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Abstract: Modern cities worldwide are undergoing radical changes to foster a clean, sustainable and
secure environment, install smart infrastructures, deliver intelligent services to residents, and facilitate
access for vulnerable groups. The adoption of new technologies is at the heart of implementing
many initiatives to address critical concerns in urban mobility, healthcare, water management, clean
energy production and consumption, energy saving, housing, safety, and accessibility. Given the
advancements in sensing and communication technologies over the past few decades, exploring the
adoption of recent and innovative technologies is critical to addressing these concerns and making
cities more innovative, sustainable, and safer. This article provides a broad understanding of the
current urban challenges faced by smart cities. It highlights two new technological advances, edge
artificial intelligence (edge AI) and Blockchain, and analyzes their transformative potential to make
our cities smarter. In addition, it explores the multiple uses of edge AI and Blockchain technologies
in the fields of smart mobility and smart energy and reviews relevant research efforts in these two
critical areas of modern smart cities. It highlights the various algorithms to handle vehicle detection,
counting, speed identification to address the problem of traffic congestion and the different use-cases
of Blockchain in terms of trustworthy communications and trading between vehicles and smart
energy trading. This review paper is expected to serve as a guideline for future research on adopting
edge AI and Blockchain in other smart city domains.
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1. Introduction

Many countries have created strategies to transform their cities into smart cities
to exploit the opportunities arising from urbanization. Smart cities enable operational
efficiencies, maximize environmental sustainability, and develop new services for citizens.
For example, the United Arab Emirates has launched its initiative to transform its cities
into smart cities. The UAE government has also outlined its overall Blockchain strategy for
increased security, immutability, resilience, and transparency.

With the climate change issues that have surfaced in the last few years, cities and civil
society are increasingly demanding a more sustainable future for their citizens and commu-
nities [1,2]. The long-term sustainability of cities requires new, innovative, and disruptive
solutions and services that are good for people, the planet, and businesses [3]. Building
sustainable cities and environments will not be possible without the right technologies to
digitize all city and business processes and obtain and share insights from data [4].

The advancements in sensing and communication technologies, the proliferation of
mobile devices, and the widespread use of social media networks have resulted in an
exponential growth in the information generated and exchanged. The phenomenon of big
data refers to this exponential growth in data volume. It is made up of a set of technologies
and algorithms that allow processing massive amounts of data in real time to derive
insights from it. The processed information and the resulting insights are made available to
decision-makers. Therefore, the reliability of the data is of the utmost importance to permit
their exchange and facilitate transactions between businesses.
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Billions of edge devices are connected to the Internet and generate zettabytes of data.
Extracting value from these massive volumes of data at the required speed of the applica-
tions remains the main problem to be solved [5]. For many applications, the processing
power offered by cloud computing is often used to process data. However, sending data to
cloud servers for processing reveals limitations due to increased communication delays and
network bandwidth consumption. Therefore, using cloud computing is not the best solu-
tion for real-time and latency-sensitive applications [6–8]. There is a growing trend towards
using edge and fog computing to process data and extract value for these latency-sensitive
applications. The use of streaming data analytics, machine learning, and deep learning for
data processing at the edge resulted in the emergence of a new interdisciplinary technology
known as edge AI that enables distributed intelligence with edge devices [9,10]. Research
on edge AI and commercial solutions of this new technology are still relatively new.

The execution of transactions generally depends on many intermediaries who authen-
ticate the information exchanged to establish “trust” between the parties in the transaction.
A typical example is banking, where banks are responsible for validating financial transac-
tions, and building trust between the parties in the transaction [11]. The essence of trusted
intermediaries, such as banks, notaries, lawyers, and the government, is to facilitate a
transaction that does not force the parties to trust each other. In today’s digital age, reliance
on these trusted intermediaries is just the result of a fundamental “lack of faith.”

The recent years have witnessed the emergence of Blockchain technology to address
this issue of trust [12–14]. A blockchain creates a source of truth that allows peer-to-peer
(P2P) transactions to get rid of the need for trusted intermediaries. Its distributed ledger
securely stores transaction information across multiple computer systems on the blockchain.
Each block in the chain contains information concerning several transactions. Each time
a new transaction occurs between two peers on the blockchain network, the ledger of
each participant appends a record of that transaction with a hash, which is an immutable
cryptographic signature. A change in a block of a chain means tampering with the block.
To corrupt a blockchain system, hackers would have to change every block in the chain,
and in all versions of the chain distributed across the blockchain network [15].

Blockchain is poised to revolutionize the way businesses, as well as governments, con-
duct all types of transactions [16]. It will significantly impact everyone (logistics, industry,
government, banking, real estate, health, education, and citizen services). Blockchain tech-
nology has the potential to improve government services, streamline government processes
and provide secure yet efficient information sharing [17,18]. Moreover, by using Blockchain
technology, governments can finally offer different services, eliminate bureaucracy and the
lack of transparency, prevent tax evasion and reduce waste.

1.1. Contributions

Although edge computing and blockchain have been extensively studied in the litera-
ture, very few works survey the integration of edge AI and blockchain in smart cities. This
article reviews recent research efforts on edge AI and blockchain for enabling intelligent
and secure edge applications and networks in two fundamental areas of smart cities—smart
mobility and smart energy. Beginning with an introduction to edge AI and blockchain, we
then review research efforts to integrate these two emerging technologies, including train-
ing learning models at the edge, security, privacy, scalability, and model sharing. Mainly,
we provide a survey on the use of edge AI in various applications in smart mobility, such
as traffic monitoring and management in intelligent transport systems, and smart energy,
such as optimized energy management in smart buildings, green energy management,
and energy efficiency in smart cities. Furthermore, we review recent research efforts on the
use of Blockchain in various applications in smart mobility, including distributed credential
management, reputation systems, key and trust management, and smart energy, including
distributed energy management and energy trading. Possible research challenges and
future directions are also outlined. The key contributions of this article are highlighted
as follows:
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1. It provides an overview of edge AI and blockchain fundamentals.
2. It analyzes the opportunities brought by edge AI in smart mobility and smart energy.
3. It analyzes the opportunities brought by Blockchain in smart mobility and smart

energy.
4. It reviews some efforts to integrate these two emerging technologies in the context of

smart cities.
5. Finally, it outlines key open research issues and future directions toward the full

realization of edge AI and Blockchain in smart cities.

For the reader’s convenience, the studies discussed in this review are shown in
Figure 1.

Figure 1. Classification of the studies of this review.

1.2. Structure of the Review

The remainder of this review is organized as follows: Section 2 unfolds the challenges
facing smart cities. Sections 3 and 4 present the fundamentals of edge AI, federated learning,
and Blockchain technology, and describe their potential to support smart city operations.
The methodology used in this review is described in Section 5. Section 6 describes the
transformative potential and applications of edge AI and Blockchain in two vital areas of
smart cities, smart mobility and smart energy. Section 7 highlights some efforts showing
the convergence of these two technologies. The open research issues and future directions
are highlighted in Section 8. Finally, Section 9 concludes this review.

2. Smart City Systems and Key Challenges

As the world population grows, small and large cities are witnessing large migratory
waves that pressure local governments and officials to deal with many social issues. These
issues essentially concern ensuring a steady supply of water and electricity, providing ap-
propriate healthcare services for all citizens, building and maintaining road infrastructure,
providing adequate public transportation, ensuring security and safety throughout the city,
and offering adequate education services [19].

The future of cities looks bright as many local governments start to build on smart
city initiatives and embrace new digital technologies and innovations to tackle all of these
issues, maximize the use of resources, provide a better quality of life for residents and a
favorable investment climate for business [20,21]. For companies, smart city initiatives offer
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many innovation opportunities to develop new services and provide smart solutions for
the cities. The vast amounts of data obtained by smart city systems and advancements in
data stream processing, machine learning, and artificial intelligence enable entrepreneurs
to develop new smart solutions and new business models [22]. Smart cities such as Dubai,
Barcelona, Amsterdam, Singapore, New York, and Stockholm, to name a few, are enticing
other cities to jump on the bandwagon [23].

Smart cities are complex entities that integrate various systems to support the human
life cycle. These systems include smart healthcare, smart transportation, smart manufactur-
ing, smart buildings, smart energy, and smart farming, among others.

2.1. Smart Healthcare

Smart healthcare is a set of technologies that are harnessed to actively manage health-
care data and respond to the needs of the medical ecosystem intelligently to increase
longevity and improve the quality of life for citizens. These technologies include mobile de-
vices, Internet of Things (IoT) devices, and mobile Internet, which enable dynamic access to
information, connecting people, materials, and health-related institutions. Smart healthcare
aims to foster interaction between all entities in health care, including hospitals, pharmacies,
healthcare insurers, help them make informed decisions, ensure that participants have
access to the services they need, and facilitate the rational allocation of resources [24,25].

