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Abstract: Student performance prediction has attracted increasing attention in the field of educational
data mining, or more broadly, intelligent education or “AI + education”. Accurate performance
prediction plays a significant role in solving the problem of a student dropping out, promoting
personalized learning and improving teaching efficiency, etc. Traditional student performance
prediction methods usually ignore the potential (underlying) relationship among students. In this
paper, we use graph structure to reflect the students’ relationships and propose a novel pipeline for
student performance prediction based on newly-developed multi-topology graph neural networks
(termed MTGNN). In particular, we propose various ways for graph construction based on similarity
learning using different distance metrics. Based on the multiple graphs of different topologies, we
design an MTGNN module, as a key module in the pipeline, to deal with the semi-supervised node
classification problem where each node represents a student (and the node label is the student’s
performance, e.g., Pass/Fail/Withdrawal). An attention-based method is developed to produce the
unified graph representation in MTGNN. The effectiveness of the proposed pipeline is verified
in a case study, where a real-world educational dataset and several existing approaches are used
for performance comparison. The experiment results show that, compared with some traditional
machine learning methods and the vanilla graph convolutional network with only a single graph
topology, our proposed pipeline works effectively and favorably in student performance prediction.

Keywords: graph neural networks; student performance prediction; educational data mining;
pipeline

1. Introduction

With the rise and development of online education, learning management systems
(LMS) are widely used in distance education institutions. A large amount of diversified
learning data are generated and recorded, which provides valuable data for learning analyt-
ics. Learning analytics is a process to evaluate students’ academic performance, predicting
their learning performance and finding problems through the analysis and interpretation
of the relevant data generated and collected by learners. It covers the collection, measure-
ment, analysis, reporting and knowledge discovery of data about students, teachers and
institutions [1]. According to the 2021 EDUCAUSE Horizon Report, the foundational data
of learning analysis includes course-level data, such as evaluation scores collected from
the LMS and institutional-level data residing in student information systems, registration
records, financial systems and institutional research units [2]. Educational big data is
profoundly affecting and changing education. How to make full use of educational data
and explore the educational law behind it has become the focus of researchers in recent
years. The main task of learning analysis in the field of education is to analyze and interpret
the relevant data generated and collected by learners, evaluate the learner’s academic
performance, predict their academic performance, and carry out academic early warning
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according to the prediction results of learning status to provide a basis for educational
decision-making. Therefore, making full use of educational data to predict learners’ aca-
demic performance is not only the core issue in the field of learning analysis, it is also a
research hotspot in the field of education. Student performance prediction aims to estimate
the future performance of students in a specific examination or evaluation. This helps
identify whether students are at risk of failing or dropping out of school to provide timely
guidance and assistance for them, which is particularly important in online learning [3].

Using educational data mining technology to build an online students’ academic
performance prediction model in a data-driven way is the focus of this current research.
Many studies have used machine learning algorithms to predict students’ performance [4].
For example, the classical machine learning algorithms that have been successfully applied
to performance prediction include k-nearest neighbor, logistic regression, artificial neural
network, random forest, support vector machine, convolutional neural network, and so
on [5–9]. Existing performance prediction methods treat each student in isolation and
ignore the implicit correlation between students. However, students’ performance is
related to the performance of other students (i.e., peers), especially those with similar
characteristics [10–12]. In this work, we demonstrate that the relationship between students
is very important for performance prediction.

In the environment of the Internet of Everything, the graph has a strong ability to
express the functional relationship between students in an educational context. Graph
structure naturally exists among students. Traditional performance prediction methods
are unable to deal with this kind of graph structure and the ability to mine the potential
relationship between students is very limited. This study proposes a novel pipeline for
student performance prediction based on multi-topology graph neural networks (MTGNN).
We define the potential relationship between students on the graph, regard each student
as a node and the relationship between students as an edge, and model the performance
prediction problem as a node classification task of GNNs to effectively predict student
performance. To evaluate the performance of our proposed method, we conduct a series of
experiments on the OULA dataset [13]. In particular, our empirical study aims to answer the
following questions: (i) How accurate is the MTGNN in predicting at-risk students? (ii) Is
MTGNN effective for early prediction tasks? (iii) How do different student relationship
graph generation methods affect the performance of the predictive models?

The main contributions of this paper can be summarized as follows.

• We propose a novel pipeline for student performance prediction based on multi-
topology graph neural networks (MTGNN) which can be used as a reference for
educational colleagues to carry out related work and effectively solves the limitations
of traditional performance prediction methods, such as a low accuracy rate and
ignoring the potential relationship among students.

• According to the input needs of GNNs, the construction method of the student re-
lationship graph is proposed to facilitate the application of GNNs in educational
research.

The following sections are arranged in the following order. Section 2 reviews the
related works on student performance prediction. In Section 3, we present our proposed
pipeline and describe its architecture and characteristics. Section 4 introduces the case study
and details the aim and research questions, the dataset, the baselines and experimental
setup, results and discussions. Section 5 concludes this article.

2. Related Works
2.1. Student Performance Prediction Based on Classic Machine Learning Approaches

Students’ performance prediction is a challenging task facing educational systems.
The author provides a brief overview of the current state-of-the-art performance prediction
research. We first describe the existing works on research using traditional machine
learning methods. Marbouti et al. created three logistic regression models to identify
at-risk students in a large first-year engineering course at three important times of the



