Article
Residents’ Perceptions towards Tourism Development — The Case of Galați-Brăila Conurbation, Romania

Iulian Adrian Şorcaru 1,*, Alexandru Capatina 2, Mihaela-Carmen Muntean 1, Ludmila-Daniela Manea 1 and Ionica Soare 1

1 Economics Department, “Dunarea de Jos” University of Galati, 800088 Galați, Romania; mihaela.muntean@ugal.ro (M.-C.M.); daniela.manea@ugal.ro (L.-D.M.); ionica.soare@ugal.ro (I.S.)
2 Business Administration Department, “Dunarea de Jos” University of Galati, 800088 Galați, Romania; alexandru.capatana@ugal.ro
* Correspondence: iulian.sorcaru@ugal.ro

Abstract: Business and transit tourism are representative of the Galati-Brăila conurbation. Its favorable geographical location, at the eastern border of Romania and the EU, and its natural and cultural tourist potential are the main assets towards tourism development. Therefore, future tourist facilities developed by public authorities or private investors could generate a viable economic alternative for its residents. The objectives of this study were to identify residents’ perceptions, both positive and negative, concerning the impact of tourism development on tourist potential, socio-economic characteristics and the environment of the region. Another major objective was to establish the correlation between the residents’ involvement in tourism activities and tourism development in the region. In this regard, based on social exchange theory and applying the Sem-Pls method, we designed hypotheses and a research model which were verified based on a questionnaire implemented online. The data were processed using SmartPls3 software, all the research hypotheses being validated.

Keywords: residents’ perceptions; tourism development; sem-pls approach; Galati-Braila conurbation; business tourism; transit tourism

1. Introduction

Galați and Brăila cities are located in the eastern part of Romania on the left shore of the Danube river, at the intersection of many transport routes. These cities form a bipolar structure, Galați-Brăila conurbation, unique in Romania in terms of population and geographical location [1,2]. The region belongs to the South-East Development Region of Romania, in close vicinity to the EU’s eastern border with Moldova and Ukraine. In January 2022, Galati-Braila conurbation had a population of 497,731 inhabitants [3] and is bordered by six communes: Vânători, Tulcescu and Sendreni in the Northern and Western part of Galați city; and Vădeni, Cazasu and Chiscani in the Northern, Eastern and Southern part of Brăila city.

The geographical location of this conurbation is favorable for the development of both economical and touristic activities (Figure 1). The strategies [4] elaborated on the evaluation of the entire tourist potential of Romania, show valuable tourist resources in this region. Among natural attractions, we mention: the Danube, Siret and Prut rivers together with Brateș Lake for leisure and sport fishing; Sârat Lake, which is capitalized by Lacu Sârat resort; and the protected natural area “Gârboavele Forest”.

The cultural tourist attractions were also determined by the geographical and strategic position of Galați and Braila cities and by their status of being large ports on the Lower Danube, in the vicinity of the Black Sea, since the medieval period. These advantages were also perpetuated after the unification of the Romanian Lands and the installation of the European Commission at the mouth of the Danube river. Currently, the most valuable cultural tourist attractions are: the former Palace of the European Commission of the
Danube (currently the headquarters of the County Library “V.A. Urechia”); the former Italian consulate in Galati city; the building where the Violatos Mill operated in Brăila; history and culture museums; and churches (“Sfânta Precista” fortified church in Galati; churches built by ethnic communities such as the Greeks, or Russian-Lipovans; Church of “St. Archangels Michael and Gabriel” in the center of Brăila city).

Currently, Galati-Braila conurbation is characterized by two defining forms of tourism: business and transit tourism. In the near future tourism development may be supported by natural, socio-economic and cultural tourist resources, stated and described in many scientific papers [5–9] and could be better valued through the forms of tourism mentioned above.

With their role of “bridges” over the maritime Danube to and from Dobrogea region, currently traversed via ferry, and accentuated by their status as ports, Galati and Braila cities will be better connected and integrated in the Romanian and European transport system. Moreover, the car route to and from the famous Danube Delta and Romanian Black Sea coast tourist destinations, indicate both Galati and Brăila as locations for crossing the Danube River. This car route is preferred by potential tourists from northern and center regions of Romania, Republic of Moldova and Ukraine.

The operation of the new bridge over Danube river would further develop tourism activities, emphasizing new transit and business opportunities. Therefore, residents’ perceptions towards tourism development are important, and local authorities should take their opinions into account for future strategies.

2. Literature Review

In recent decades, increasing academic attention has been paid to residents’ opinions concerning the impact of tourism on different regions of the world, and a considerable number of studies have emerged.
In this regard, we mention studies dedicated to cities in Europe [10–13], Australia [14], Asia [15] or Africa [16,17]. Other researchers have analyzed the perception of residents in an island context, where the economy is strictly based on tourism [18–20]. Mountainous regions [21,22], rural regions [23–25] or those that contain valuable tourist attractions, recognized and protected worldwide [26,27], have also been analyzed. Other authors have analyzed tourist circuits that include valuable natural and cultural tourist attractions, located on the states border [28].