2.2. Smart Transportation

With the emergence of intelligent transportation systems, the proliferation of IoT-based
solutions, and advances in artificial intelligence, smart cities are entering a new era of a de-
velopment called smart transportation. Smart city traffic management and smart transporta-
tion are revolutionizing the way cities approach mobility and emergency response while
solving traffic problems by reducing congestion and the number of accidents on the streets
and roads of cities [26,27]. Smart transportation relies on the deployment and use of sensors,
advanced communication technologies, high-speed networks, and automation [28].

2.3. Smart Manufacturing

Smart manufacturing is a technology-driven approach for monitoring the production
process using machines connected to the Internet. Its main goal is to present opportuni-
ties for automating operations using data analytics to boost manufacturing and energy
efficiency, enhance labor security, and reduce environmental pollution levels [29]. Smart
manufacturing deployments involve integrating IoT devices into manufacturing machin-
ery to collect operational status and performance data. In addition, many technologies
are being used to help enable smart manufacturing, including data streams processing,
edge and fog computing, artificial intelligence, robotics, driverless vehicles, blockchain,
and digital twins [30,31].

2.4. Smart Buildings

Smart buildings are buildings in the tertiary sector or residential buildings for which
high-tech tools, such as sensors and sophisticated control systems, make it possible to
adapt the settings according to the needs of the occupants [32]. The proliferation of
new information and communication technologies now makes it possible to considerably
improve our living environment by managing and controlling lighting, ventilation, and air
conditioning, in short, the entire infrastructure of a modern building. The implementation
of intelligent buildings brings more comfort and convenience to its residents, reduces
energy consumption, and mitigates our negative impact on the environment.

2.5. Smart Energy Systems

Smart energy systems represent one of the most attractive smart city opportunities.
Unlike smart grids, which primarily focus on the electricity sector, smart energy systems
focus on the comprehensive integration of more sectors, including electricity, cooling,
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heating, buildings, manufacturing, and transportation. They aim to transform existing
solutions into future renewable and sustainable energy solutions [33].

2.6. Smart Farming

Smart farming is an emerging concept in modern agriculture that refers to managing
farms using digital technologies such as IoT, soil scanning, drones, robots, edge and cloud
data management solutions, and AI [34,35]. It aims to increase the quantity and improve
the quality of crops and agricultural products while optimizing the human labor required
for production. When equipped with these technologies, farmers can remotely monitor
crops and field conditions without going into the field. In addition, they will be able to
make strategic decisions for their farms based on data collected from various devices.

Despite the promising and potential benefits that digital technologies bring to smart
cities, there are many challenges in the way of a successful digital transformation [36].
These challenges mainly relate to the aging infrastructure, which hampers the development
of many cities, security and privacy concerns with the proliferation of digital technologies,
and social inclusion, which requires the design of solutions that address all categories
of citizens and not only tech-savvy people. Addressing these challenges and concerns
requires the use of new technologies and the development of new data-driven urban
planning methods that challenge traditional models of urban development. The technology
and innovative spirit of the new generation of entrepreneurs are the main catalysts for
smart cities to be sustainable, safer, and more livable. These technologies and innovations
are dramatically changing the way residents, businesses and government entities interact
with each other for the benefit of all. Two promising technologies that are starting to make
their way into several smart city projects are Blockchain and edge AI, which can potentially
disrupt many of the areas above related to smart cities. They can make the various smart
city operations and initiatives safer, transparent, efficient, smart, and resilient, resulting in
more efficient and productive cities.

3. Edge AI and Federated Learning to Support Smart Cities
3.1. Edge AI Overview

Edge computing, sometimes referred to as IoT, is proliferating and is becoming an
essential component in most business strategies over the last few years [5,37–39]. IoT
devices, sensors, and smartphones transform many businesses from top to bottom. Further-
more, the emergence of artificial intelligence has been phenomenally stunning in its ability
to impact the operations at the network edge. Increased computing power at the edge
combined with the light deployment of machine learning and deep learning help make
edge devices extremely smart [10,40]. Edge AI enables devices to deliver real-time insights
and predictive analytics without sending data to remote cloud servers. Many businesses
are now taking advantage of this by deploying intelligent solutions in production. With the
various industrial IoT devices deployed in modern factories, manufacturers can be alerted
with issues in their supply chain and proactively avoid unplanned downtime [41]. Addi-
tionally, a small device on a street radar can now instantly recognize a car that is speeding,
the passengers in the vehicle, and whether the driver has a license or not [42].

Artificial intelligence (AI) with pre-trained models has the potential to empower smart
cities by permitting decision-makers to make informed decisions, which will benefit both
the city and citizens [43]. For instance, many smart city sectors will benefit from two typical
vision-based image processing tasks, image classification and object detection, which arise
in many edge-based AI applications [44–46].

AI continues to enter new segments with great promise at a high rate. Currently,
digital industries such as finance, retail, advertising, and multimedia have been the sectors
that have exploited AI the most. AI has created real value in these fields. However,
the significant and vital problems in several other areas remain unresolved. The solution
to the problems of cities concerning transport, energy and water supply, citizen security,
healthcare, and many others is to replace or upgrade old and ineffective technologies.
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New and AI-driven technologies have the potential to enable efficient transport systems,
clean energy, and efficient health systems and industry [47]. A critical element in these
areas is introducing and deploying intelligence “at the network edge” of high-speed and
broadband networks. The edge is the bulk of our world at present. Bringing intelligence
to the edge means that even the smallest devices deployed everywhere are capable of
detecting, learning from, and reacting to their environments. AI enables, for example,
devices on certain streets or public spaces in the city to make higher-level decisions, act
autonomously, and report significant flaws or improvements to affected users or the cloud.

Edge AI means that AI algorithms are executed locally on a hardware edge device [48,49].
The AI device can process its local data and make decisions independently without re-
quiring a connection to function correctly. The device must have sensors connected to a
small microcontroller unit (MCU) to use edge AI. The MCU is loaded with specific machine
learning models that have been pre-trained on certain typical scenarios that the device will
encounter. The learning process can also be continuous, allowing the device to learn as
soon as it faces new situations. The AI reaction can be a physical actuation on the device’s
immediate environment or a notification to a specific user or the cloud for further analysis
and assistance.

Recently, special-purpose hardware has emerged to accelerate specific compute- or
I/O-intensive operations at the edge. These edge hardware accelerators include Google’s
edge Tensor Processing Unit (TPU) [50,51], Nvidia’s Jetson Nano and TX2 edge Graphi-
cal Processing Units (GPUs) [52,53], Intel’s Movidius Vision Processing Unit (VPU) [54],
and Apple’s Neural Engine, which have emerged recently. They are explicitly designed for
edge computing to support edge AI applications such as visual and speech analytics, face
recognition, object detection, and deep learning inference.

Edge computing and edge AI encompass operations such as data collection, parsing,
aggregation, and forwarding, as well as rich and advanced analytics that involve machine
learning and event processing and actions at the edge. Edge AI will enable real-time opera-
tions, including data creation, decision making, and reaction time in milliseconds. These
operations are essential for monitoring public spaces with crowds of people, self-driving
cars, robots, monitoring machines in a factory, and many other areas. Edge AI will reduce
data communication costs and power consumption as edge devices process data locally
and transmit fewer data to the cloud, improving battery life, which is extremely important.

Smart cities are ideal for the use of edge computing and edge AI. Indeed, sensors and
actuators can receive commands based on local decisions without waiting for decisions
made in another distant place. Cities can use edge computing for video surveillance
applications and getting up-to-date data concerning the conditions of roads, intersections,
and buildings to take remedial actions before accidents occur. They also can use it for
controlling lighting, energy and power management, water consumption, and many more.
Municipalities and local governments can push the processing of urban IoT data streams
from the cloud to the edge, reducing network traffic congestion and shortening end-to-end
latency. By processing the data generated by edge devices locally, urban facilities can avoid
the problem of streaming and storing large amounts of data in the cloud, which impact
privacy and make them vulnerable.

3.2. Federated Learning at the Edge

Machine learning techniques typically rely on centrally managed training data, even
when the training process is performed on a cluster of machines. This process often takes
advantage of the characteristics of the overall training data set and the availability of
validation data sets to adjust several parameters. However, centralizing data manage-
ment for training is often not feasible or practical because of data privacy, confidentiality,
and regulatory compliance.

Privacy regulatory frameworks require that data holders maintain the privacy of
personal information and limit how to use the data. Examples of these frameworks include
the European Union’s General Data Protection Regulation (GDPR) [55] and the Health
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Insurance Portability and Accountability Act 1996 (HIPAA) [56]. These restrictions make
the management of central data repositories very expensive and a burden for data holders.