Sustainability 2022, 14, 7965 3 of 20

semester according to the academic calendar. The results show that the models were
able to identify at-risk students early in the curriculum [5]. Martinho et al. proposed
an intelligent system for student dropout prediction using the Fuzzy-ARTMAP neural
network. The subjects of the study are students from different technical colleges. The
research results show that the overall accuracy of the proposed system is better than
76%, making it possible to identify students who may drop out early [14]. Riestra et al.
used five machine learning algorithms (decision trees, naive Bayes, logistic regression,
multilayer perceptron, and support vector machines) to create models to predict students’
performance early by analyzing massive LMS log information. They also used a clustering
algorithm to detect six different student groups and analyze the interaction mode of
each group [9]. To reveal the relationship between Internet usage behavior and academic
performance, Xu et al. verified the effectiveness of predicting academic performance from
college students’ Internet usage data using a decision tree, a neural network and a support
vector machine [7]. Arsad et al. studied the application of an artificial neural network
(ANN) model in the prediction of the academic performance of engineering students at
Mara University of technology [6]. Waheed et al. measured the effectiveness of clickstream
data in a virtual learning environment to predict high-risk students through deep learning
models and provided measures for early intervention. It is found that the prediction
accuracy of deep artificial neural networks is better than baseline logistic regression and
support vector machine models [15]. The high failure rate of students in introductory
programming courses has aroused the vigilance of many educators. Costa et al. used EDM
technology to early identify students who may fail introductory programming courses.
They studied and evaluated the effectiveness of four prediction technologies (support
vector machine, decision trees, neural network and naive Bayes) on two different data
sources in programming courses provided by Brazilian public universities. After applying
data preprocessing and algorithm fine-tuning, the effectiveness of some technologies has
been improved, and the effect of support vector machines achieved the best results [16].

Other research works propose new prediction methods based on machine learning
techniques to improve the accuracy of performance prediction. Ren et al. developed a
personalized linear multiple regression (PLMR) model to predict student performance.
The model tracks student engagement in MOOCs in real-time through clickstream server
logs and predicts student performance in the course [17]. Yang et al. used the student
attribute matrix (SAM) to build a student model with score-related attributes and non-
score-related attributes to quantify student attributes for further analysis. They proposed
a student performance estimation tool based on classification BP-NN(back propagation
neural network) which can estimate student performance according to students’ prior
knowledge and other student performance indicators with similar characteristics [18].
Chui et al. [19] proposed a reduced training vector-based support vector machine (RTV-
SVM) to predict at-risk and marginal students. The model can reduce the training vector
and shorten the training time without affecting classification accuracy. To convert students’
course participation into images for early warning and prediction analysis, Yang et al. [8]
proposed two innovative methods: single-channel learning image recognition (1-CLIR) and
three-channel learning image recognition(3-CLIR). A learning image refers to a graph of
all the data collected in the learning process, including behavior, text and other recordable
data. The results show that both methods can significantly capture more high-risk students
than support vector machines, random forest and deep neural networks. Table 1 lists some
common techniques and methods for predicting performance.
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Table 1. Student performance prediction using conventional machine learning techniques.

Problem Formulation Techniques/Models Year

Students’ early performance prediction [6] Artificial Neural Network (ANN) 2013

Predicting dropout students [14] Fuzzy-ARTMAP Neural Network 2013

Identify at-risk students [5] Logistic Regression (LR) 2015

Predicting student performance in MOOCs [17] Personalized linear multiple regression model 2016

Early prediction of students’ academic failure in introductory
programming courses [16]

Support Vector Machine (SVM)

2017Decision Tree
Neural Network
Naive Bayes

Predicting at-risk and marginal students [19] Reduced training vector-based SVM 2018

Predicting academic performance from college students’ Internet usage
data [7]

Decision Tree
2019Neural Network

Support Vector Machine

Recognize learning images for early warning of at-risk students [8] Convolutional Neural Network (CNN) 2020

Early prediction of course-agnostic student performance [9]

Decision Trees

2021
Naive Bayes
Logistic Regression (LR)
Multilayer Perceptron (MLP)
Support Vector Machine (SVM)

2.2. Graph Neural Networks’ Application in Education

In recent years, graph neural networks (GNNs), or more broadly, deep learning
on graphs, have received extensive attention by virtue of their remarkable potential
in analyzing non-grid structure data that can be represented as graphs [20–24]. As a
powerful tool for dealing with graph data, GNNs have been widely used in various ap-
plications, including social networks, recommender systems, computer vision, natural
language processing, chemistry and biology, etc., see the survey papers and references
therein [21–24].

With the development of intelligent education (i.e., “AI + Education” in a broad sense),
GNNs and associated deep learning techniques for graphs have been employed under
various scenarios in the education domain. For example, knowledge tracking (KT) aims
to track students’ evolutionary mastery of specific knowledge or concepts according to
their historical learning interaction with corresponding exercises. Nakagawa et al. applied
GNNs to knowledge tracking for the first time and proposed a GNN-based knowledge
tracing method (GKT) which transforms the knowledge structure into a graph to transform
the knowledge tracking task into a time-series node-level classification problem in GNNs.
Since knowledge graph structures are not explicitly provided in most cases, the authors
also propose various implementations of graph structures [25]. Song et al. [26] proposed
a joint graph convolutional network-based deep knowledge tracing (JKT) method which
adopts a novel inference-generating knowledge tracing framework. JKT modeled the
multidimensional relationship between “exercise-to-exercise” and “concept to concept”
into a graph and fused them with “exercise-to-concept” relationships to address the issues
such as the difficulty models experience capturing the long-term dependency of student
exercise history and modeling the interactions between student-questions and student-
skills in a consistent way. Yang et al. [27] proposed a graph-based interaction model for
knowledge tracing (GIKT) which utilizes GCN to substantially incorporate question-skill
correlations via embedding propagation. Taking into account the students’ forgetting
behavior, Abdelrahman et al. [28] presented a novel knowledge tracing model, named deep
graph memory network (DGMN) which incorporates a forget gating mechanism into the
attention memory structure to dynamically capture forgetting behavior during knowledge
tracking. Gan et al. proposed a novel knowledge structure-enhanced graph representation
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learning model for KT with an attention mechanism (KSGKT) which can predict a learner’s
performance on new problems. KSGKT [29] is an improvement over GIKT as it alleviates
graph sparsity. In view of the problems encountered by traditional GNN-based knowledge
tracking models, Song et al. [30] proposed bi-graph contrastive learning-based knowledge
tracing (Bi-CLKT) which consists of three parts: subgraph establishing, contrastive learning
and performance prediction.