The literature on residents' perceptions of tourism development also reflects a frequent terminological inconsistency that could underlie the wide variation of findings and conclusions in certain studies. Therefore, various concepts are used to refer mainly to residents’ views on tourism. For example, while some researchers have commonly used the term “perceptions” [29–34], others have chosen to use the term “attitudes” [35–37].

At the same time, the terms “opinions” [38] and “reactions” [39] have also been used for similar purposes, other researchers preferring instead to use the term “perspectives” [40]. However, other researchers have simultaneously used two of these terms “attitudes and perceptions” [41] in an indistinguishable way. Despite this frequent variation of terms, few researchers have acknowledged such an inconsistency, and it has been argued that the difference between terms is important because many studies seem to use attitudes when actually measuring perceptions [42].

However, most research in the last decade has started from similar theories, such as social exchange theory (SET) [29,43–45], stakeholder theory (ST) [46–48] or Weber’s theory of formal and substantive rationality (WFSR) [49,50]. These theories have been tested through a series of econometric models and tools used to analyze residents’ perceptions of tourism development. The sustainable tourism attitude scale (SUS-TAS) stands out, as this approach integrates sustainability, the new environmental paradigm (NEP) and social exchange theory (SET).

SUS-TAS aggregates the residents’ perceptions on tourism development, taking into account the need to increase quality of life without damaging the environment, balancing the costs and benefits the community perceives. In the original version, SUS-TAS consists of seven constructions (perceived social costs; environmental sustainability; long-term planning; perceived economic benefits; ensuring visitor satisfaction; a community-centered economy; maximizing community participation) assigned by 44 items [51].

Different versions of this scale (one factor, second-order, 21-item, 27-item, 33-item, and 44-item models) have been tested in numerous studies in the last decade [52–60]. The results validated SUS-TAS for the Cape Verde Islands in Africa [57] and Taiwan in Asia [58].

Our research is based on the most discussed theory, social exchange theory (SET), still dominant in the literature due to its explanatory power, as it can differentiate the benefits and costs perceived by residents as an antecedent for tourism development [61].

SET was first applied in tourism in the early 1990s [29], and the results of the study show the direct link between the effects of tourism development perceived by residents and their desire to support tourism development. Therefore, residents who associate tourism development with a series of positive effects have a greater desire to support this economic activity, a desire that decreases in the case of residents who perceive mainly the negative effects. Subsequently, SET has been tested in various empirical studies, being useful for differentiating the positive and negative effects perceived by residents in connection with tourism development [20,43,51,62–64]. In addition, the theory has been improved, being used to study the link between residents’ perceptions of tourism and sustainable development. Therefore, the results of previous research conclude that residents’ attitudes concern the impact of tourism development on the local economy, socio-cultural characteristics and the environment. For each of the three categories, the residents’ perceive a series of positive and negative effects as a result of tourism development.

Previous studies have shown that assessing residents’ perceptions is a valuable component in identifying and measuring tourism impact. The authors of these studies reflected that tourism development, in different regions on all continents, is closely linked to the
residents’ life quality and local economic development [65–69]. The positive effects of tourism development on the local economy appear in connection with a higher number of jobs and increased investment for the development of transport infrastructure and tourist facilities. Escudero Gomez, in a study of the historic center of Toledo, Spain [12], shows that residents associate tourism with economic development through higher employment rates and higher incomes. Similar results have been achieved by Sirakaya, E., Teye, V. and Sönmez, S. F. for the Central Region of Ghana [70], Brida J.G. et al. for Folgaria (Trentino-Italy) [24], Rua Vidal for Girona, Spain [71], and Snyman, S. for Botswana, Malawi, Namibia, South Africa, Zambia and Zimbabwe [72]. Another positive effect is the increase of the local budget by collecting additional local taxes and a better standard of living [73–75].

Other studies have shown that residents perceive a series of negative effects as a result of tourism development, effects that directly affect the increase in prices of goods and services and indirectly on the cost of living, generating an unequal distribution of wealth [71,76].

Another issue of tourism development, according to the studies conducted in the last two decades, concerns the residents’ perceptions of personal benefits. This effect, also analyzed in our research, reflects how residents’ perceptions of personal benefits are more difficult to detect because they are dependent on economic development. Moreover, personal benefits are related to personal well-being by obtaining an increased income from tourism or getting a job in the hospitality industry [77].

Residents’ positive perceptions concerning the impact of tourism development on the environment are closely linked to the promotion of sustainable tourism. Research conducted so far has concluded that sustainable tourism can stimulate the creation of new green spaces and leisure and natural protected areas. Other positive effects could be the modernization of public infrastructure and urban street facilities or developing activities to raise awareness of the importance of environmental protection [49,78]. Therefore, residents’ perceptions of tourism development are also directions for local public authorities to improve infrastructure and create new attractions.