Federated learning (FL) is a learning approach that aims to solve the issues mentioned
above of centralized training data management and data privacy. It allows collaboratively
building a learning model without having to move the data beyond the firewalls of the
participating organizations [57,58]. Instead, as shown in Figure 2, an initial AI model,
hosted in a central server, is transferred to multiple organizations. Each organization trains
the AI mode with its data to obtain new weight parameters sent back to the central server.
The central server then uses any new weight settings from the participating organizations
to create an updated single model. Several iterations of this process may be necessary to
obtain an AI model good enough to be used in production. Several research efforts have
evaluated the performance of models trained by FL. They have found that they achieve
performance levels comparable to models trained on centrally hosted data sets and superior
to models that only use isolated data from a single organization [59,60].

Figure 2. Federated learning architecture.

4. Blockchain to Support Smart Cities’ Operations
4.1. Blockchain Overview

Blockchains are essentially shared databases that enable the participants, called nodes
in a network, to confirm, reject, and view transactions. They facilitate recording transactions
and tracking asset movements in a business network. Assets can be tangible, such as
property, cars, land, or intangible, such as patents and copyrights. Transaction data are
stored in a block-based structure, where blocks are linked to each other through a method
known as cryptographic hashing. Combined with the distributed and decentralized nature
of the blockchain ledger, this method makes each block of data virtually impossible to
change once it is added to the chain. Therefore, the blockchain distributed ledger is
cryptographically secure and immutable. It works in append-only mode and can only be
updated by consensus or peer-to-peer agreement. Blockchain is often viewed as a specific
subset of the larger universe of distributed ledger technology (DLT) [61]. The distributed
ledger makes Blockchain technology resilient since the network does not have a single
point of vulnerability. In addition, each block uniquely connects to previous blocks via a
digital signature. Making a change to a record without disrupting earlier records in the
chain is impossible, making the information tamper-proof. Allowing its participant to
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transfer assets over the Internet without a centralized third party is the essential innovation
in Blockchain technology.

Blockchain technology emerged over the last few years as the underlying technology
for Bitcoin. The consequences of the subprime crisis in 2008 reduced confidence in the
existing financial system [62]. Satoshi Nakamoto wrote a white paper describing the
“bitcoin protocol”, which used a distributed ledger and consensus to compute algorithms
in the same year. The protocol was authored to facilitate direct P2P transactions and
disintermediate traditional financial intermediaries [63].

Since the birth of the Internet, many attempts to create virtual currencies have failed
due to the double-spending problem. The current solution to eliminate the double-spending
problem is introducing “trusted intermediaries” such as banks. Blockchain technology
solves the double-spending problem without these trusted intermediaries, making it easier
to securely move assets such as virtual currencies over the Internet. Other areas other than
currencies could benefit from this concept, making Blockchain technology very promising.

As illustrated in Figure 3, the blockchain architecture allows participants in a business
network, for example, to share an updated ledger using peer-to-peer replication each time
a transaction occurs. Each participant acts as a publisher and subscriber and can receive
or send transactions to other participants, and data are synchronized across the network.
The blockchain network eliminates duplication of effort and reduces the need to use the
services of intermediaries, making it economical and efficient. Using consensus models to
validate transaction information also makes the network less vulnerable. Transactions are
secure, authenticated, and verifiable.

Figure 3. Network of business parties and intermediaries without and with Blockchain. (a) Trans-
actions between Org. A, B, and C involve intermediaries. (b) Participants share an updated ledger
using P2P replication each time a transaction occurs.

4.2. Blockchain Benefits

The blockchain network stores data in a tamper-proof form, and it permits valid users
only to append data to the blockchain. Understanding the primary attributes, depicted in
Figure 4, of Blockchain that make this technology unique is essential to comprehend its
full potential.

• Distributed shared ledger: This is a distributed append-only system shared across
the corporate or business network, making the system more resilient by eliminating
the centralized database, which is a single point of failure.

• Consensus: A transaction is only committed and appended to the ledger when all
validating parties consent to a network verified transaction.

• Provenance: The entire history of an asset is available over a blockchain.



Sustainability 2022, 14, 7609 9 of 30

• Immutability: Records are indelible and cannot be tampered with once committed to
the shared ledger, thereby making all information trustworthy.

• Finality: Once a transaction is completed over a blockchain, it can never be reverted.
• Smart contracts: Code is built within a blockchain that computers/nodes execute based

on a triggering event. Essentially, an “if this then that” statement can be auto-executed.

Figure 4. Blockchain benefits.

Blockchain has the potential to disrupt any form of transaction that requires informa-
tion to be trusted. With the advent of Blockchain technology, all trusted intermediaries
are the subject of disruption in one form or another, and Blockchain technology solves the
problems associated with the way information-related transactions occur today. Blockchain
creates a permanent and unalterable ledger of information by validating transactions
through its distributed network of peers.

4.3. Types of Blockchain Networks

Blockchain networks are either public or private. A public blockchain network op-
erates in a decentralized open environment with no restriction on the number of people
joining the network, and the private blockchain network functions within limits defined
by a control entity. The intrinsic technology of both networks remains the same; however,
the dynamics and utility of closed and open networks are different. This difference plays
out based on the incentives for nodes to remain a part of the network. The key idea is that
in a public blockchain, the consensus mechanism rewards each participant for staying a
part of the network, and in a private blockchain, the need for creating this incentive does
not exist.

A genuinely transparent public registry’s democratized nature may not be helpful
to an organization or corporate network since the parties are known, and there is a level
of understanding of the members who can participate in the network and transactions.
The consensus is that while public blockchains work well for specific applications such as
cryptocurrency (bitcoin) based transactions, the most important application of Blockchain
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technology as an enterprise solution would not be possible than with the increased regula-
tory control associated with a private Blockchain ecosystem.

Blockchain technology is still emerging, and therefore its different applications evolve
continuously and iteratively. An ecosystem where multiple private blockchains interact
with each other on a publicly distributed network may address the issue of public vs.
private blockchain networks. In that shared ecosystem, public and private blockchains
work in symbiosis in the same way private networks interact with the Internet.

Blockchain technology is being applied in numerous domains of smart cities, such as
healthcare, power grid, transportation, supply chain management, education, manufactur-
ing, the construction industry, and many others. Several works survey and describe the
application of Blockchain in these areas [64–66].

4.4. Blockchain Suitability

Blockchain technology is only suitable when multiple parties share data and need a
common information view. However, sharing data is not the only qualifying criteria for
Blockchain to be a viable solution. The following situations make Blockchain a viable and
efficient solution:

• A transaction depends on several intermediaries whose presence increases the trans-
action’s time, cost, and complexity.

• Reducing delays and speeding up a transaction is incredibly advantageous for the business.
• Transactions created by the business participants depend on each other.
• Actions undertaken by multiple participants should be recorded and involved vali-

dated data updated.
• Building trust between the participants is necessary for the business.

To sum up, Blockchain technology is certainly not a solution to all transaction issues.

5. Methodology

This review paper uses a qualitative research approach to synthesize the relevant litera-
ture on the article’s subject. Given the descriptive nature of the present study, the qualitative
approach allows for reviewing and synthesizing a large amount of pertinent literature.
A systematic review strategy was adopted without claiming to be exhaustive in pursuing
this objective.

5.1. Search Criteria Formulation

The search criteria used were:

• C1: (“Edge AI” OR “edge intelligence”) AND “Blockchain”;
• C2: (“Edge AI” OR “edge intelligence”) AND (“smart mobility” OR “smart

transportation”);
• C3: “Blockchain” AND (“smart mobility” OR “smart transportation”);
• C4: (“Edge AI” OR “edge intelligence”) AND “smart energy”;
• C5: “Blockchain” AND “smart energy”.

The purpose of this review paper is to answer the following research questions.

• RQ-1: What are the applications of edge AI and Blockchain regarding smart mobility
and smart energy? This research question intends to identify the state-of-the-art
research regarding the applications of edge AI and Blockchain technology in these
two key areas of a smart city.

• RQ-2: What are the potential open research issues and future directions in edge AI and
Blockchain implementation in these two vital areas of a smart city? This question aims
to define the open questions and research directions for the wide adoption of edge AI
and Blockchain to address the challenges in implementing smart mobility and smart
energy. Consequently, answering this question encourages researchers to understand
the current research findings and trends in edge intelligence and Blockchain.
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5.2. Source Selection and Approach

The review included articles published between 2017 and 2021. A search for relevant
research on the topic of this review was conducted using the following databases and search
engines: (i) Scopus, (ii) ScienceDirect, and (iii) Google Scholar, which provide excellent
coverage of the study topics. The search used the search criteria above and revolved around
the terms “Edge AI” and “Blockchain” while including synonyms as additional terms such
as “edge intelligence” and “distributed ledger” to increase the search results.

Most of the papers reviewed are journal articles, with some conference papers also
included. Papers were selected based on the quality of the journal, relevance to the topic,
and filtered by date of publication. Edge intelligence and Blockchain are still in their
infancy and are evolving rapidly. Article selection was based on titles, keywords, abstracts,
and conclusions relevant to the topic. References cited in this review paper published
before 2017 mainly concern the background and literature review on smart city areas and
challenges, edge computing, and Blockchain.