Cognitive diagnosis is another fundamental issue in intelligent educational settings
which aims to diagnose students’ knowledge proficiency. Gao et al. [31] proposed a
novel relation map-driven cognitive diagnosis (RCD) framework which unifies modeling
interactive and structural relations through a multi-layer student-exercise-concept map.
Mao et al. [32] proposed a learning behavior-aware cognitive diagnosis (LCD) framework
for students’ cognitive modeling with both learning behavior records and exercise records,
where GCN is used to automatically refine the feature vectors representing exercises and
videos. Zhang et al. [33] proposed a graph-based knowledge tracing enhanced cognitive
diagnosis model (GKT-CD) and improved the performance of cognitive diagnostics for
both the student factor and exercise factor. GKT-CD carries out cognitive diagnosis under
a collaborative framework which is developed to trace the student-knowledge response
records and extract students’ latent traits. Automatic short answer grading (ASAG) is a
challenging task aimed at predicting the score of a given student’s response. Tan et al.
used a two-layer GCN to encode the undirected heterogeneous graphs of all students’
answers [34]. In terms of performance prediction, researchers utilized the application
potential of GNNs. Hu et al. [10] proposed a new GCN model based on attention to capture
the complex graph structure knowledge evolution presented by student data to predict
students’ performance in future courses. Karimi et al. [11] developed a model named
deep online performance evaluation (DOPE) to predict students’ course performance in
online learning. DOPE first models the student course relations in the online system
as a knowledge graph and then extracted the course and student embedding using the
GNNs, encoded the temporal student behavioral data of students in the system using the
recursive neural network, and finally predicted the performance of students in a given
course. Li et al. [12] established the relationship model between students and problems
using student interaction, they constructed the student interaction problem network, and
further proposed a new GNN model, called R2GCN. The model is essentially applicable to
heterogeneous networks and can realize generalized student performance prediction in
interactive online question pools. Table 2 lists typical applications of GNN in education.

Table 2. Typical cases for GNNs’ application in education.

Application Techniques/Models Year

Knowledge tracking

Graph-based knowledge tracking model (GKT) [25] 2019

Graph-based interaction model for knowledge tracing (GIKT) [27] 2020

Joint graph convolutional network based deep knowledge tracing (JKT) [26] 2021

Attentive knowledge tracing based on graph representation learning (KS-GKT) [29] 2021

Deep graph memory network (DGMN) [28] 2021

Bi-Graph contrastive learning-based knowledge tracing (Bi-CLKT) [30] 2022

Cognitive diagnosis

Relation map driven cognitive diagnosis (RCD) [31] 2021

Learning behavior perception cognitive diagnosis (LCD) [32] 2021

Cognitive diagnosis model enhanced by graph-based knowledge tracing (GKT-CD) [33] 2021

Automatic short answer grading Graph convolutional network [34] 2020

Performance prediction

Attention-based graph convolutional networks [10] 2019

Relational graph convolutional neural network [11] 2020

Residual relational graph neural network [12] 2020
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The aforementioned works show that: (i) the existing student performance prediction
methods treat each student in isolation, which inherently ignores the potential relationship
among students and their peers. In practice, the structural information among students is
not well utilized; (ii) GNNs have demonstrated their effectiveness and potential advantages
in copying with several challengeable tasks in educational data mining. However, there are
so far few works presenting a complete pipeline showing detailed procedures to leverage
GNNs in this specific task. That motivates our main work as delineated in the following
Section 3.

3. Student Performance Prediction Using Multi-Topology Graph Neural Networks

In this paper, we propose a pipeline for student performance prediction based on
multi-topology graph neural networks (MTGNN). It extensively considers the performance
relationships between students with similar characteristics and further enhances student
performance prediction through these latent relationships. Figure 1 shows the procedures of
the pipeline, which includes four main modules: data collection, data preprocessing, graph
construction, and MTGNN for dealing with the semi-supervised node classification task.
The collection and processing of students’ data is the preparatory work for constructing
the performance prediction model. Graph construction constructs students’ data into
graphs that reflect students’ potential relationships through similarity learning. In the
network construction module, we design MTGNN and introduce the attention mechanism
to extract and fuse the embeddings of graphs and finally use the fused embedding for
prediction tasks.

Figure 1. The whole framework of MTGNN for student performance prediction. The pipeline
includes four main procedures: data collection, data pre-processing, graph construction based on
similarity learning, and the proposed Multi-Topology Graph Neural Networks (MTGNN) for semi-
supervised node classification.
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3.1. Revising Graph Convolutional Networks

In this part, we revisit the detailed derivation of graph convolutional networks [35],
which is a simplification version of the ChebNet [36]. Given an undirected G = {V, E},
where V = {v1, v2 . . . , vN} denotes N nodes, E represents the set of edges, x : V → R be a
signal on nodes V of graph G, i.e., a function that associates a real value to each node of V.
Based on the pioneering work [37], the spectral graph convolution can be defined in the
spectral domain of the graph using an analogy to classical Fourier analysis in which the
convolution of two signals is calculated as the pointwise product of their Fourier transforms
(i.e., convolution theorem [38]). First, the (normalized) graph Laplacian L (which is real,
symmetric and positive semi-definite) can be defined as [39]

L = IN −D−
1
2 AD−

1
2 , (1)

where In is the N × N identity matrix, A ∈ RN×N is the adjacency (symmetric) matrix and
D is the degree matrix with entries given as

Dij =

{
∑N

l=1 Ail , if i = j;
0, otherwise.