The same papers found a number of negative perceptions, according to which tourism development can negatively affect the environment in certain natural regions considered fragile [79]. In detail, some authors associate tourism development with the destruction of natural habitats caused by illegal construction of accommodation units, as well as by congestion of road traffic and lack of parking spaces that generate increased air pollution in urban areas [49], vandalism [80], and accumulation of high amounts of waste or water pollution of nearby rivers [81].

The studies published so far also analyze residents’ perceptions, both positive and negative, about the effects of tourism development on cultural heritage.

The positive effects perceived by the residents are the improvement of the recreation services associated with the cultural tourist attractions, organization of cultural events (fairs, festivals) by local authorities, the opportunity to gain new experiences through cultural exchanges, opportunities to preserve and promote the region’s valuable cultural heritage-traditions, gastronomy, and traditional products [28,82].

The negative effects identified so far, show that some residents have expressed concerns about the deterioration of cultural heritage or even the decline of cultural identity amid increasing tourist pressure. These effects are often associated with increasing insecurity of tourist destinations by increasing crime rates [32,45], drug and alcohol use [45,83], prostitution [45,84], accommodation rates or the delivery time of transport and catering services [85].

More recent literature has analyzed regions characterized by mass tourism, where this economic activity generates a substantial income for residents. In these regions, residents are also aware of the negative effects specific to overtourism generated by tourism development [45,86–91]. In this regard, the Tourism Destination Lifecycle Model developed by Butler in 1980 is another significant contribution to the relationship between tourism development and residents’ attitudes. Based on the concept of product cycle, where sales of a product are slow at first, then experience a rapid growth rate, stabilize and then
decrease, Butler’s model suggests that tourist destinations follow a similar pattern of evolution [92]. This hypothetical evolution stipulates the stages that any tourist region experiences: exploration, involvement, development, consolidation, stagnation, decline and/or rejuvenation. However, as other researchers have stated, not all areas experience the stages of the cycle as clearly as others, and therefore the model should be considered partially applicable, as the cycle experience varies for different regions. Therefore, many studies reveal an important motivation for further research, as residents’ perceptions towards tourism development can change according to the stage experienced by the regions [20,58,70].

According to Butler’s model, Galati-Braila conurbation, although it has all the prerequisites for tourism development, is a region where tourism is in the exploration stage. This is because tourism activities do not currently have a consistent contribution to the local economy. Also, residents do not face the negative effects of overtourism.

This research approaches Galati-Brăila conurbation in Romania, where tourism development could be an important alternative for the local economy and a higher quality of life for the residents. In this context, we considered that investigating residents’ perceptions towards tourism development in the region is mandatory.

Moreover, our research covers the gap in the literature by analyzing residents’ perceptions of tourism development in a bipolar conurbation, consisting of two port cities located in southeastern Romania, close to the EU’s eastern border with Moldova and Ukraine. In addition, as far as we know, this is the first study in Romania that addresses this type of region. Other recent studies have been dedicated, either to a Romanian tourist center on the Black Sea, known for coastal tourism [45], or to a partial analysis of the perception of residents on tourism [93,94]. This research also seeks to provide preliminary results that may be useful for a longitudinal study in the future. Longitudinal studies, which highlight changes in residents’ perceptions of tourism development, its development phases and the implications for the local economy, can be extremely useful for local public authorities and investors. Thus, the negative effects of tourism development can be much more easily combated, through appropriate actions and strategies adopted by public and private decision-makers.

3. Methods

The main objectives of this research were primarily to identify the residents’ awareness of the importance of tourism for Galati-Braila conurbation, as well as its involvement in the development of this economic sector. Secondly, the study aimed to identify the positive and negative perceptions of residents regarding the impact of tourism development on tourism potential, socio-economic characteristics and personal benefits, as well as on the region’s environment.

The specific objectives aimed to establish the effect coefficients between the latent variables considered in the study: involvement in tourism; tourism development; personal benefits; positive perceptions; and negative perceptions.

Structural equation modeling (SEM) has become a quasi-standard in recent research approaches based on the analysis of cause-and-effect relationships between latent constructs. The present study uses the potential of PLS-SEM and its algorithm to test the hypothesis considered.

The quantitative method used to test the proposed research hypotheses included the development of a survey questionnaire to measure the community’s perceptions on the mentioned constructs. The justification for the selection of this method was based on several reasons. First, the survey method based on the questionnaire is considered effective in order to obtain specific and primary information from target respondents. Second, the chosen method can assist the examination of factors and the relationships involved [95].