The initial search for the five search criteria (C1–C5) found 417 references from Scopus,
533 from ScienceDirect, and 931 from Google Scholar (review articles). However, the total
number of papers was reduced to 150 after the title and abstract screening, excluding,
and eliminating duplicates. Afterwards, the papers were classified into four main classes:
background and fundamentals, edge AI and Blockchain convergence, applications of edge
AI in smart mobility and smart energy, and applications of Blockchain in smart mobility
and smart energy.

6. Transformative Potential of Edge AI and Blockchain in Smart Cities

Modern cities struggle to automate many of their processes and coordinate them with
various stakeholders. Citizens expect their governments and smart city entities to respond
quickly to their demands and needs while ensuring transparency, fairness, and account-
ability to the public. Success in these endeavors, especially in the digital age, requires that
up-to-date data be collected and processed in near real-time. Much of the challenge is in the
management and processing of data. Unfortunately, traditional centralized databases and
data management tools are not enough to meet the new challenges that smart cities face.
The data exchanged between the various city actors can be tampered with. The single point
of failure of the standard database client-server model compromises data security, making
transparency challenging to achieve when city databases are centralized. Additionally,
using centralized databases results in slow and inefficient operations such as registering
identifications (IDs) and electoral voting.

Smart cities and government entities can address the above issues by taking advantage
of the recent advances in edge AI and using an innovative data management structure.
This data structure uses distributed ledgers and cryptography. Furthermore, they can offer
citizens smart on-demand services while ensuring data privacy and security, unprecedented
transparency, fairness, and accountability [67,68]. Here, we discuss the potential of these
two technologies in two crucial subsystems of a smart city, smart mobility, and smart energy
management, and review relevant research works on their usage in these areas.

6.1. Smart Mobility

Modern cities suffer from major issues such as traffic congestion, emissions, and safety.
Without innovative solutions, mobility problems will intensify due to the continued growth
of the population, which leads to an increase in the number of vehicles on the roads,
the kilometers traveled, and consequently the increase in emissions. In response, the mo-
bility industry is developing a fascinating range of innovations designed for urban roads,
such as intelligent traffic and parking management systems, mobility as a service, and car-
pooling solutions. “Smart transport” often refers to the use of new digital technologies
and data-driven management techniques in transport systems to address the mobility
problems [28,69]. The phenomenal technological developments in recent years, which have
brought about significant changes in all aspects of our life, promise to improve transport
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in cities in all its forms. Smart transport, being a dream, is becoming more and more a
reality. We are seeing more and more applications that integrate live data and feedback
from multiple sources to gain a holistic and real-time view of the traffic status, helping
stakeholders better manage road traffic and deliver quality services to road users. Other
innovations that contribute to smart transport and mobility include:

• The development of new models of shared mobility;
• The development of more reliable and convenient public transport;
• The development of applications allowing to alert drivers of hazardous situations quickly;
• The development of navigation applications that allow drivers to find in real-time the

best route possible;
• The ability to adjust road signals and speed limits in real-time based on current

traffic conditions;
• The development of new concepts of electric, connected, and autonomous vehicles.

Because of the costly computations of traffic management systems, the improvement
of the real-time processing of data is one of the best ways to optimize traffic management
systems [27]. Traffic data are obtained from various sensors and IoT devices deployed
on urban roads and vehicles by transportation systems. Intelligent transport systems are
evolving towards intensive use of edge computing and edge AI technologies, especially
for traffic management processes [70]. Gigabytes of sensory data are analyzed, filtered,
and compressed locally before being transmitted through IoT edge gateways to multiple
systems for later use. Edge processing for traffic management solutions allows one to save
on storage, network expenses, and operating costs.

6.1.1. Edge AI for Traffic Monitoring and Management

Traffic management is an undeniable component of smart mobility, which combines
different measures to preserve traffic capacity, reduce congestion at roads and intersections,
and improve the safety and reliability of the overall road transport system. Modern traffic
management systems are composed of advanced sensing and monitoring technologies,
management tools, and a set of intelligent applications to achieve these goals. These tech-
nological solutions prepare smart cities for future cutting-edge technological developments,
in particular the proliferation of autonomous vehicles, connected vehicles, and the large-
scale deployment of Fifth Generation (5G) cellular networks and edge AI systems [71].
Several works investigated edge computing-based solutions for traffic management in
smart cities. Barthélemy et al. [70] designed a visual sensor for monitoring the flow of
bicycles, vehicles, and pedestrians traffic. Their complete edge-computing-based solution
aims to deploy multiple visual sensors and collect data through a framework called Ag-
nosticity. The visual sensor hardware uses the NVIDIA Jetson TX2 on-board computing
platform to perform all computations onboard. Its software pairs YOLOv3 [72], a popular
convolutional deep neural network, with Simple Online and Realtime Tracking (SORT) [73],
a real-time tracking algorithm. The metadata are then extracted and transmitted using
Ethernet or LoRaWAN protocols. The sensor provides a privacy-compliant tracking so-
lution by transmitting only metadata instead of raw or processed images. Municipalities
can combine the sensors with the existing Closed-circuit television (CCTV) infrastructure,
and this integration helps optimize infrastructure usage and add value to the network by
leveraging the vast video data collected. Besides, the Long Range Wide Area Network
(LoRaWAN) protocol facilitates the deployment of additional cameras in areas where
conventional internet connectivity is not available.

Dinh et al. [74] proposed an inexpensive and efficient edge-based system integrating
object detection models to perform vehicle detection, tracking, and counting. They created
a Video Detection Dataset (VDD) in Vietnam and then examined it on two different types
of edge devices. They evaluated their proposed traffic counting system in a Coral Dev TPU
Board and then a Jetson Nano GPU Board and implemented several models in the two
boards. The MobileDet 320 × 320 SSD model implemented in the Coral Dev TPU Board
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for the vehicle detection context achieves an accuracy of 92.1%, and the proposed method
achieves a maximum inference speed of around 26.8 Frames per second (FPS) on VDD.

Additionally, Kumar et al. [75] investigated how to detect and track vehicles effectively.
Their proposed method detects tracks and extracts vehicle parameters for speed estimation
using a single camera. They used the Automatic Number Plate Recognition (ANPR) system
to select keyframes where a speed limit violation occurs. The average detection accuracy
obtained is approximately 87.7%. The proposed approach uses cropping operations to
minimize the scope of any detection of false positives on both sides of the road. The average
detection accuracy obtained is 87.7%. The proposed approach tracks vehicles moving in
one direction but fails to detect vehicles coming from opposite directions.

Likewise, Song et al. [76] proposed a vision-based vehicle detection and counting
system for highways. The proposed method is not expensive, is highly stable, and does not
require a significant investment in terms of monitoring equipment. They used a “Vehicle
dataset” to train a YOLOv3 network to obtain the vehicle object detection model. Image
segmentation and YOLOv3 allowed them to detect three types of vehicles: cars, buses,
and trucks. A convolutional neural network and the Oriented FAST and Rotated BRIEF
(ORB) algorithm [77] were used to extract the features of detected vehicles. The authors
stated that vehicles’ detection speed is fast, and its accuracy is high. Traffic footages taken
by highway surveillance video cameras have good adaptability to the YOLOv3 network.
Multi-object tracking uses the object box detected in vehicle detection using YOLOv3.
The ORB algorithm uses the Features from the Accelerated Segment Test (FAST) to detect
feature points, and the Harris operator performs corner detection.

In many cities, a segment of a public or private road can be used to load and unload
goods at specific times or at any time. Parking signs and road markings are typically used
to warn drivers of parking regulations. These areas are known as loading bays. Parking
inspectors generally monitor these areas, and motorists found violating the rules can be
fined. These restrictions on urban freight deliveries require establishing a loading bay
system and dividing the last mile delivery into driving and walking segments. Loading
bays are sometimes occupied, requiring rerouting delivery vehicles and searching for an
alternative loading bay. The authors in [78] introduced a fuzzy clustering method to test
different optimization approaches and make the system flexible enough to accommodate
this problem. We believe that edge AI and computer vision can help address where and
how many loading bays should be used to perform this transshipment and execute last-mile
delivery most efficiently.

6.1.2. Blockchain for Smart Mobility

With the population growth of cities and the rapid increase in demand for smart
transport and mobility solutions, there is an urgent need for innovative solutions that
use existing infrastructure in cities and on external roads and highways between cities.
Smart mobility technologies aim to provide many new applications and perspectives for
efficient and safe movement on roads while reducing Carbon dioxide (CO2) emissions and
improving air quality [69]. Transportation systems management is a challenging endeavor
in many modern cities [79].