(2)

and its eigendecomposition is:
L = UΛU>, (3)

where Λ = diag(λ0, . . . , λN−1) is a diagonal matrix with the ordered eigenvalues of L
as diagonal entries, U is an orthonormal matrix where each column {u0, . . . , un−1} is an
eigenvector of L. Based on the spectral graph theory [40], for the graph signal x, its graph
Fourier transform can be defined as:

x̂ = U>x (4)

and its inverse graph Fourier transform is:

x = Ux̂. (5)

Then, the spectral graph convolution between a filter F and a graph signal x can be
defined as:

F ∗G x = U
(
F̂ � x̂

)
= U

((
U>F

)
�
(

U>x
))

, (6)

where F̂ � x̂ is the Hadamard product.
For simplicity, one can denote F̂ := U>F in the spectral domain, then Equation (6)

can refined as
F ∗G x = U

(
F̂ �

(
U>x

))
, (7)

which can be further simplified by reformulating the Hadamard product F̂ � x̂ in matrix-
vector notation as F̂ � x̂ = F̂x̂ where the diagonal matrix F̂ is denoted by

(F̂)ij =
(
diag(F̂ )

)
ij =

{
f̂i if i = j
0 otherwise

,

Finally, we arrive at:
F ∗G x = UF̂U>x. (8)

The spectral filter F , determining the diagonal matrix F̂, can be constructed in various
ways. For example, one can use a parametric filter F̂θ = diag{θ1, . . . , θN} ∈ RN×N , where
θ1, θ2, . . . , θN are trainable parameters [37]. One drawback of this parametric method is
that the eigendecomposition of L (of O(n3) computational cost) is required, which is not
possible for large-scale graph that of hundreds of thousands or even millions of nodes. For
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reduce the computational burden, one can consider a polynomial approximation for the
spectral filter F [41], such as

F̂θ =
K

∑
i=0

θiΛ
i. (9)

{θ0, . . . , θK} are trainable parameters. Based on the specific form of the polynomial, one
can easily obtain that:

Fθ ∗G x = UF̂θU>x =
K

∑
i=0

θiUΛiU>x =
K

∑
i=0

θi(UΛU>)ix =
K

∑
i=0

θiLix. (10)

It is clear that Equation (10) avoids the computation of the eigendecomposition of L,
largely reducing the computational cost for computing graph convolution. Later, authors
in [36] used Chebyshev polynomials as a polynomial basis and proposed the ChebNet
model. To further simplify the computation of ChebNet, authors in [35] consider K = 1 in
Equation (9) and refined the graph convolution as

Fθ ∗G x = θ(IN + D−
1
2 AD−

1
2 )x (11)

In addition, a renormalization trick that replaces IN + D−
1
2 AD−

1
2 by D̃−

1
2 ÃD̃−

1
2 ,

where Ã = A + IN and D̃ii = ∑N
j=0 Ãij, is used to obtain the vanilla GCN [35], that is,

H(k) = ReLU(D̃−
1
2 ÃD̃−

1
2 H(k−1)Θ). (12)

where H(0) = X ∈ R× representing the original feature matrix of the graph signal,
Θ ∈ Rd×q is a trainable parameter matrix, k represents the number of graph convolutional
layers. For semi-supervised node classification task, the final prediction produced by
L-layer GCN is formulated as:

Y = Softmax(D̃−
1
2 ÃD̃−

1
2 H(L)Θ). (13)

3.2. Data Collection and Preprocessing

The collection of educational data is the first step in reflecting the value of educational
data mining. With the increasing amount of massive data collected and stored in various
databases, it is necessary to extract valuable data from them, such as the interactive logs of
online learning platforms and the student information in the learning management system.

However, the raw data often are not able to meet the requirements of the model. In
our pipeline, data preprocessing is a non-negligible step to provide a suitable dataset for
the effective application of the model. The dataset used by the predictive model should be
complete, well-structured, and free of missing values. Here, we give the following data
preprocessing steps for reference:

• Attribute Selection: Too many feature attributes may reduce the efficiency of model
building, so it is necessary to select the feature attributes that have the greatest impact
on the performance of modeling.

• Data Cleaning: Incomplete or unreasonable data needs to be deduplicated, patched,
corrected or removed to improve the quality of the data.

• Data Transformation: Data transformation is the process of transforming data from one
representation to another. When the original data type does not meet the requirements
of the model input, data transformation is required, including data size transformation
and type transformation. In our model, to calculate the similarity of the data, all input
data should be numerical.
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3.3. Graph Construction Based on Similarity Learning

We regard each student as a node vi (i = 1, 2, . . . , N), the node label is the student’s
grade category (e.g., Pass, Fail, Withdrawal) and the node contains the attributes of the
student (such as educational contexts, demographic characteristics, learning engagement,
learning behavior, learning duration, etc., as carefully studied and used in [9,13,15]). These
attributes are the relevant factors that affect the students’ academic performance. The
student node graph can be expressed as G = (V, E), where V = {v1, v2, . . . , vN} represents
N students and E ⊆ V ×V contains all the edges among the students.

A common strategy for graph construction is to calculate the similarity between pairs
of nodes based on a similarity learning measure and judge whether there is an edge between
nodes according to the similarity. Due to the different measurement standards of different
but similarity learning methods, the selection should be based on the characteristics of the
data value. In practical problems, the same thing can be described in different ways or from
different angles, and multiple descriptions constitute multiple views of the thing. To better
mine the complex latent relationship between students, we can construct multiple graphs
with different similarity measures. Here, we introduce three commonly used similarity
learning methods.