In this study, statistical analysis and hypotheses were tested using structural equation modelling (SEM) by performing partial least squares (PLS) method. Smart PLS software version 3.2.6 developed by Ringle, Wende and Becker in 2015, was used to perform the
analysis. PLS is a well-established technique for estimating path coefficients in structural models. This technique has become increasingly popular in the last decade due to its ability to model latent constructs under conditions of non-normality and small to medium sample sizes. In addition, the PLS analysis was performed and found suitable in this study since one of the constructs is measured using two items [96]. For an efficient analysis of the specific objectives, we used the SEM-PLS method and developed the conceptual model that reflects the links between the five latent variables (Figure 2).

![Figure 2. Conceptual model based on the PLS-SEM method (source: graphics generated by SmartPLS software).](image)

Most of the latent variables are reflective, with 2 or 5 items assigned to the questionnaire to highlight their content. Thus, personal benefits (PB) is characterized by 2 items, involvement in tourism (IT) and negative perceptions (NP) by 5 items, while tourism development (TD) and positive perceptions (PP) are characterized by a single item, for a respective total of 9 items.

Modeling using structural equations, based on the least partial squares method (SEM PLS), gave us the opportunity to configure and estimate complex relationships between latent variables in this model.

The hypotheses we used to create the model were:

Hypothesis 1 (H1). Involvement of residents in tourism activities has a significant effect on tourism development in the region.

Hypothesis 2 (H2). Tourism development generates negative effects in the region according to residents’ perceptions.

Hypothesis 3 (H3). Tourism development generates personal benefits according to residents’ perceptions.

Hypothesis 4 (H4). Tourism development generates positive effects in the region according to residents’ perceptions.
The research hypotheses presented above were verified based on a 27-item questionnaire, which was completed online by 343 respondents between November 2021 and April 2022. Segmentation criteria such as age, gender, education, occupation and income generated the demographic profile of respondents, presented in Table 1.

Table 1. Demographic profile of respondents (source: authors’ contribution).

<table>
<thead>
<tr>
<th>Segmentation Criteria</th>
<th>Categories</th>
<th>Number of Respondents</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Under 20 years</td>
<td>4</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>20–39 years</td>
<td>113</td>
<td>32.94</td>
</tr>
<tr>
<td></td>
<td>40–65 years</td>
<td>198</td>
<td>57.72</td>
</tr>
<tr>
<td></td>
<td>Above 65 years</td>
<td>28</td>
<td>8.16</td>
</tr>
<tr>
<td>Sex</td>
<td>Males</td>
<td>116</td>
<td>33.81</td>
</tr>
<tr>
<td></td>
<td>Females</td>
<td>227</td>
<td>66.19</td>
</tr>
<tr>
<td>Incomes</td>
<td>Below 500 euros</td>
<td>91</td>
<td>26.53</td>
</tr>
<tr>
<td></td>
<td>500–1000 euros</td>
<td>152</td>
<td>44.31</td>
</tr>
<tr>
<td></td>
<td>Above 1000 euros</td>
<td>100</td>
<td>29.15</td>
</tr>
<tr>
<td>Education</td>
<td>Secondary School</td>
<td>2</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>High School</td>
<td>58</td>
<td>16.91</td>
</tr>
<tr>
<td></td>
<td>Bachelor Diploma</td>
<td>166</td>
<td>48.40</td>
</tr>
<tr>
<td></td>
<td>Post University Diploma</td>
<td>117</td>
<td>34.11</td>
</tr>
<tr>
<td>Occupation</td>
<td>Agriculture&forestry&fish farming</td>
<td>2</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Industrial&Construction activities</td>
<td>32</td>
<td>9.33</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>202</td>
<td>58.89</td>
</tr>
<tr>
<td></td>
<td>Freelancer or Registered sole trader</td>
<td>27</td>
<td>7.87</td>
</tr>
<tr>
<td></td>
<td>Pupil or Student</td>
<td>51</td>
<td>14.87</td>
</tr>
<tr>
<td></td>
<td>Pensioner</td>
<td>29</td>
<td>8.45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>343</td>
<td>100</td>
</tr>
</tbody>
</table>

Data collection was followed by the preparation of the database, prior to their processing, using the SmartPLS software. Thus, all responses were weighted using Likert’s scale, with the following scores: 5 = strongly agree, 4 = agree, 3 = indifferent/neutral, 2 = disagree, and 1 = strongly disagree.

The sources of information, analyzed in detail in the previous chapter, were both theoretical, useful for configuring the conceptual model and research hypotheses, and empirical obtained using the online questionnaire.

4. Results

Figure 3 illustrates the effect relationships between the latent variables included in the research model approached by the SEM-PLS method. These are indicated by arrows oriented from latent variables considered independent to dependent latent variables.

The structural model shows that tourism development (TD) has the strongest effect on positive perceptions (PP), as the coefficient of effect associated with this link is the highest (0.542), while the same independent latent variable (TD) has the weakest effect on negative perceptions (NP) with an effect coefficient of −0.323.