Blockchain technology can improve information sharing between different stake-
holders in cities, improve the robustness of the overall transport system and facilitate
communication between vehicles, contact with road units, and transport traffic control
centers. In addition, Blockchain in the transport sector also can reduce the processing time
of transport-related transactions, approvals, and exchange of documents and speed up
customs clearance. This section summarizes relevant work on Blockchain-based solutions
for smart transportation and mobility. Figure 5 depicts the main areas where Blockchain
has been used to contribute to the smart mobility goals, and Table 1 summarizes the focus
area of each of the reviewed works and the Blockchain mechanisms they used.
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Figure 5. Blockchain for smart mobility.

Table 1. Summary of Blockchain-based smart mobility literature review.

Ref. Focus Blockchain Used Mechanisms

[80] Blockchain as the operating system of smart cities, with transportation
management as one of the main focus areas Etherium-like Blockchain, smart contracts

[81]
Blockchain in vehicular communications, in particular, a sys-
tem for revocation and accountability in a Security Credential
Management System.

Distributed Ledger, hierarchical consensus

[82] A blockchain-based vehicular network architecture in smart city.
Distributed blockchain vehicular network, Miner
Vehicular Node, revocation authority, Block
Node Controller

[83] Reputation systems in vehicular networks based on Blockchain
technology.

Vehicular blockchain, Miner Vehicle, Trusted Au-
thority, distributed consensus

[84]
Blockchain-based key management scheme to transfer security keys
between distributed security managers in heterogeneous Vehicular
Communication Systems.

Blockchain structure without the third-party au-
thorities, Transaction format, Mining, and Proof
algorithm.

[85] Blockchain-based decentralized Key Management Mechanism
for VANET.

Vehicular blockchain network, Ethereum-based
Smart contract, mining functions.

[86] Decentralized Trust Management system in vehicular networks based
on Blockchain technology.

Vehicular blockchain, Miner Vehicle, Trusted Au-
thority, distributed consensus

[87] Decentralized Trust Management system in vehicular networks based
on Blockchain technology and the Tendermint consensus protocol.

Vehicular blockchain, Tendermint( consensus with-
out mining), BFT based consensus.

[88] A location privacy protection system based on trust management in
Blockchain-based VANET.

Vehicular blockchain to record the trustworthiness
of vehicles, PBFT consensus algorithm.

[89] A Blockchain-based system combined with auctions to enable BEVs
to trade energy using day-ahead and real-time trading markets.

Blockchain to record trading contracts, Smart
contract.

[90]
Roaming charging process of electric vehicles and Blockchain technol-
ogy to support user identity management and record energy transac-
tions securely.

Distributed ledge to record energy transactions

[91] Blockchain to mitigate trust Issues in Electric Vehicle Charging. Hyperledger Fabric, smart contract.
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Bagloee et al. [80] suggested that to reduce traffic congestion and achieve system
equilibrium, traffic authorities may issue a limited number of mobility permits, distributed
equally to all drivers, which may be tradable in an open market. Such a progressive
scheme is now possible in light of the ever-increasing use of various kinds of sensors,
cameras, RFIDs, radars, and lidars. Blockchain technology and smart contracts can be
used as a valid, promising, and feasible solution for implementing the tradable part of
this scheme. The authors also suggested that drivers and passengers use the Tradable
Mobility Pass (TMP) equally to pay parking fees, public transport tickets, car registration
fees, and highway tolls. An Ethereum-like blockchain and “smart contracts” can be used
to program their mobility credits for trading in the open market and spending against the
above payments and mileage. They can also be used to trade TMPs en-route by permitting
vehicles to communicate with each other and place bids for faster routes at higher prices.
Blockchain can also facilitate communication between connected vehicles and the road
infrastructure by considering data exchange requests as transactions to be stored and
retrieved from a blockchain database.

Additionally, Blockchain can provide safe, secure, and well-informed access to driving
behavior information for driving license agencies and insurance companies, which typically
know little about driving behavior. Insurance companies’ predictions are based on claims
history [92]. Access to data from connected vehicles can help them set insurance premiums
commensurate with drivers’ risk levels.

Blockchain in vehicular communications. Some works proposed Blockchain-based
solutions to help create a secure, trusted, and distributed autonomous Intelligent Trans-
portation System (ITS) capable of controlling and managing physical and digital assets.
At the same time, most ITSs were centralized [93]. The authors in [81] described the design
of a Blockchain-based decentralized alternative to existing security credential manage-
ment systems, which aimed to get rid of the need of using the services of a centralized
trusting authority.

Vehicle-to-Everything (V2E) communications are an essential component in any
ITS. They help provide information on road accidents, road conditions, traffic jams, al-
lowing road drivers to be aware of critical situations, thus enhancing transport safety.
Sharma et al. [82] proposed a distributed transport management system that allows ve-
hicles to share their resources and create a network where value-added services, such
as automatic gas refill and ride-sharing, can be produced. Additionally, Yang et al. [83]
proposed reputation systems in vehicular networks based on Blockchain technology.

Lei et al. [84] proposed a Blockchain-based key management scheme to transfer
security keys between distributed security managers in heterogeneous Vehicular Com-
munication Systems (VCS). The blockchain structure enables secure key transfer between
participating network security managers and eliminates the need for a central manager or
third-party authority.

Likewise, the authors in [85] proposed a decentralized key management mechanism
for Vehicular Ad-hoc Networks (VANETs) with Blockchain to automatically register, update,
and revoke the user’s public key. They also described a lightweight mutual authentication
and key agreement protocol based on the bivariate polynomial. Additionally, they analyzed
the security of their proposed mechanism for managing distributed keys and have shown
that it can prevent typical attacks, including insider attacks, public key tampering attacks,
Denial-of-Service (DoS) attacks, and collusion attacks.

Additionally, Yang et al. [86] proposed a decentralized Blockchain-based trust man-
agement system in vehicular networks. Vehicles can query the trust values of neighboring
vehicles and assess the credibility of received messages. The RSUs aggregate the confidence
values based on evaluations generated by the messages’ recipients. Using Blockchain, all
RSUs contribute to maintaining a reliable database.

Similarly, Arora et al. [87] proposed a Blockchain-based trust management system
for VANETs based on the Tendermint protocol to eliminate the possibility of malicious
nodes entering the network and reduce power consumption. Vehicles assess the messages
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received from neighboring vehicles using the gradient boosting technique (GBT). Based
on the assessment results, the message source vehicle generates the ratings, uploads them
to RSUs, and calculates the trust offset value. All RSUs maintain the trust blockchain,
and each RSU adds its blocks to the trust blockchain.

In another work, Luo et al. [88] proposed a location privacy protection system based
on trust in Blockchain-based VANET. Their trust management approach uses Dirichlet
distribution to allow requesters to cooperate only with vehicles they trust. In addition,
they also developed the blockchain data structure to record the trustworthiness of vehi-
cles on publicly accessible blocks promptly to allow any vehicle to access historical trust
information of counterparties whenever necessary.

Blockchain for Electrical Vehicles. Battery Electric Vehicles (BEVs) are known for
their low operating costs because they have fewer moving parts that require maintenance.
In addition, they are very environmentally friendly as they do not use fossil fuels. Modern
BEVs use rechargeable lithium-ion batteries, which have a longer life and retain energy
very well with a self-discharge rate of only 5% per month. In many cities around the
world, Charging Stations (CSs) are increasingly deployed in various geographic locations,
residential garages, and public/private parking lots to meet the energy needs of BEVs,
increasing the load on electrical distribution systems.

Intelligent car parking lots offer BEVs parking and recharging services during their
parking time for a fee. Customers of these parking lots want fast charging services at low
cost, while parking lot operators aim to maximize their profit. BEV owners increasingly
tend to purchase power from other electric vehicles to reduce recharging costs and reliance
on the primary electricity grid.

Huang et al. [89] proposed a Blockchain-based system to enable BEVs to trade energy
using day-ahead and real-time trading markets. Users of BEVs submit their price offers
to participate in a double auction. Then, the operator of the charging system performs
intelligent matching of the different offers to reduce the impact on the power grid by
programming the charging and discharging behavior of electric vehicles taking into account
the satisfaction of EV users and the social benefits. The operator of the charging system
uploads the trading contract to the blockchain once the trading results are cleared. Case
studies have demonstrated the effectiveness of the proposed model. Ferreira et al. [90]
studied the roaming charging process of electric vehicles and used Blockchain technologies
to support user identity management and record energy transactions securely. They used
off-chain cloud storage to record transaction details. Blockchain-based digital identity
management avoids charging cards used as an authentication process in charging systems.
It can achieve interoperability between different countries, allowing a roaming process of
BEV charging. In [91], Gorenflo et al. described a methodology for the design of Blockchain-
based systems. They have demonstrated its usefulness in creating a system for recharging
electric vehicles in a decentralized network of recharging stations. The proposed system
aims to solve the problem of trust between the different actors of the system, including
customers, providers of electric vehicle charging services, and property owners. Trust
problems arise from the potential for tampering with transaction data. The blockchain
ledger in the proposed solution contains a record of every transaction and acts as an
immutable audit trail.

