose the use of hand-waving gesture for the purpose of authentication [25], we utilise
the abovementioned features with the time-series data for our experiment.

A model with very high accuracy is necessary for building an algorithm to provide
continuous and adaptive user authentication, for which multiple deep learning methods
such as CNN, LSTM, and densely connected neural networks were applied. However,
because these models take a lot of data to train and the task is focused on authentication,
data augmentation may not be the best option, the focus was turned back to machine
learning models. Although algorithms such as XGBoost and SVM fared well, Random
Forest still dominated when it came to average accuracy across a variety of activities as
described in [2].

The methodology used for identifying a user is as follows. As mentioned previ-
ously, both identification and authentication tasks have been treated as classification prob-
lems for this experiment. This is because this treatment is a widely accepted method
for identifying and authentication users that has proven to produce results in the lit-
erature [26–28]. Each subject represents a separate class throughout the identification
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experiment; there are fifty-one classes in the identification data set (since the WISDM
data (https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+) contains records for 51 users). In this situation, the
training set must include data from all of the participants; hence, the training and test sets’
subjects should overlap. Stratified 10-fold cross-validation is used to partition the training
and test data so that both sets have the same percentage of data from each subject. Models
of identification are created for each activity. For the purpose of testing the identification, a
multi-class prediction problem, the accuracy of the machine learning models was used as
the metric. The model for every activity was then tested for adversarial attacks by feeding
adversarial data (using ZOO attack) to test the models.

The experimental method for authentication was quite different from that of identifi-
cation. The authentication task entails distinguishing between a legitimate subject and an
intruder. As a result, authentication is a two-class classification problem. Each model is
built utilising data from the subject being verified as well as data from “other” subjects that
are grouped into a single class. Because data from actual impostors will not be available in
real-world scenarios, it is crucial to ensure that the “impostors” in the training and test sets
do not overlap. Furthermore, authentication model training data must be appropriately
partitioned, as a training set with a significant degree of class imbalance will be prejudiced
against authenticating a real user. The authentication models are built for every user and
for every activity of a user.

Because the user-verification process is so reliant on the underlying machine learning
models, it is critical to assess the safety and security of these models. Therefore, in order to
test this model, adversarial data was generated for the RandomForest model using IBM’s
ART package, and the model was attacked with a Zero Order Optimisation attack, during
which the model’s accuracy fell from 97.6 to 28 percent. The probability scores of the
model’s classification output were studied as a preventive measure (user identification and
authentication are treated as classification tasks), and it was discovered that when adver-
sarial examples are introduced, the probability scores for identification drop significantly,
indicating that the model is not confident in the adversarial predictions. To protect the
model from such attacks, a threshold value was chosen for each model (each activity has its
own model), and identification is now only trusted if the classification probability is above
the threshold. This adversarial technique is a two-step procedure that can be easily used
with multi-factor authentication to make the process more secure.

Since the two steps in our user verification model are different procedures, i.e., identi-
fication and authentication, this experiment for analysing the vulnerability of the machine
learning model on adversarial attacks was also performed for user authentication. Al-
though the accuracy of authentication was significantly affected, the accuracy of the model
was not used as the metric for the case of authentication. The Equal Error Rate (EER), a
standard metric for comparing authentication methods [29], is used to evaluate authen-
tication performance in this work. The False Acceptance Rate (FAR), which is the rate at
which the model erroneously accepts an impostor as a valid user, equals the False Rejection
Rate (FRR), which is the rate at which the model incorrectly rejects a legitimate user and
is used to calculate this measure. The probability threshold used to assign a classification
can be changed to change FAR and FRR. When working on the user verification task, this
statistical value is utilised to show biometric performance. On an ROC curve, the EER is
the point where the false acceptance rate and false rejection rate are equal. In general, the
smaller the equal error rate, the higher the biometric system’s accuracy.

Defending the Proposed User Verification Model

Continuous authentication offers a layer of protection to the service provider, which is
utilised to increase usability in most circumstances [30]. As is shown in the user verification
model, the process of verifying the identity of the user is multi-step and can be time-
consuming depending on the configuration of the underlying system. The advantage that
is produced out of using this method and spending a little extra time in initially confirming

https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
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the identity of the user is that this same identity can be reused when the user’s session is
reviewed in the process of continuous authentication. The user’s identity can be recon-
firmed and also be distinguished from an impostor during the consecutive session without
being required to interact with the device’s authentication protocol. This forms a trade-off
between the performance and usability of this multi-step user verification algorithm.