There are various metrics to measure how the samples/variables are related or closed
to each other, such as Cosine, Pearson, Jaccard, Hamming, Mahalanobis, Minkowski,
etc. [42]. In this paper, we consider measuring the similarity between two nodes that
represent two different students via the following three metrics [42]:

Cosine similarity with learnable parameter vector p.

sc
ij =

(vi
⊙

p)T(vj
⊙

p)
‖vi

⊙
p‖ · ‖vj

⊙
p‖ (14)

Pearson correlation coefficient with learnable parameter vector p.

sp
ij =

(
‖(vi − v̄i)

⊙
p‖
)T(
‖(vj − v̄j)

⊙
p‖
)

‖(vi − v̄i)
⊙

p‖ · ‖(vj − v̄j)
⊙

p‖ (15)

Tanimoto coefficient with learnable parameter vector p.

st
ij =

(vi
⊙

p)T(vj
⊙

p)
‖vi

⊙
p‖2 + ‖vj

⊙
p‖2 − (vi

⊙
p)T(vj

⊙
p)

, (16)

where vi (vj) denotes the feature vector of node i (node j), v̄i ( v̄j) represents the mean value
of all the elements from vector vi (vj). p ∈ RN is a trainable vector.

Without loss of generality, we use sij ∈ [−1, 1] to denote the similarity between student
i and j. Then we can obtain a symmetric similarity matrix S. With the consideration of the
fact that an adjacency matrix for a real-world (undirected) graph is usually nonnegative
and sparse, a simple trick, which defines a non-negative threshold ε and sets those elements
in S which are smaller than ε to zero, is used to generate the sparse adjacency matrix A, i.e.,

Aij =

{
1, sij > ε

0, otherwise.
(17)

3.4. Multi-Topology Graph Neural Network

In this part, we develop a multi-topology graph neural network (termed MTGNN)
by leveraging multiple adjacency matrices constructed on the basis of various similarity
metrics as aforementioned. Then, MTGNN is used for solving semi-supervised node
classification tasks, that is, the student performance prediction problem.

Based on the graph construction procedures detailed in Section 3.3, we first generate a
number of graphs with different adjacency matrices using corresponding similarity metrics
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(Cosine/Pearson/Tanimoto, etc.). Let {A1, A2, . . . , AM} denote M adjacency matrices (of
size RN×N) with different topologies (or views), our aim is to develop a unified GNN
model that can produce a preferable graph representation learning by leveraging useful
information from each graph structure. For each graph topology, we can use GCN to obtain
the graph representation, that is,

H(k)
m = ReLU

(
D̃−

1
2

m ÃmD̃−
1
2

m H(k−1)
m Θ

)
, (18)

where Ãm = Am + IN and Dm is the degree matrix of Ãm, Θ is a trainable parameter matrix
shared across all the graphs with different topologies, i.e., Am, m = 1, 2, . . . , M.

Without loss of generality, for each GCN corresponding to Am (m = 1, 2, . . . , M),
we set L graph convolutional layers and then obtain the embedding matrices H(L)

m (m =

1, 2, . . . , M). Then, the remaining question is how to fuse H(L)
m (m = 1, 2, . . . , M) to produce

the final graph representation embedding, which is used directly for the semi-supervised
node classification. Motivated by the attention mechanism utilized in GAT [43], we propose
a difference-based attention strategy to compute the importance weight κm for each H(L)

m
(m = 1, 2, . . . , M).

First, the ‘difference’ embedding matrix4H(L)
m ∈ RN×d̃ can be formulated as

4H(L)
m := MLP(H(L)

m − H̄(L); W, b)

where H̄(L) := 1
M ∑M

m=1 H(L)
m , which represents the ‘mean’ embedding matrix, W ∈ RN×d̃

and b ∈ Rd̃×1 are trainable weights and biases in the used MLP(·).
Then, we define the following new manner to calculate the attention coefficients for

H(L)
m (m = 1, 2, . . . , M), that is,

κm =

exp

(
LeakyReLU

(
W̃l4H(L)

m W̃r

))

∑M
t=1 exp

(
LeakyReLU

(
W̃l4H(L)

t W̃r

)) ,

where W̃l ∈ R1×N and W̃r ∈ Rd̃×1 represent the left-side trainable vector and right-side
trainable vector, respectively, by which H(L)

m (m = 1, 2, . . . , M) can be transformed to
a scalar.

Finally, the unified graph representation can be formulated as

H∗ =
M

∑
m=1

κmH(L)
m ,

where the coefficients κm (m = 1, 2, . . . , M) can be viewed as importance weights represent-
ing the contribution of H(L)

m to the unified representation H*.
Afterward, for solving the semi-supervised node classification task, the final embed-

ding Z is defined as follows:
Z = softmax(H∗W f )

where W f is a trainable parameter matrix of the last layer. Then, the objective function is
formulated as:

L = c(Z, Y),

where Y stands for the label matrix of nodes, and c(·, ·) denotes the cross-entropy loss
function.
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Remark: The proposed MTGNN model relies on the given M adjacency matrices
{A1, A2, . . . , AM} that represent various graph views/structures. It should be noted that
the construction procedure for {A1, A2, . . . , AM} is closely linked to the trainable process
for optimizing MTGNN due to the learnable form of similarity metrics defined in Equa-
tions (14)–(16). In practice, under certain conditions, such as the node features are without
any noise and the underlying graph structure satisfy well the homophily assumption [44],
i.e., most connections happen among nodes in the same class or with alike features, one can
remove the trainable vector p used in Equations (14)–(16), refining the similarity learning
into a pre-processing process. This can further simplify the whole pipeline.

Complexity analysis: The computational complexity of 1-layer GCN [35] isO(|E|dC),
where |E| is the cardinality of the edge set, d is the dimension of the input feature and C is
the dimension of the output feature, while the complexity of 1-layer GAT isO(NdC + |E|C)
where N is the number of nodes. Therefore, we can generally estimate the computational
complexity of MTGNN by considering both the GCN module used for each topology
and the attention mechanism applied for evaluating the weights to produce the unified
representation, that is, O(M|E|dC + MLC), where L denotes the number of neurons used
in the MLP model for evaluating the attention coefficients. For practical implementations,
based on our empirical experience, it is not necessary to use a huge number of topologies
for problem-solving since there is potentially information redundancy. That means the
computational cost of MTGNN is generally close to that of GCN and GAT if the value of M
is small.