Regarding the external loads of the latent reflective variables, which reflect the statistical contributions of each item to each latent variable, we note the following:

Q21 item (Public authorities in Braila and Galati should cooperate for tourism development of the region) has the most representative statistical contribution to the latent variable Involvement in Tourism (external load of 0.896, higher than Q1, Q2, Q3 and Q20);

Q10 item (Tourism development would determine an increase in the residents’ income) has the most representative statistical contribution to the latent variable Personal Benefits (external load of 0.874, higher than Q14);

Q6 item (Tourism development would increase the residents’ awareness concerning the value of cultural heritage and tourism) has the most representative statistical contribution to the latent variable Positive Perceptions (external load-0.775, higher than Q4, Q5, Q8, Q9, Q11, Q12, Q13 and Q18);
Q17 item (Tourism development would increase the insecurity for the residents) has the most representative statistical contribution to the latent variable Negative Perceptions (external load -0.807, higher than Q7, Q15, Q16 and Q19).

The variable “Involvement in tourism” (IT) explains 24.4% of the variance of the Tourism Development variable (TD) (coefficient of determination $R^2 = 0.244$). At the same time, the variable Tourism Development (TD) explains:

- 29.3% of the variance of the Positive Perceptions variable (PP) (coefficient of determination $R^2 = 0.293$);
- 22.5% of the variance of the Personal Benefits variable (PB) (coefficient of determination $R^2 = 0.225$);
- 10.4% of the variance of the Negative Perceptions variable (NP) (coefficient of determination $R^2 = 0.104$).

The model evaluation based on the modeling of the six structural equations was undertaken by determining the level of internal consistency (SmartPLS software calculated the Cronbach Alpha and composite confidence level), convergent validity (SmartPLS software generated a variance report extracted media) and discriminant validity (SmartPLS software generated reports on the Fornell–Larcker criterion and the Heterotrait–Monotrait ratio (HTMT)).

The Cronbach Alpha indicator highlights the internal consistency and, implicitly, the reliability of the research tool, as well as the degree of correlation between the latent variables integrated in the structural model. The minimum threshold accepted by statisticians for this indicator is 0.7. The values of Cronbach Alpha exceed the allowed threshold for the variables TD (1.000), and PP (0.882), while for two variables (NP and PB) they are located near the minimum allowed threshold—0.656, and 0.657, respectively. The only variable with a value well below the minimum allowable threshold is IT (0.392).

The composite reliability takes into account the variable loads of all indicators, being more flexible than Cronbach Alpha. The minimum allowable threshold for the composite
confidence level is also 0.7, and in our research, four variables have values above the minimum accepted value (NP-0.766; PB-0.853; PP-0.906 and TD-1.000). It is the only variable whose value of the composite confidence level is less than 0.7, according to Table 2.

Table 2. Assessment of internal consistency and convergent validity within the evaluated model.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Cronbach's Alpha</th>
<th>Rho_A</th>
<th>Composite Reliability</th>
<th>Average Variance Extracted (AVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involvement in tourism</td>
<td>0.392</td>
<td>0.442</td>
<td>0.531</td>
<td>0.247</td>
</tr>
<tr>
<td>Negative perceptions</td>
<td>0.656</td>
<td>0.728</td>
<td>0.766</td>
<td>0.412</td>
</tr>
<tr>
<td>Personal benefits</td>
<td>0.657</td>
<td>0.660</td>
<td>0.853</td>
<td>0.744</td>
</tr>
<tr>
<td>Positive perceptions</td>
<td>0.882</td>
<td>0.889</td>
<td>0.906</td>
<td>0.518</td>
</tr>
<tr>
<td>Tourism development</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Spearman’s rank correlation coefficient (Rho) is a nonparametric test whose values should be between −1 and = 1. The value r = 1 reflects a perfect positive correlation and the value r = −1 is associated with a perfect negative correlation. We note in the case of the six reflective variables only positive correlations.

The convergent validity of the model is determined by the average extracted variance (AVE), which measures the variance of a latent variable relative to the variance associated with the measurement error. In general, statisticians recommend a minimum AVE threshold of 0.5. We note that three of the five variables (PB, PP and TD) have values of the mean variance extracted above the recommended threshold, and two variables are below the minimum allowable threshold, although the value for one of these is close to 0.5 (NP-0.412; IT-0.247). According to these values, we consider that the convergent validity of this model for measuring the relationships between variables is confirmed.

To determine the discriminant validity, we will first apply the Fornell–Larcker criterion, which compares the square root of the extracted average variance (AVE) with the correlation of latent variables.

Statisticians recommend that the square root of AVE for each reflective variable be greater than the correlations with other latent variables, as confirmed in this empirical research (since the AVE values for IT (0.497), NP (0.642), PB (0.863) PP (0.720) and TD (1.000) are superior to the correlations with the other latent variables, positioned below the main diagonal in Table 3.