6.2. Smart Energy

In recent years, the term “Smart Energy” has been used more and more to mean an
approach that goes beyond the concept of “Smart Grid.” While the smart grid concept
mainly focuses on the electricity sector, smart energy embodies a holistic approach that
includes many sectors (electricity, heating, cooling, buildings, industry, and transport). It
allows the development of affordable solutions for transforming existing systems into future
renewable and sustainable energy solutions [33]. Smart energy solutions typically use
various disruptive technologies, including artificial intelligence, deep learning, Blockchain
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and distributed ledger technologies, distributed sensing and actuation technologies, and,
recently, edge computing and federated learning technologies.

6.2.1. Edge AI for Smart Energy Management

Several research efforts are increasingly studying and developing smart energy solu-
tions. Shah et al. [94] reviewed several research works that use different energy optimiza-
tion techniques in smart buildings and rely on IoT solutions. Their study aimed to identify
algorithms and methods for optimized energy use and edge and fog computing techniques
used in smart home environments. From an initial batch of 3800 papers, they found only
56 articles relevant to their study. The detailed analysis of these papers revealed that many
researchers had developed new optimization algorithms to optimize energy consumption
in smart homes.

Zhang et al. [95] proposed an IoT-based green energy management system to improve
the energy management of power grids in smart cities. With the implementation of IoT,
smart cities can control energy through ubiquitous monitoring and secure communications.
The proposed system uses deep reinforcement learning. The authors’ results show that IoT
sensors help detect energy consumption, predict energy demand in smart cities, and reduce
costs. Aided by a systematic learning process, the energy management system can balance
energy availability and demand by stably maintaining grid states.

Abdel-Basset et al. [96] proposed a smart edge computing framework to achieve effi-
cient energy management in smart cities. They reviewed relevant work on data-driven load
forecasting (LF) techniques used in real-life scenarios such as smart buildings to predict the
day’s energy demand in advance and make appropriate energy demands on smart grids.
These short-term forecasts help to avoid energy shortages and promote fair consumption.
They classified these techniques into two classes: statistical or machine learning-based
techniques and deep learning-based techniques. They introduced a new deep learning ar-
chitecture, called Energy-Net, to predict energy consumption by integrating the spatial and
temporal learning capability. They validated the robustness of their proposed architecture
through a comparative analysis of public datasets with recent cutting-edge approaches.
According to the authors, the trained Energy-Net system is deployable on resource-limited
edge devices to forecast potential energy needs sent as a request to the smart grid through
cloud-fog servers. As a result, the smart grid supplies the demanded energy to different
smart city sectors. Energy management is, therefore, performed efficiently.

The authors in [97] studied and proposed an energy management framework based
on edge computing for a smart city. They developed an energy scheduling scheme based
on deep reinforcement learning to deal with the intermittency and uncertainty of energy
supplies and demands in cities for a long-term goal. They analyzed the efficiency of the
energy scheduling scheme in the cases with and without edge servers, respectively. Their
results demonstrate that the proposed model can achieve low energy costs while exhibiting
lower delays than traditional schemes.

6.2.2. Blockchain for Smart Energy Management

Blockchain technology in the energy sector is up-and-coming. It can significantly
reduce energy trading costs, increase process efficiency, and deliver customer cost benefits.
It can establish direct interactions between all the actors involved, which guarantees the
optimal use of existing production capacities while offering energy at the best price. The
application of Blockchain in emerging smart energy systems in smart cities has recently
received a great deal of attention. In addition to the BEV charging we mentioned, there is
an increasing need for decentralized energy management, energy trading platforms devel-
opment, and secure data and financial transactions between the different actors involved.
This need arises from the proliferation of new devices, technologies, renewable energy
resources, and electric vehicles. Additionally, there is a growing interest worldwide in using
Blockchain technologies to create a secure and more resilient environment for the smart
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energy industry. Several research efforts investigated the opportunities, benefits, challenges,
as well as drawbacks of Blockchain technologies in the context of smart energy [98–100].

This section reviews some efforts regarding the use of Blockchain in smart energy
systems. We do not intend to provide a full survey. Andoni et al. [101] reviewed and ranked
about 140 Blockchain-based projects in the energy sector. Additionally, the authors in [102]
reviewed several research works regarding the applications of Blockchain technology in
smart grids. They categorized them in decentralized energy management, energy trading,
BEVs, financial transactions, cybersecurity, testbeds, environmental issues, and demand
response (DR). A common aspect of most of the efforts is the usage of Blockchain to address
decentralized energy management, energy trading, transparency, and its perceived benefits
to system security. However, system security and user privacy are typically dependent on
the type of blockchain used. Table 2 summarizes these efforts.

Table 2. Summary of Blockchain-based smart energy literature review.

Ref. Focus Blockchain Used Mechanisms

[98] Distributed management of DR in smart grids Smart contracts, consensus-based DR validation
approach

[99] Smart energy trading Smart contracts

[100] P2P energy and carbon trading pay-to-public-key-hash with multiple signatures to
secure transaction

[101] Review of challenges of Blockchain technology in the energy sector

[102] Review of blockchain in future smart grids

[103] Review of blockchain applications in different areas of a smart city,
including smart energy

[104] Automated energy DR, P2P energy trading Smart contracts, noncooperative game for consump-
tion strategy to reach consensus

[105] Distributed energy system (short review) Smart contracts, consensus

[106] Federated power plants with P2P energy trading

[107] Distributed energy management in a multi-energy market en-
hanced with blockchain Smart contracts, consensus

[108] Distributed energy exchange Smart contracts

[109] Microgrid energy market, P2P energy trading

[110] Electricity Trading for Neighborhood Renewable Energy P2P Blockchain network

[111] Smart homes energy trading Ethereum’s smart contracts, consensus

[112] P2P solar energy market Auction mechanism in the smart contracts.

[113] P2P Energy Trading
Ethereum-based blockchain, Smart contracts, Dis-
tributed consensus for verification and group
management

[114] Federated Learning-based P2P Energy Sharing assisted with
Blockchain smart contracts for energy demand prediction

[115] Electrical energy transaction ecosystem between smart homes pro-
sumers and consumers, P2P energy trading Smart contracts (energy tags)

[116] Review of applications of smart communities, including energy
trading in ITS using blockchain. Smart contracts, miners, consensus.

Decentralized Energy Management. The ever-growing deployment of renewable
energy systems in smart grids highlights the need to develop distributed energy manage-
ment systems and trigger fundamental changes in energy trading [117,118]. A large body
of literature has investigated the usage of Blockchain technologies to ease decentralized
energy management according to the P2P model used by Blockchain [103–106,119].
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Real-time energy management has the potential to resolve the impact of various uncer-
tainties in the energy market, provide instant energy balance and improve business returns.
Wang et al. [107] proposed a bidding strategy for the energy market, with multiple partici-
pants, which uses an adaptive learning process that incorporates a reserve price adjustment
and a mechanism of dynamic compensation. Participants perform bid adjustments based
on adaptive learning leveraging real-time market information to increase transaction rate
and maximize profits. Blockchain technology guarantees the transparent and efficient
performance of the presented bidding strategy. A decentralized Blockchain application
showed that the system could achieve real-time energy management and dynamic trading
in practice.

Energy trading. Recent years have seen the high penetration of renewable energy
systems in smart grids and homes. However, complex energy trading and complicated
monitoring procedures are obstacles to developing renewable energies. Energy trading
involves various actors, including residential consumers, renewable energy producers,
BEVs, and energy storage, which can participate in a Blockchain-based market for energy
trading with the roles of prosumer and consumer. Actors propose their energy costs due to
their resources and capabilities, which leads to a competitive energy market. Therefore,
the blockchain can facilitate energy trading and data transactions while guaranteeing
transaction security, improving transparency, and easing financial transactions. The data
flow between prosumers and consumers without human involvement [108].

A significant body of research has studied and proposed Blockchain-based networks
to enable energy trading and related transactions. For example, the authors in [109,110]
have studied renewable energy developments, including wind and solar power, in smart
homes. They proposed to use Blockchain technology to trade energy between smart homes
and increase their financial benefits.

Additionally, Kang et al. [111] investigated energy trading between smart homes
using Blockchain technology. Smart homes store energy in energy storage, and consumer
nodes equipped with miners monitor energy consumption. Therefore, if the stored energy
is not sufficient to power the loads, the additional energy is purchased from the prosumer
nodes by having Ethereum smart contracts manage the energy trade according to the
following rules:

• Energy trading conditions should be specified to permit energy exchange between
prosumers and consumers.

• Prosumers and consumers should determine price and exchange procedures before-
hand, and the prosumers should complete the proof-of-work.