4. Case Study: Student Performance Prediction
4.1. Aim and Research Questions

To evaluate the effectiveness and advantages of the proposed MTGNN in predicting
students’ performance, we conduct a series of experimental studies with specific focuses
on the following questions:

• Q1: how accurate is the proposed MTGNN model in predicting the students’ final
performance

• Q2: is MTGNN effective for early prediction for at-risk students?
• Q3: how do different graph construction methods (based on various similarity metrics)

affect the final prediction performance?

4.2. Dataset

We select the data of code-Mode CCC in the Open University Learning Analytics
dataset (OULA) [13], which contains demographic data together with aggregated click-
stream data of student interactions in the Virtual Learning Environment (VLE). After
preprocessing the data, we obtained the academic data of 3983 students, including the basic
information of students, online learning behavior data and learning evaluation data. The
distribution of students’ grades are (1) Distinction: 498 students; (2) Pass: 1179 students;
(3) Fail: 753 students; (4) Withdrawal: 1553 students. For simplicity, in our experimental
study we divided the students into three groups: Pass (Pass and Distinction), Withdrawal,
Fail, and use different combinations of certain groups in various task (see Section 4.4 for
details). For the characteristics of data values, we use the two similarity learning methods
of the Cosine and Pearson coefficient to construct multiple graphs in the experiments.
Table 3 summarizes all the input and output attributes of the dataset.
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Table 3. Summary of data features.

Attributes Description

forumng clicks on the discussion forum

homepage clicks on the course homepage

oucollaborate clicks on the online video discussions

oucontent clicks on the contents of the assignment

page clicks on the information related to course

quiz clicks on the course quiz

resource clicks on the course homepage

subpage clicks on the other sites enabled in the course

url clicks on the links to audio/video contents

gender student’s gender

region the geographic region, where the student lived while taking the
module-presentation

highest_education the highest student education level on entry to the module presentation

age_band a band of student’s age

num_of_prev_attempts the number of how many times the student has attempted this module

studied_credits the total number of credits for the modules the student is currently
studying

disability indicates whether the student has declared a disability

final_result student’s final result in the module-presentation.

4.3. Baselines and Experimental Setup

In our experimental study, three conventional machine learning methods [45] includ-
ing support vector machine (SVM), linear regression (LR), and single-layer feedforward
neural networks (SLFNN), as well as the vanilla graph convolutional network (GCN) [35]
are used as baseline models in comparison with our proposed MTGNN.

We randomly split the dataset, where 80% data samples are used for training and the
other 20% is used for testing. For the purpose of optimizing the model’s hyperparameters
and configurations (e.g., the suitable structure of the used model, early-stopping to avoid
over-fitting, etc.), we further split (randomly) the training set into 90%:10%, where the
10% samples are used as a validation dataset for evaluating the candidate models. After
finding the preferable hyperparameters and architectures for the model, we routinely re-train
the model with all the available training samples (i.e., combining 10% validation samples
together with the 90% ones), then evaluate the trained model on the test dataset to examine
its generalization capability. In practice, this manner is similar to the way of using cross-
validation, which is also a common way used in conventional machine learning tasks. All
the baseline models and our MTGNN are implemented in PyTorch. For the proposed model,
we construct multiple graphs by using the two similarity learning methods (Cosine and
Pearson-based metric) and the threshold ε is selected between 0.78∼0.88 via a trial-and-error
manner. We set the learning rate of the Adam optimizer as 0.05, and the weight decay as
5 × 10−4. ReLU activation function is used in the MTGNN model. We note that the most
appropriate hyper-parameter settings for all baseline models are chosen through a number of
independent trials. Since we formulate the student performance prediction task as a binary
classification problem, we use the following evaluation metrics for performance comparison:

• The classification accuracy (ACC):

ACC =
TP + TN

TP + FP + FN + TN
,
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where TP, FP, FN, TN represents the number of True Positive, False Positive, False
Negative, True Negative cases (in the associated confusion matrix), respectively.

• Recall: the proportion that the model is accurately classifying the true positives:

Recall =
TP

TP + FN
.

• F1-score: a trade between Recall and Precision (i.e., the ratio of the true positives to
the total predicted positives):

F1−score =
2 ∗ (Recall× Precision)

Recall + Precision
.

4.4. Results and Discussion

In this part, we present in detail the empirical results of both MTGNN and the base-
lines, in terms of two scenarios. The first task is to predict the final academic performance,
e.g., Pass/Fail, Pass/Withdrawal, using the students’ records from the whole semester. In
particular, if we only focus on the classification problem for two categories Pass/Fail, only
samples from these two classes are used for problem-solving. The same way is performed
for the case of Pass/Withdrawal. The second task aim at verifying the effectiveness and
potential advantages of MTGNN over the other baselines on early prediction for at-risk
students who do not perform well during the early weeks of the semester.

Task 1: Performance prediction using academic records from the whole semester.
The first experiment investigates whether MTGNN can produce better prediction results
than the baseline models in predicting the students’ final performance. We divided it into
two tasks: predicting students at risk of failure and those at risk of dropping out. To predict
students at risk of failure, we divided students into the categories of Pass or Fail and to
predict students at risk of dropping out, we divided students into the categories of Pass
or Withdrawal.

The prediction metrics results are presented in Table 4. We can see that our MTGNN
model significantly outperforms the baseline models in the two prediction tasks. In par-
ticular, the MTGNN model works better than the single-topology GCN (GCN-Cosine
and GCN-Pearson) in all three evaluation metrics, which also proves the superiority of
multi-topology in practice. Our MTGNN model considers the embedding information
of two graphs when modeling and the fused embedding information is captured by the
model, so its predictive performance improves. We also visualized node embeddings as
shown in Figure 2. Compared with the node embeddings not learned by MTGNN, the
learned node embeddings have a more compact structure and clearer boundaries between
different categories, showing that our model can cluster nodes of the same category well.