Table 3. The assessment of discriminant validity (Fornell–Larcker criterion).

<table>
<thead>
<tr>
<th>Fornell–Larcker Criterion</th>
<th>Involvement in Tourism</th>
<th>Negative Perceptions</th>
<th>Personal Benefits</th>
<th>Positive Perceptions</th>
<th>Tourism Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involvement in tourism</td>
<td>0.497</td>
<td>−0.182</td>
<td>0.642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative perceptions</td>
<td></td>
<td>−0.165</td>
<td>0.863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal benefits</td>
<td>0.378</td>
<td></td>
<td>0.766</td>
<td>0.720</td>
<td></td>
</tr>
<tr>
<td>Positive perceptions</td>
<td>0.542</td>
<td>−0.235</td>
<td></td>
<td>0.542</td>
<td>1.000</td>
</tr>
<tr>
<td>Tourism development</td>
<td>0.494</td>
<td>−0.323</td>
<td>0.475</td>
<td>0.542</td>
<td>1.000</td>
</tr>
</tbody>
</table>

The second way to determine discriminant validity is provided by the Heterotrait–Monotrait (HTMT) correlation report. HTMT is considered by statisticians to be more appropriate for assessing discriminant validity than the Fornell–Larcker criterion, in terms of superior performance, which allows it to achieve higher reliability rates. HTMT values approaching the maximum allowable threshold of 1 indicate discriminatory invalidity. The use of HTMT as a criterion implies its comparison with a predefined maximum threshold indicating the existence of discriminant validity, considered by most researchers to be 0.9.
In our study, we observe that most correlations have values below the threshold of 0.9, being in the range 0.279–0.754 (Table 4). A single correlation between the variables exceeds the maximum threshold of 0.9, which is why we consider that the discriminant validity of the model is also validated by this criterion.

Table 4. Application of the HTMT report to assess discriminant validity.

<table>
<thead>
<tr>
<th>Heterotrait–Monotrait Ratio (HTMT)</th>
<th>Involvement in Tourism</th>
<th>Negative Perceptions</th>
<th>Personal Benefits</th>
<th>Positive Perceptions</th>
<th>Tourism Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involvement in tourism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative perceptions</td>
<td>0.454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal benefits</td>
<td>0.569</td>
<td>0.279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive perceptions</td>
<td>0.754</td>
<td>0.319</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourism development</td>
<td>0.494</td>
<td>0.339</td>
<td>0.585</td>
<td>0.573</td>
<td></td>
</tr>
</tbody>
</table>

The PLS-SEM method focuses on the principle that data do not have standardized statistical distributions, which requires the application of a bootstrapping procedure to allow meaning tests to be run between model assumptions. Through the bootstrapping procedure, subsamples are created with observations randomly extracted from the original data set (by successive replacements), which are used to estimate the new structural model. In the case of this research, SmartPLS software generated less than 500 samples.

Estimates of the parameters associated with the analyzed structural model (external variable loads and estimated relationship coefficients in the subsamples) are used to generate statistical reports, which reflect t-test values and asymptotic meanings (p values). These statistical tests are able to validate or invalidate the model hypotheses.

In this model we observe that all the hypotheses are validated, as the p values do not exceed the maximum allowed significance level of 0.05 (Table 5):

Table 5. Values associated with the asymptotic significance p and t-test for structural model hypotheses.

<table>
<thead>
<tr>
<th>Path Coefficients</th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>Standard Deviation (STDEV)</th>
<th>t Statistics (O/STDEV)</th>
<th>p Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involvement in tourism → Tourism development</td>
<td>0.494</td>
<td>0.506</td>
<td>0.060</td>
<td>8.244</td>
<td>0.000</td>
</tr>
<tr>
<td>Tourism development → Negative perceptions</td>
<td>−0.323</td>
<td>−0.336</td>
<td>0.045</td>
<td>7.724</td>
<td>0.000</td>
</tr>
<tr>
<td>Tourism development → Personal benefits</td>
<td>0.475</td>
<td>0.478</td>
<td>0.057</td>
<td>8.332</td>
<td>0.000</td>
</tr>
<tr>
<td>Tourism development → Positive perceptions</td>
<td>0.542</td>
<td>0.548</td>
<td>0.053</td>
<td>10.286</td>
<td>0.000</td>
</tr>
</tbody>
</table>

H₁—involvement of residents in tourism activities (IT) has a significant effect on tourism development in the region (TD)—asymptotic significance value $p = 0.000$;

H₂—tourism development (TD) generates negative effects according to residents’ perceptions (NP)—asymptotic significance value $p = 0.000$;

H₃—tourism development (TD) generates personal benefits (PB) according to residents’ perceptions—asymptotic significance value $p = 0.000$;

H₄—tourism development (TD) generates positive effects according to residents’ perceptions (PP)—asymptotic significance value $p = 0.000$.