7. Results and Discussion

For this discussion, two activities from each category, i.e., hand-oriented tasks, non-
hand oriented tasks and hand-oriented eating tasks, have been chosen based on their
performance. The user identification model was executed for each of these activities for
both benign and adversarial data. The plot for the mean classification probabilities was
plotted and a curve to visualise the probability score density was fitted. Figures 2–4 show
that, in the case of adversarial data, the mean probability density drops significantly, from
0.65 to 0.22 in the case of walking (Figure 2), 0.8 to 0.25 in the case of jogging (Figure 2),
0.84 to 0.3 in the case of clapping (Figure 3), 0.8 to 0.3 in the case of typing (Figure 3), 0.85 to
0.3 in the case of drinking (Figure 4) and 0.8 to 0.3 in the case of sandwich (Figure 4). Thus,
it was concluded that a different threshold value was needed for each activity (as there is a
different model and dataset for each activity). This step of checking that the probability
of classification is more than that of the estimated threshold was implemented for both
identification as well as authentication.

Figure 2. Prediction probabilities for identification: non-hand-oriented activity.
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Figure 3. Prediction probabilities for identification: general hand-oriented activity.

Figure 4. Prediction probabilities for identification: hand-oriented eating activity.
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7.1. User Identification

As described by Weiss et al. [2], to identify a user, for each activity, data (using one or
more sensors) for all users is combined. There are 51 classes in the identification dataset,
and each subject represents a distinct one. In this situation, the training set must include
data from all of the participants, and the training and test sets’ subjects should overlap. The
experiment was executed for various sensor combinations with three different algorithms,
but, as has already been established by Weiss et al. [2], the sensors from the phone perform
better than that from the watch and the accelerometer outperforms the gyrosensor; the
rest of this work talks about the results from the phone accelerometer, all accelerometers
(phone-accelerometer+watch-accelerometer) and all sensors combined. Out of the three
machine learning algorithms used, different algorithms perform better for each activity,
but for the average performance overall activities, Random Forest performs the best, as can
be inferred from Table 2.

Table 2. Identification accuracy (in %) from various algorithms.

Model Random
Forest SVM XG

Boost

Act Ph
Accel

All
Accel

All
Sensor

Ph
Accel

All
Accel

All
Sensor

Ph
Accel

All
Accel

All
Sensor

A 97.6 90.5 85.3 98.3 79.4 76.3 94.6 89.1 82.5
B 96.9 93.07 86.2 96.2 75.9 74.4 94.8 86.6 82.2
C 92.3 78.6 67.9 91.9 63.7 55.8 89.1 77.6 59.8
D 95.2 83.8 70.3 92.4 76 57.5 93 87.9 66.4
E 94.1 86.4 58.7 90.6 77.8 50 91.5 84.2 57.5
F 97.8 93.3 78.4 94.5 87.5 62.8 96.2 88.7 73.5
G 94.6 88.2 74.6 93.7 84.2 62.3 93.1 84.4 71.4
H 96 90.5 74.8 97.2 86.5 60.6 96.8 87.4 69.1
I 96 82.8 66.1 94 76.4 55.2 97 83.6 65.4
J 96.2 83.1 68.8 96.6 77.1 54.1 95.2 83.5 66.2
K 98.8 84.9 68.2 97 82.1 54.2 92.3 83.3 66.3
L 96.4 83.3 65.2 93.5 77.3 53.4 94.8 84.5 66.3
M 94.5 75.3 62.7 93.8 74.7 47.1 88.2 76.5 56.3
O 94.7 85.9 75.5 94.1 83.1 59.2 94.1 82.8 73.3
P 94 88.7 76.2 95.1 86.4 63.9 93.7 81.3 73.9
Q 95.2 91 78.2 96 85.1 61.9 94.5 90 70.5
R 98.8 94.7 84.1 97.6 93.2 70.6 96.2 93.6 80
S 95.2 80.7 67.2 91.6 75.6 48.2 91.4 79.8 58