Table 4. Performance comparison between the baseline models and MTGNN for predicting at-risk
students. Bold font indicates the best performance.

Metrics Categories SVM LR SLFNN GCN-Cosine GCN-Pearson MTGNN

Accuracy
Pass/Fail 80.66 80.25 76.95 80.86 81.48 84.98

Pass/Withdrawal 87.93 87.78 81.42 88.08 87.31 91.95

F1-score
Pass/Fail 68.67 68.00 45.80 67.82 68.75 73.65

Pass/Withdrawal 88.39 88.08 78.80 88.06 87.46 92.59

Recall
Pass/Fail 66.88 66.23 29.87 62.42 63.03 68.46

Pass/Withdrawal 93.69 92.11 70.35 88.47 89.10 97.60
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(a) Original node embeddings. (b) Learned node embeddings.

(c) Original node embeddings. (d) Learned node embeddings.

Figure 2. Visualization of node embeddings: (a) original embeddings for categories Pass/Fail;
(b) learned embeddings by MTGNN for categories Pass/Fail; (c) original embeddings for categories
Pass/Withdrawal; (d) learned embeddings by MTGNN for categories Pass/Withdrawal.

Task 2: Early prediction for at-risk students. The second experiment investigates
whether MTGNN has a better performance than the baseline models in early prediction
tasks. The early prediction of students’ performance is an important way to improve
their learning efficiency. If we can identify students who are at risk of failing or dropping
out early in a course, teachers can provide them with timely help and advice, giving
them enough time to improve their abilities and understanding. In addition, outstanding
students can improve their grades significantly with better-customized study plans. This is
why our second experiment is designed to predict student performance early in the course.

We made predictions for at-risk students at weeks 5, 10, 15 and 20, respectively, which
also helped us evaluate our models more comprehensively. Similar to Experiment 1, we
identify students who are at risk of failure early in the course by dividing students into
either Pass or Fail, and to identify students who are at risk of dropping out early in the
course, we divide students Pass or Withdrawal. As shown in Table 5, MTGNN still achieves
better prediction performance compared with the baseline models. From Figure 3, we
can clearly see that the prediction accuracy increases with the prediction time, which also
proves that as the course progresses, more academic information can be used to improve
the prediction accuracy, and by the twentieth week of the course, our model MTGNN
achieves 81.14% accuracy on the task of predicting students at risk of failing, and it achieves
82.30% accuracy on the task of predicting students at risk of dropping out, indicating the
possibility of the early prediction of students at risk of failing and dropping out. This also
shows the effectiveness of the MTGNN model for early intervention, which is of great
significance for solving students’ problems in a timely manner and motivating them to
continue learning.
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Table 5. Performance comparison between the baselines and MTGNN for early prediction task. Bold
font indicates the best records.

Moment Categories SVM LR SLFNN GCN-Cosine GCN-Pearson MTGNN

Week5
Pass/Fail 72.40 72.82 74.31 72.82 73.46 76.22

Pass/Withdrawal 67.57 68.84 67.25 68.53 68.37 72.20

Week10
Pass/Fail 74.79 77.54 72.25 72.67 73.09 78.39

Pass/Withdrawal 70.49 72.57 75.28 74.64 75.44 76.40

Week15
Pass/Fail 74.58 76.27 73.73 75.64 76.69 79.24

Pass/Withdrawal 74.00 74.80 72.41 73.68 72.57 77.67

Week20
Pass/Fail 79.02 78.60 74.15 78.81 77.97 80.72

Pass/Withdrawal 77.35 78.31 74.32 79.11 79.27 82.30

Week5 Week10 Week15 Week20
Prediction moments
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100

A
cc

ur
ac

y(
%

)

Pass/Fail
Pass/Withdrawal

Figure 3. MTGNN’s test accuracies for early prediction of at-risk students (e.g., Fail, Withdrawal).

Effects of different student relationship graphs on the prediction performance of
MTGNN. The third experiment explores the effects of graphs generated using different
similarity learning methods on the predictive performance of MTGNN. In the previous
two experiments, we used Cosine and Pearson coefficient to construct two graphs, which
we call Topology-Cosine and Topology-Pearson. To answer the third research question, we
output the number of edges of each graph and its adaptive importance weight learned by
the attention mechanism based on experiments 1 and 2.

From Figure 4, we can see the attention coefficients of the embedding of each graph
at different prediction moments in different prediction tasks, and the attention coefficient
represents the importance weights of each embedding in the prediction task of the model.
Taking the complete time as an example, in the task of predicting failing students, the
attention coefficient of Topology-Pearson is larger than Topology-Cosine, which shows that
Topology-Pearson provides more useful information in this prediction task. However, in
the task of predicting students who are at risk of dropping out, Topology-Cosine has a larger
attention coefficient, indicating that it plays a greater role in this task. The importance of
graphs constructed using different similarity learning methods varies in different prediction
tasks, which shows that our prediction model can adaptively adjust the importance weight
of each input graph and realize the effective integration of embeddings to achieve the best
prediction effect.
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(a) Pass/Fail.
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(b) Pass/Withdrawal.
Figure 4. Attention coefficients configured for topologies used in MTGNN.

Different similarity learning methods have their own calculation methods and mea-
surement characteristics. Pearson coefficient is used to measure the linear correlation
between two variables, and Cosine measures the similarity between two vectors by mea-
suring the cosine of the angle between them. Therefore, the graphs constructed by each are
different. Table 6 shows the number of edges of the student relationship graph under differ-
ent prediction tasks. It can be seen that there is no correlation between the number of edges
and the attention coefficient. This shows that the importance of the student relationship
graphs in the prediction task is independent of their size.

Table 6. A summary of edge numbers for both Cosine and Pearson-based similarity learning.