The t-test reflects the strength of the correlation between the latent variables considered in the model. Thus, tourism development (TD) has a significant effect on residents’ perceptions in relation to the positive effects that may occur in the region—t value = 10.286—and personal benefits (PB)—t value = 8.332. Also, the involvement in tourism of the residents (IT) has an important effect on tourism development (TD)—t value = 8.244.
5. Discussion

All four hypotheses were validated, with only three of them being statistically significant. The results, processed with SmartPls3 software, show strong correlations for three hypotheses: H_4, with the highest effect coefficient (0.542); H_1, with an effect coefficient of 0.494; and H_3, with an effect coefficient of 0.475. The findings correspond to the results from previous studies [20,28,45,70,71,73–75] concerning the residents’ positive perceptions, personal benefits and support for tourism development.

These results validate SET theory in the case of Galati-Braila conurbation, the residents’ desire to support tourism development being directly proportional to the positive effects and personal benefits they perceive. Among the positive perceptions we notice the “increase of the residents’ awareness concerning the value of cultural heritage”. This item has the most representative statistical contribution, as in previous research [12,30,82]. Among the personal benefits, the perception that “tourism development would determine an increase in the residents’ income”, has the most representative statistical contribution [12,45].

However, we must admit that Galati-Braila conurbation is in the exploration phase, as, according to Butler’s model [92], the region is little known by potential foreign tourists. Therefore, the actual reduced tourist traffic generated by transit or business opportunities, justifies the residents’ euphoria, according to Doxey’s index of resident irritation model [97]. They perceive the benefits rather than the costs of tourism development, being willing to accept the changes more easily.

An interesting result in our study is related to H_2, the only hypothesis which was not found to be statistically significant. Therefore, residents’ negative perceptions towards tourism development in the region has the weakest correlation (an effect coefficient of -0.323). In the present research the variable “Tourism Development” explains only 10.4% of the variance of “Negative Perceptions” (coefficient of determination $R^2 = 0.104$), a result contradicted by some studies [28,45,71].

Bagri and Kala, in a study dedicated to Koti-Kanasar, Indroli, Pattyur Tourism Circuit of Uttarakhand State, India, have shown that tourism development in this region is perceived negatively by some residents. The perceived costs are related to the cultural heritage damages and an increase in the consumption of narcotics and alcohol. Also, another perceived cost is damage to the environment by increasing air and soil pollution or illegal constructions located in the protected areas [28].

Rua Vidal, in a study dedicated to Girona city, Spain has shown that residents perceive the costs of tourism development more than other communities in similar destinations. The authors explain this result by the fact that residents tended to compare the situation in their own city with that of the more developed tourist regions in the vicinity, such as Costa Brava and Barcelona [71].

Moraru A.D. et al. [45] show that residents of Constanta city, located on the Romanian Black Sea coast, also perceive the negative effects generated by tourism development. They mention alcohol and drug consumption, prostitution, crime and vandalism.

Other research also aligns with our findings [20,35,98,99]. These studies analyzed agricultural regions that have experienced severe economic recessions, with residents earning higher incomes from tourism compared to agricultural activities. In this regard, the study of Gursoy and Rutherford [98] shows that residents’ perceptions are limited only to the personal and economic benefits generated by tourism development, disregarding socio-cultural costs.

The findings of Hsu et al. [20] in research on Taiwan island are similar, as the region also experienced an economic recession and emigration. Moreover, the construction of new tourist facilities generated a shift in the residents’ income, from fishing to tourism. Therefore, the region’s economy depends more on tourism, a situation that explains the residents’ perceptions.

The economy of Galati-Braila conurbation, although it has not experienced the situation of the regions mentioned above, was totally dependent on light industry, steel and shipbuilding before 1989. The change of the communist political regime in December
1989 led to a rapid privatization of the region’s industrial sector. The need for industrial refurbishment and economic profitability of the industrial plants have led to high unemployment rates among residents, poor diversification of jobs and emigration in recent decades. Currently, residents’ incomes in Galați-Brăila conurbation are below the national average, being among the urban regions with the lowest earnings in Romania. In this context, the results of the research explain the residents’ disregard of the potential socio-cultural and environmental costs generated by tourism development in the region.

6. Conclusions

This research sought to investigate residents’ perceptions of tourism development in the Galati-Braila conurbation via SET theory. This is the first study that approaches a Romanian conurbation, where tourism development could be an important alternative for the region’s economy.

The theoretical contributions of the research consist in understanding the residents’ perceptions of tourism development in regions where tourism is not the main economic activity. Currently, Galati-Braila conurbation does not depend on tourism, although its natural and cultural potential are valuable. Therefore, besides transit and business tourism, leisure and cultural tourism could increase the number of tourist arrivals and also the residents’ economic benefits. Moreover, the region could experience a revival of tourist activities, competing with more famous cities in Romania, such as Constanta and Brasov. The study proves an important connection between the low economic growth of a region and residents’ desire to accept tourism development at all costs. The residents’ poor perception of costs can also be explained by the low tourist traffic from the Danube Delta and Romanian Black Sea Coast, located nearby.