• If a consumer’s stored energy falls below a certain level, her home miners should send
energy trading requests to appropriate prosumers.

• Energy trading takes place when consumer requirements match prosumer conditions.

It is widely expected that the global demand for clean and stable energy sources will
continue to increase over the coming decades. With the recent penetration of distributed
resources into energy trading, communities can take advantage of cheaper electricity prices
while supporting green energy locally. However, this poses new challenges mainly in the
auction process to ensure individual rationality and economic efficiency, mitigated with the
help of Blockchain technology. Lin et al. [112] studied the application of P2P energy trading
and Blockchain technology in the development of photovoltaic (PV) units. They proposed
a P2P energy trading model using a Discriminatory and Uniform k-Double Auction (k-DA).
They verified the financial benefits of the proposed model through simulation.

The authors in [113] have exploited the opportunities offered by Blockchain in building
the prosumer group in the context of P2P energy trading. They proposed a Blockchain-
assisted adaptive model, named SynergyChain, to improve the scalability and decentral-
ization of the prosumer aggregation mechanism in the context of P2P energy trading.
The model showed that the coalition of multiple energy prosumers through aggregation
outperformed the case in which individual prosumers participated in the energy market.
They implemented a reinforcement learning module that decides whether the system
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should act as a group or independently. The complete analysis using the hourly energy
consumption dataset showed a substantial improvement in system performance and scal-
ability compared to centralized systems. Furthermore, their system worked better with
the learning module, in terms of cost-effectiveness and performance, than without it. In
another work [114], the authors proposed FederatedGrids, a platform that uses federated
learning and Blockchain for P2P energy trading and sharing. It creates a collaborative
environment that maintains a good balance between the participants of the different micro-
grids. The blockchain helps to ensure trust and privacy between all participants. Smart
contracts and federated learning allow the platform to predict future energy production
and system load, thus allowing prosumers to make optimal decisions related to their energy
sharing and exchange strategies.

Smart cities can significantly benefit from Blockchain capabilities to maximize energy
efficiency and improve energy resource planning and management. Blockchain-based
networks can directly connect multiple energy resources and household appliances, thereby
providing users with high-quality, inexpensive, and efficient energy [115]. They can help
regulate the distribution and transformation of energy in smart grids, bringing more
transparency to energy transactions [116].

7. Edge AI and Blockchain Convergence

Several research efforts studied the convergence between Blockchain and edge comput-
ing without considering or giving details about the AI component at the edge [68,120–126].
However, as AI techniques further proliferate at the edge in various smart city systems
(healthcare, transportation, power grid, etc.) and ensure huge benefits, they also introduce
increased privacy and security threats. Therefore, robust security measures are needed
to protect data and AI models at the edge. These measures include security features for
data storage, encryption, data dissemination, and key/certificate management. As we
discussed earlier, edge AI and Federated Learning are emerging technologies for build-
ing smart latency-sensitive services at the edge while protecting data privacy. On the
other hand, Blockchain technology shows significant possibilities with its immutable,
distributed, and auditable data recording for safeguarding against data breaches in a
distributed environment.

The convergence between Blockchain and AI is attracting much interest in academia
and industry to solve many challenging problems to manage effectively a few years ago.
The characteristics of blockchain technology and its decentralized architecture, which we
discussed in Section 4.1, can help build robust and secure AI applications. Blockchain
attributes of immutability, provenance, consensus, and transparency enable secure sharing
of AI training data and pre-trained AI models using a permanent and unalterable record
of AI data and models. Secure sharing of AI data and models is associated with increased
trust in AI models and the data they work with.

More and more research efforts study the convergence of edge AI and Blockchain.
Table 3 summarizes those efforts. Jiang et al. [127] argued that conventional approaches
for object detection that rely on classic and connectionist AI models are not adequate to
support the large-scale deployment of the Visual Internet of Vehicles (V-IoV). On the other
hand, edge intelligence, which integrates edge computing and AI, demonstrated a balance
between efficiency and computational complexity. Edge AI involves training learning
models and analyzing V-IoV data, reducing latency, improving time to action, and mini-
mizing network bandwidth usage. Object detection tasks can be offloaded and executed
on Roadside Units (RSUs) using the edge’s storage and computing power capabilities.
The authors proposed an edge AI framework for object detection in the V-IoV system
and a You Only Look Once (YOLO)-based abductive learning algorithm for robust and
interpretable AI. The abductive model combines symbolic and connectionist AI to learn
from data. Additionally, Blockchain complements edge AI with security, privacy, reliability,
scalability, and enables model sharing.

Lin et al. [128] consider that extracting knowledge, such as classification models, de-
tection, and predictions from physical environments, from sensory data, could be achieved
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by introducing edge computing and edge AI into the Internet of Things. Since multiple
nodes with heterogeneous Edge AI devices generate isolated knowledge, collaboration
and data exchange between nodes are essential to building intelligent applications and
services. The authors proposed a P2P knowledge marketplace to make knowledge tradable
in edge AI-enabled IoT and a knowledge consortium blockchain for secure and efficient
knowledge management and exchange in the market. The blockchain consortium includes
a cryptographic knowledge coin, smart contracts, and a consensus mechanism as proof
of trade.

Rahman et al. [129] addressed in their work the challenge of bringing intelligent and
cognitive processing to the edge where the massive amount of IoT data are generated and
processed by mobile edge computing (MEC) nodes. Key transactions are anonymized and
securely recorded in the blockchain, where big data are securely stored in the decentral-
ized off-chain solutions with an immutable ledger. Qiu et al. [130] proposed AI-Chain,
a Blockchain-based edge intelligence for Beyond Fifth-Generation (B5G) networks. AI-
Chain is an immutable and distributed record of local learning outcomes that can lay a new
foundation for sharing information between edge nodes. Leveraging the portability of deep
learning, each node at the edge trains neural network components and applies AI-Chain
to share its learning results. This process dramatically reduces the wastage of computing
power and improves the learning power of the edge node through the learning power of
other edge nodes. Du et al. [131] reviewed the existing literature on Blockchain-enabled
edge intelligence in the IoT domain, identified emerging trends, and suggested open issues
for further research, including transaction rejection, selfish learning, and fork issues. Fork
problems arise when edge nodes disagree on the same learning model and alternative
chains (i.e., forked chains) emerge.

As a use case of the convergence of Blockchain and edge AI, we consider in the
following some efforts in the context of smart mobility. IoV is an emerging technology
that has the potential to alleviate traffic problems in smart cities. In an IoV network,
the vehicles are equipped with modern communication and sensing technologies that
allow the sharing and exchanging of data between the vehicles and the RSUs. The massive
volume of data captured by vehicle sensors, including GPS and RADAR, favors data-driven
AI models. Attacks against vehicles using polymorphic viruses cannot be easily recognized
and predicted because their signatures continually change. The centralized ML paradigm is
evolving towards a more decentralized and distributed learning framework, especially in a
federated learning setup, to accommodate the increase in likely privacy and security issues.

Several works proposed federated learning-based solutions for the IoV [132–135].
Although federated learning provides incredible security to learning structures, it faces
several other security issues as it operates based on a centralized aggregator. For model
training, federated learning relies on local workers, who may be vulnerable to cyber
intrusions. If a local model is attacked, it can mislead other models, and therefore the
global update is erroneous. Because of the likelihood of such possible attacks in federated
learning, Blockchain is used with federated learning to give a decentralized arrangement
to control incentives and reliably ensure security and protection. Due to the promising
capability of federated learning, especially for building an ITS, and the requirement to
alleviate potential attacks, some Blockchain-enabled federated learning schemes for IoV
have been proposed over the last few years.

The authors in [136] proposed a framework for knowledge sharing in IoV based
on a hierarchical federated learning algorithm and a hierarchical blockchain. Vehicles
and RSUs learn surrounding data through machine learning methods and share learning
knowledge. The use of blockchain framework targets large-scale vehicle networks, and the
hierarchical federated learning algorithm aims to meet the distributed model and privacy
requirements of IoVs. They modeled knowledge sharing as a trading market process to
drive sharing behaviors and formulated the trading process as a multi-leader, multi-player
game. The authors stated that their simulation results showed that the proposed hierarchical
algorithm improves sharing efficiency and learning quality and achieves approximately
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10% more accuracy than conventional federated learning algorithms. RSUs reach optimal
utility during the sharing process. Moreover, the blockchain-enabled framework effectively
protects against malicious workers during the sharing process.

The authors in [137] proposed a blockchain-enabled federated learning framework
to improve the performance and privacy of autonomous vehicles. The framework facili-
tates the efficient communication of autonomous vehicles, where on-board local learning
modules exchange and verify their updates in a fully decentralized manner without any
centralized coordination by leveraging the blockchain consensus mechanism. The frame-
work extends the reach of its federation to untrustworthy public network vehicles via
a validation process of local training modules. By offering rewards proportional to the
usefulness of data sample sizes, the framework encourages vehicles with immense data
samples to join the federated learning.