Moment Categories Topology-Cosine Topology-Pearson

Week5
Pass/Fail 45,142 41,841

Pass/Withdrawal 104,028 99,389

Week10
Pass/Fail 36,770 33,972

Pass/Withdrawal 168,404 160,931

Week15
Pass/Fail 37,486 33,698

Pass/Withdrawal 71,774 66,989

Week20
Pass/Fail 38,402 33,818

Pass/Withdrawal 77,188 71,147

Complete
Pass/Fail 72,456 65,562

Pass/Withdrawal 260,434 245,560

The well-known Spearman’s nonparametric correlation analysis [46] was performed to
quantify the correlation strength between student performance and the concerned features
detailed in Table 3. As shown in Table 7, for both the two cases of problem-formulation
(Pass/Fail and Pass/Withdrawal), students’ final performance displayed a statistically
significant association with some features reflecting the students’ learning behavior, en-
gagement and duration, such as ‘forumng’, ‘homepage’, ‘oucollaborate’, ‘oucontent’, ‘page’,
‘quiz’, ‘resource’, ‘subpage’, ‘url’. This finding is consistent with the ones presented in the
related works [9,13,15].
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Table 7. Correlation using Spearman’s Rho coefficient for two cases of problem-formulation: Pass
(P)/Fail (F), Pass (P)/Withdrawal (W).

Features P/F P/W Features P/F P/W

forumng 0.398 ** 0.523 ** url 0.395 ** 0.579 **
homepage 0.523 ** 0.729 ** gender −0.086 ** −0.031
oucollaborate 0.214 ** 0.313 ** region −0.055 ** −0.026
oucontent 0.267 ** 0.391 ** highest_education −0.052 * −0.091 **
page 0.476 ** 0.717 ** age_band 0.066 ** 0.041 *
quiz 0.501 ** 0.740 ** num_of_prev_attempts −0.071 ** −0.053 **
resource 0.461 ** 0.682 ** studied_credits 0.042 * −0.124 **
subpage 0.509 ** 0.748 ** disability 0.017 −0.045 *

** p < 0.01, * p < 0.05.

Technically, among the compared baselines, the three conventional methods, i.e., SVM,
LR, and SLFNN, do not use the graph data since they are not graph-based approaches
and cannot leverage the graph information during the training process. Another baseline,
the GCN model (GCN-Cosine, GCN-Pearson) only used a single view of graph topology,
where the way to construct the graph topology is the same as that of our proposed MTGNN
model. By comparing MTGNN with all these baselines, we can verify straightforwardly the
effectiveness of our proposed method in two aspects: (i) GNN-based methods have a good
potential to perform better than the conventional approaches that do not consider the graph
information (e.g., a connection between students); (ii) GNNs with Multi-Topologies (e.g.,
our proposed MTGNN) outperform GNNs with single graph topology (e.g., the vanilla
GCN model), as demonstrated in Tables 4 and 5.

Overall, compared with other predictive models, our MTGNN model pays more
attention to mining the potential relationship between students and achieves the best
accuracy in different prediction tasks, which shows that our model has a satisfactory effect
in identifying at-risk students. Effective identification of high-risk students can not only
achieve more accurate personalized learning services, but it can also reduce the cost of
education investment.

Further remark: To the best of our knowledge, our proposed Study-GNN is the first
work presenting a pipeline for dealing with student performance prediction tasks. Specif-
ically, the main focus and technical novelty differ clearly from some existing works. For
example, ref. [47] proposed a framework (named student-performulator) to design a stu-
dent performance prediction model based on deep neural networks (DNNs). Although
their framework can be viewed as a pipeline for problem-solving, the authors did not
consider graph-based methods when designing the DNN-based models. Ref. [48] devel-
oped transfer learning-based DNNs for predicting student performance. Ref. [49] studied
the feature selection issue for pre-course student performance prediction. Both of these
methods did not touch on the topic of graph neural networks (GNNs), which to some
extent limits the promotion of advanced technologies (GNN is the representative one)
and applications in ‘AI + Education’. Ref. [50] systematically reviewed the related works
for student performance prediction using machine learning techniques. However, GNNs
and their variants, as newly-developed methods/tools, were not mentioned in the survey.
Based on these aspects, our work moves a step forward by filling the gap between GNNs
(as advanced tools in AI) and the (as a classic task that has received wide attention in
education).

5. Conclusions

Student performance prediction is an important issue in the current educational
research field. However, most current prediction methods treat students individually and
do not take into account the correlation of the performance among students with similar
characteristics. This paper proposes a novel pipeline for student performance prediction
based on a newly-developed multi-topology graph neural network (MTGNN). Specifically,
we formalize student performance prediction as a node classification problem in a student
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graph consisting of student nodes. To better capture the potential relationships among
students, we use different similarity learning methods to construct multiple graphs of the
student data. Then, we design an MTGNN with a shared parameter strategy based on
the GNN model and introduce an attention mechanism to fuse the embeddings in the
information transfer stage. We conduct a detailed evaluation of the model’s predictive
performance on the OULA dataset by comparing it with four baseline models (SVM, LR,
SLFNN, and GCN). The experiment results show that our method has high accuracy and
generality.

Future work can focus on the following aspects: (i) the graph construction proce-
dure can be enhanced by considering structure learning along with the model training
process and certain constraints for optimizing the adjacency matrices are expected, which
has a good potential to improve significantly the capability of multi-topology (or multi-
view) GNNs; (ii) comprehensive theoretical analysis on how and why GNNS with multi-
topologies outperform the ones with only single topology is meaningful; (iii) it is interesting
to further explore whether the proposed method is applicable to other analytical tasks in
educational research. Furthermore, it is meaningful to explore how to build a pre-trained
model using our pipeline, by which the user can perform fine-tuning (e.g., transferring the
’knowledge’ of the pre-trained model to the new scenario/task) for problem-solving.
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