The results can be extremely useful for a series of future comparative studies between different regions and different communities.

This approach is also supported by recent research that analyzed other urban regions in Europe. Therefore, Escudero Gomez [12] aims to compare results obtained in the city of Toledo with findings from a similar research in Patagonia, Argentina.

The need for comparative analysis is also confirmed by the results of the present research. The alternative of possible higher incomes determined by tourism development in the region and an increase in residents’ awareness concerning the value of cultural heritage are the items with the most representative statistical contribution for personal benefits and positive perceptions.

The findings correspond to previous research that examines residents’ perceptions of the sustainable tourism development, in regions which depend on tourism [20] or have experienced periods of economic recession in the past [98]. Therefore, the residents of Galati-Braila conurbation mainly perceive the personal and economic benefits generated by tourism development, being less preoccupied with the socio-cultural or environmental costs.

In conclusion, the relationship between benefits and costs generated by tourism development in Galati-Braila conurbation, according to SET theory, is undoubtedly in favor of economic benefits.

Related to managerial implications, the results of the study show that residents are willing to support tourism development in Galati-Braila conurbation, most of the respondents being aware of the economic benefits. Moreover, the results highlight the idea that residents would accept an upward tourist traffic, disregarding the negative effects of tourism development. Therefore, the residents could be consulted by the public authorities, being directly or indirectly involved in future planning. The findings may also be useful for new business opportunities in the region, strategies or projects initiated by investors and public authorities.

This research has several limitations. First, the data were not collected on the basis of a rigorous sampling specific to exhaustive sociological research. Therefore, the results are based on a limited number of answers and do not represent the entire population in Galați-Brăila conurbation.
Another limitation of the research concerns the ST and SUS-TAS theories which can offer more substantial results. In this regard, considering that tourism in Galati-Braila conurbation is in the exploration phase [92] we tested only the residents’ perceptions, based on SET theory. Therefore, the findings of this research must be complemented with more comprehensive studies in the future, in order to investigate the perceptions of all the stakeholders. Moreover, a longitudinal approach should be adopted to analyze eventual changes in the residents’ perceptions towards tourism development.

Author Contributions: Conceptualization, I.A.S. and A.C.; methodology, A.C., M.-C.M. and I.A.S.; validation, L.-D.M., I.S. and M.-C.M.; formal analysis, I.S. and L.-D.M.; investigation, I.A.S. and A.C.; resources, L.-D.M. and I.S.; data curation, I.A.S.; writing—original draft preparation, I.A.S.; visualization, A.C. and M.-C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

20. Hsu, C.-Y.; Chen, M.-Y.; Yang, S.-C. Residents’ Attitudes toward Support for Island Sustainable Tourism. *Sustainability* 2019, 11, 5051. [CrossRef]
22. Su, Q.; Cao, Y.-H.; Lin, B.-Y. Comparative study on residents’ perception of tourism impact at tourist places. *Chin. Geogr. Sci.* 2005, 15, 70–79. [CrossRef]

59. Vong, M.; Pinto, P.; Albino Silva, J. Different Type of Residents, Different Type of Attitudes?: The Case of Tourism Development in East Timor. In *Handbook of Research on Resident and Tourist Perspectives on Travel Destinations*; IGI Global: Hershey, PA, USA, 2020. [CrossRef]

72. Snyman, S. Assessment of the main factors impacting community members’ attitudes towards tourism and protected areas in six southern African countries. *Koedoe 2014*, 56, 1–12. [CrossRef]

87. Kuščer, K.; Mihalič, T. Residents’ Attitudes towards Overtourism from the Perspective of Tourism Impacts and Cooperation—The Case of Ljubljana. *Sustainability* 2019, 11, 1823. [CrossRef]
88. Szromek, A.R.; Kruczek, Z.; Walas, B. The Attitude of Tourist Destination Residents towards the Effects of Overtourism—Kraków Case Study. *Sustainability* 2019, 12, 228. [CrossRef]
93. Mawby, R.I.; Tecău, A.S.; Constantin, C.P.; Chitu, I.B.; Tecasău, B. Addressing the Security Concerns of Locals and Visitors for the Sustainable Development of Tourist Destinations. *Sustainability* 2016, 8, 524. [CrossRef]
94. Frînculeasa, M.N.; Chiţescu, R.I. The perception and attitude of the resident and tourists regarding the local public administration and the tourism phenomenon. *HOLISTICA—J. Bus. Public Adm.* 2018, 9, 137–152. [CrossRef]
97. Pavlič, I.; Portolan, A. Irritation index, tourism. In *Encyclopedia of Tourism*; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–2. [CrossRef]