In the IoV, exchanging messages between vehicles is essential to ensure road safety,
and broadcasting is generally used for emergencies. To solve the low probability of receiv-
ing broadcast messages in high-density and vehicle mobility scenarios, the authors of [138]
proposed a blockchain-assisted federated learning solution for message broadcasting. Simi-
lar to the Proof-of-Work (PoW) consensus used in several blockchains, vehicles compete
to become a relay (minor) node by processing the proposed Proof-of-Federated-Learning
(PoFL) consensus embedded in the smart contract of the blockchain. The Stackelberg game
further analyzes the business model to incentivize vehicles to be involved in federated
learning and message delivery. The authors stated that their solution outperforms the same
solution without blockchain, allowing more vehicles to upload their local models and yield
a more accurate aggregated model in less time. It also outperforms other blockchain-based
approaches by reducing the consensus time by 65.2%, improving the message delivery rate
by at least 8.2%, and more effectively maintaining the privacy of neighboring vehicles.

Doku et al. [139] proposed a federated learning framework called iFLBC to bring
artificial intelligence to edge nodes through a shared machine learning model powered by
Blockchain technology. Their motivation is to filter relevant data from irrelevant data using
a mechanism called Proof of Common Interest (PoCI). The relevant data of an edge node
are used to train a model, which is then aggregated with models trained by other edge
nodes to generate a shared model stored on the blockchain. Network members download
the aggregated model to provide intelligent services to end-users.

Table 3. Summary of edge AI and Blockchain convergence literature review.

Ref. Focus Area Edge AI Use Case Blockchain Use Case

[127]
Knowledge management
and exchange in the
Internet of Vehicles (IoV)

Object detection in and a YOLO-based
abductive learning algorithm for
robust and interpretable AI.

Security, privacy, reliability, scalability,
and model sharing.

[128]
Making Knowledge
Tradable in Edge-AI
Enabled IoT.

Extracting knowledge, such as
classification models, detection,
and predictions from physical
environments and sensory data at the
edge. A P2P knowledge marketplace
to make knowledge tradable in edge
AI-enabled IoT

A knowledge consortium blockchain
for secure and efficient knowledge
management and exchange in the
market. The blockchain consortium
includes a cryptographic knowledge
coin, smart contracts, and a consensus
mechanism as proof of trade.

[129]

Blockchain and IoT-Based
Cognitive Edge
Framework for Sharing
Economy Services in a
Smart City

Bringing intelligent and cognitive
processing to the edge where the
massive amount of IoT data are
generated and processed by mobile
edge computing (MEC) nodes.

Key transactions are anonymized and
securely recorded in the blockchain,
where big data are securely stored in
the decentralized off-chain solutions
with an immutable ledger.
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Table 3. Cont.

Ref. Focus Area Edge AI Use Case Blockchain Use Case

[130]
Blockchain Energized
Edge Intelligence for
Beyond 5G Networks

AI-Chain, a Blockchain-based edge
intelligence for B5G networks. Each
node at the edge trains neural network
components and applies AI-Chain to
share its learning results.

An immutable and distributed record
of local learning outcomes that lays the
foundation for sharing information
between edge nodes.

[139]
Edge Intelligence using a
federated learning
Blockchain network

iFLBC, a federated learning
framework called to bring AI to edge
nodes through a shared machine
learning model. powered by
Blockchain technology. The relevant
data of an edge node is used to train a
model, which is then aggregated with
models trained by other edge nodes to
generate a shared model.

The shared model is stored on the
blockchain. Network members
download the aggregated model to
provide intelligent services to
end-users.

[136] Knowledge sharing in IoV

Hierarchical federated learning.
Vehicles and RSUs learn surrounding
data through machine learning
methods and share learning
knowledge. Aims to meet the
distributed model and privacy
requirements of IoVs.

Hierarchical blockchain. Knowledge
sharing is modeled as a trading market
process to drive sharing behaviors. The
trading process is formulated as a
multi-leader, multi-player game.

[137]
Federated Learning With
Blockchain for
Autonomous Vehicles.

Federated learning framework. The
framework extends the reach of its
federation to untrustworthy public
network vehicles via a validation
process of local training modules.

On-board local learning modules
exchange and verify their updates in a
fully decentralized manner without
any centralized coordination by
leveraging the blockchain consensus
mechanism.

[138] Messages dissemination in
the IoV

Blockchain-assisted federated learning
solution for message broadcasting.
The Stackelberg game further analyzes
the business model to incentivize
vehicles to be involved in federated
learning and message delivery.

Vehicles compete to become a relay
(minor) node by processing the
Proof-of-Federated-Learning (PoFL)
consensus embedded in the smart
contract of the blockchain.

8. Open Research Issues

The research initiatives reported above represent attempts to mitigate the challenges
of implementing edge AI and Blockchain in two key areas of smart cities, smart mobility
and smart energy. However, there remain unresolved challenges. This section examines
four potential prospective research trends for future implementation.

• Collaboration and data exchange. As we described earlier, since multiple nodes with
heterogeneous edge devices generate isolated knowledge, collaboration and data
exchange between nodes are essential to building intelligent applications and services
for smart mobility and smart energy. Storing, sharing, querying, and exchanging
data training models require additional security and privacy measures. Blockchain
technology helps meet these requirements. However, edge devices with limited
storage may not be able to store the training model or the blockchain structure that
grows as transaction blocks are added to the blockchain. Moreover, it is common
for edge devices to store distributed ledger data that are not even useful for their
transactions. Therefore, cutting-edge blockchain-specific equipment or platforms to
support decentralized blockchain data storage are required.
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• Impact of edge connections on Blockchain-enabled smart mobility. In a smart mo-
bility scenario, edge devices on connected vehicles, for example, are often connected
to other edge devices or cloud servers through unreliable wireless channels. As we
discussed earlier, Blockchain can facilitate communication between connected vehicles
and the road infrastructure by considering data exchange requests as transactions to
be stored and retrieved from a blockchain database. Due to the inevitable network
delays, a vehicle participating in the blockchain may not receive the most recent block.
It may then create an alternative chain that branches off the main chain. This problem
is known as the forking problem. It can also arise when edge nodes disagree on the
same learning model and forked chains emerge. Such forking reduces throughput
because only one chain survives, ultimately, while all other blocks in different chains
are removed. Further research in this area is needed.

• Prediction of future energy production and system load. In P2P smart energy trad-
ing scenarios, the decentralization of prosumers brings many issues. Blockchain helps
to ensure trust and privacy between all players in the energy market. Smart contracts
and learning models at participating nodes should help predict future energy produc-
tion and system load, allowing prosumers to make optimal decisions about sharing
and pricing their energy. Further research on federated learning models for energy
trading and pricing is needed.

• Energy efficiency. Incorporating AI in edge devices is challenging because of the
power-hungry features of deep learning algorithms, such as convolutional neural
networks (CNNs). Therefore, energy efficiency is a critical issue for edge AI appli-
cations. Some research efforts investigated the usage of reservoir computing as an
alternative, which promises to provide good performance while exhibiting low-power
characteristics [140]. Additionally, with the growing calls for the application of rigid
environmental standards and the rapidly rising energy costs, smart cities increas-
ingly take the energy efficiency issue more seriously. However, some Blockchain
consensus mechanisms such as PoW (Proof of Work) are computationally expensive
as blockchain nodes perform complex computations to mine the next block. PoW is
not an energy-efficient approach and consumes a large amount of electricity due to
computation redundancy. Researchers are developing alternative less computationally
expensive consensus mechanisms for blockchain systems. Although highly promising,
these consensus mechanisms are still in their infancy and suffer from scalability issues,
and their security has not been rigorously investigated. Therefore, further research is
needed concerning the design of energy-efficient edge AI applications and consensus
mechanisms for blockchain systems.

9. Conclusions

Smart cities face several challenges due to population growth and migratory waves.
This article examines the current and potential contributions of edge AI and Blockchain
technology in coping with smart city challenges through the lens of sustainability in two
main areas, which are smart mobility and smart energy. It contributes to the sustainability
literature by identifying and bringing together recent research on edge AI and Blockchain,
highlighting their positive impacts and potential implications on smart cities.

This review highlights the existing and potential convergence of edge AI and Blockchain.
It shows that edge AI and Blockchain technology can help address the problem of traffic
congestion and management by automating the detection, counting, and identification of
vehicle speeds. Furthermore, these technologies can help establish trustworthy commu-
nications and energy trading between vehicles and reliable and secure distributed smart
energy management. Finally, this article discusses potential research trends for future im-
plementations of edge AI and Blockchain to provide innovative solutions in smart mobility
and smart energy. It is expected that this review will serve as a guideline for future research
on the adoption of edge AI and Blockchain in other areas of smart cities.
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