Avg 95.7 86.3 72.6 94.6 80.1 59.3 93.6 84.7 68.8

The activities which perform the best are automatically safer to be used for user
verification. Looking at non-hand oriented activities, walking and jogging show the best
results for all three algorithms, with 97.6 and 96.9 being the highest accuracy that is achieved
with RandomForest. Walking and jogging, which are means of gait-based biometrics, have
also proven to perform well in the literature [31,32]. In the instance of considering hand-
oriented activities, in the general category, typing and clapping produce the best accuracy,
with the highest being 97.8 and 98.8 using the RandomForest model. These activities
can be recorded using very short periods and thus make a handy case for behavioural
biometrics. The hand-oriented eating activities that perform the best are drinking and
eating a sandwich, with their best case accuracy being 98.8 and 96.4. If we compare the
overall results from all activities, clapping and drinking are the best performers. They
work better than gait-based activities which have been thoroughly studied for behavioural
biometrics. This aspect of our results presents a motivation for implementing motion-based
biometrics using hand-oriented activities.
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Although all these accuracies are recorded in the event of benign test samples, Figure 5
shows how this model can be fooled into misclassifying users using adversarial data.
For our experiment, the adversarial data was created using the Zero Order Optimisation
(ZOO) attack. This attack was chosen because it requires no model information and works
on tabular as well as time-series data. Figure 5 depicts the difference in the model’s
misclassification error when benign and adversarial data are used. The y-axis on the
left reflects the range of misclassification in benign data (0–0.08), with a maximum error
of 0.07, whereas the y-axis on the right shows the range of inaccuracies in adversarial
data (0–1), with a maximum misclassification of 0.996. This happens throughout every
activity. The accuracy of the model dropped to a low of 0.28 and the samples were highly
misclassified. As shown in the mean probability score graphs in Figures 2–4, the model
does not misclassify with a high confidence score and hence, by using this threshold
factor, these misclassifications can be blocked. In our experiment, using data from the
phone accelerometer, out of which the test data contained 457 samples, only 2 samples
were misclassified with a probability score that satisfies the threshold value, and when
employing all sensor data (combining all four sensors), which had 1033 test cases, only 8
were misclassified with a probability score greater than the threshold value. Therefore, we
can say that our model is significantly prone to this kind of adversarial attack.

Figure 5. Decline in accuracy and increase in misclassification due to adversarial attack.

7.2. User Authentication

The results were slightly different for the user authentication experiment which forms
the second part of our user verification algorithm. Since the authentication model was
different for each user and each activity, the results for different users were averaged
with respect to the activities that have been chosen for this discussion. In the case of
authentication, the machine learning model was more confident with the misclassifications
as compared to that of identification, where the mean probability scores in the case of
adversarial misclassification went up to a maximum of 0.35, whereas the probability with
which the machine learning model misclassified in the authentication experiment was in
the range of (0.50, 0.75), Figure 6. Although there was still a significant amount of difference
in the confidence of the model for original data versus the adversarial data, this does
demonstrate that the threshold value must be analysed for each model.
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Figure 6. Mean prediction probabilities for authentication.

Looking at the Equal Error Rate (EER) for authentication (Figure 7), when the model
was fed with adversarial data, the value of EER kept increasing across all activities, however,
the high performing activities from the user identification and user authentication remained
similar and the six activities (i.e. walking, jogging, typing, clapping, drinking and eating a
sandwich) chosen for this discussion overall performed better.

Figure 7. EER for authentication: benign vs. adversarial data.

One of the outliers observed in the trend of EER values was the performance of the
machine learning model in the case of eating a sandwich where the model performs better
with respect to the scores of other activities as well as with respect to the performance
of the model in the case of original data. Therefore the relative difference between the
two curves of EER is the minimum for the case of eating a sandwich. It can also be
observed that the course of the plot remains the same for the rest of the activities as well
as for both user identification and user authentication experiments, which reinforce that
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the proposed algorithm is a stable choice for implementation. The other difference that
can be observed from authentication results is that the overall percentage drop in the
performance of the model, when tested with adversarial samples, is lower as compared
to the identification attempt. Thus, the model is appropriately differentiating a user from
their impostor and, with the threshold value, the results can be better trusted. As in the
case of user identification, the model here also produces a comparably low accuracy in
the case of clapping, but the frequency of the activity in the dataset is also an important
factor as compared to that of drinking, or other gait-based activities such as walking or
jogging, which are usually found to occur more than clapping, or specific hand-oriented
activities. Accordingly, the low accuracy in the state of clapping or the wide gap between
the model’s confidence scores for eating a sandwich should not be considered a limitation
for this approach; nevertheless, adding more data and better tuning of the model or using
a deep learning model with additional data can significantly improve these holes.

8. Conclusions and Future Work

In this work, we proposed a multi-step behavioural biometrics-based user verifica-
tion algorithm and analysed it for its vulnerability towards adversarial attacks. We also
formulated a strategy for defending our algorithm from these kinds of adversarial attacks
and presented an empirical evaluation of its effectiveness. Based on the results, we can
say that the accelerometers in our phone can readily be used for motion-based biometrics
and one way of implementing it is the proposed user verification algorithm, which can
be easily paired with multi-factor authentication. We employed adversarial attacks to
examine the potential risk of attacks on the data which can mislead the model into trusting
an impostor. Our plan to defend against the adversarial attacks shows how the duped data
does not surpass the user verification model and therefore improves its reliability. The
proposed algorithm is multi-step as it not only identifies a user but also ensures that it can
be differentiated from an impersonator; hence, it is suitable for validating a user.

In terms of future work, in addition to integrating this algorithm as a part of multi-
factor authentication, there is more work required in improving the accuracy of other sen-
sor combinations, specifically of the smartwatch-based sensors. Since human behaviours
evolve over time, it is necessary that the user verification model also adapts to the be-
havioural changes; thus, the overall improvement of the model happens with time which
will, in turn, increase the security and usability of this approach.
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