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Abstract: Sliding pressure control is a well-known method of controlling supercritical power plants 

that improves energy efficiency and reduces pressure dynamic stresses. This paper presents a novel 

approach for developing a supercritical cleaner coal power plant’s sliding pressure control strategy. 

First, using Whale Optimizer, a nonlinear identified transfer matrix model was created (WO). By 

comparing simulations and errors, the WO clearly outperforms the GA and Grey-Wolf Optimizer 

(GWO) techniques on parameter identification. The model also includes a multivariable PI/PD 

controller for improved plant operation. Again, WO controller tuning outperformed GA and GWO 

in terms of pressure deviations, power deviations, rise time, and fuel usage. It is now argued that 

the WO is superior to other techniques in modeling and controlling system dynamics, energy 

efficiency, and cleaner operation. 

Keywords: clean coal technologies; supercritical power plants; whale optimizer; grey-wolf 

optimizer; genetic algorithms; sliding pressure control. 

 

1. Introduction 

1.1. Background and Motivation 

Worldwide, power grids are experiencing security and stability challenges due to the 

increasing stochasticity produced by the growing usage of renewable energy sources 

(REs). This growth in renewables causes considerable challenges in power system control 

with emphasis on different issues of small signal and large signal stability. As a result, 

flexible generating technologies have become a leading solution to follow the rapid load 

changes and allow the penetration of REs safely. Conventional thermal power plants, 

which are fed by fossil fuels, can be considered promising choices to offer such flexibility; 

however, their negative impact on the environment will increase the global warming 

effect, and therefore, they must be cleaner. The situation is far more challenging when 

dealing with coal power plants in regards to increasing their flexibility and clean 

production in order to compete with gas and petroleum power stations [1,2]. Fortunately, 

clean coal technologies will gain the dual advantage of flexibility and cleaner operation. 

Clean coal technologies may be implemented via increased energy efficiency, carbon 

capture and storage (CCS), or a combination of the two. Energy efficiency methods 

include Supercritical (SC)/Ultra-Supercritical (USC) power plants, Fluidized-Bed (FB) 

power plants, and Coal-Gasification [3]. The performance of supercritical and ultra-

supercritical units in terms of control is still far from what is required, necessitating a more 

robust, cost-effective, and adaptable unit operation. In this situation, the unit can be more 

amenable via an integrated control system, allowing for better operation in terms of coal 

consumption and the performance of the load-following responses. The coordinated 

control system (CCS), which is at the heart of ultra-supercritical units’ control systems, is 
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in charge of coordinating the operation of boiler and turbine in response to grid 

dispatching orders. This work has a direct influence on the stability, flexibility, safety, and 

economy of the plant, and it is critical to improving unit control performance. The reaction 

from the main steam pressure to the fuel flow is accompanied by significant inertia and 

delay in ultra-supercritical plants, and there is a significant relationship between the main 

steam valve, the water feed flow, and the fuel flow, which increases the complexity of CCS 

coordination in these units [4]. However, for safety and efficiency reasons, sliding 

pressure control may be more attractive (Rayaprulo. 2009) [4], in which the pressure 

setpoint is further adjusted as a function of the load demand of the unit, which in turn 

offers greater flexibility and higher efficiency in part-load operation (Rayaprulo. 2009) [5]. 

According to the motivations and background stated above, in this paper, a 

simplified modeling and control strategy is developed in order to enhance unit safety, 

stability, economy, and cleaner operation. 

Sliding pressure control is known to be a control mode for thermal power plants, 

drum, and once-through types, in which the steam throttling valves are kept fully opened, 

and the feedwater flow pump speed and the fuel flow are manipulated together to follow 

the load demand in partial load changes, which result in variable or sliding pressure 

operation (SPO), decreased stress levels on the materials, lower power consumption for 

the feedwater pump, and improved partial load efficiencies (Rayaprulo, 2009 & Basu et 

al. 2015) [5,6]. Although that SPO could lead to a slower response than that of the 

coordinated control with a constant pressure set-point for the plant [2], however, the 

aforementioned features of a sliding pressure operation (SPO) are apparently more 

valuable in practice, and the issue of slower response can be resolved through optimal 

control theory. Figure 1a,b shows the possible control strategies of sliding operation and 

the coordinated control modes. From these two figures, one more theoretical aspect that 

could be added is that the SPO requires the manipulation of only two control inputs to 

regulate two outputs, which further reduces the computational effort for control 

optimization and parameterizations. This advantage can be deduced by default under the 

assumption that the outlet high-pressure (HP) turbine temperature and the main steam 

(MS) temperature is nearly constant (Kundur, 1994) [7], and this deduction is practically 

supported by prior practical knowledge about the existing units, which commonly states 

that the temperature is already regulated by the local attemperator and therefore, it 

eliminates the need of including the temperature as an additional plant output when 

adopting a sliding MS pressure control. Hence, a complete-range SPO can be preferable. 

The objectives of this paper have been theoretically and practically justified; the next 

subsection details the literature published about this research area and the paper’s 

contributions. 
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Figure 1. (a) Coordinated (integrated) control mode with nearly constant pressure set-point (b) 

Complete-range Sliding pressure mode. 

1.2. Literature Review and Paper Contributions 

Coal-fired power stations are critical components of the worldwide power grid. 

Despite the rapid rise of alternative energy, such as solar and wind, Coal-fired power 
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stations continue to generate the majority of electricity. Due to the intermittent and 

unpredictable nature of renewable energy, an ever-increasing number of coal-fired power 

plants are participating in bottomless peak-shaving by quickly raising their power 

production in response to an (AGC) instruction. It is critical to develop a high-fidelity coal-

fired power plant model to assess their dynamic features better and devise control 

techniques for wide-load operations. Recent research has used a variety of methodologies 

to investigate the models and control strategies of various power plants. It is then valuable 

to divide the literature review into two sub-reviews for modeling and control, 

respectively. 

1.2.1. Review on Modeling 

Modeling SCPP for control orientation can be simplified or detailed. The model 

development depends on the control system objectives and sophistication. However, the 

targeted mode of operation usually seeks a simplified structure of modeling; the situation 

can be more demanding for the sliding pressure mode of operation. Most of the models 

developed within the recent decade have focused on modeling for the sake of a 

coordinated control mode without sufficient practical reasoning for not adopting the 

sliding pressure mode. 

Mohamed et al., (2011) [8] constructed a mathematical model for a coal-fired SCPP; 

the modeling approach is based on engineering and thermodynamic concepts. With 600 

MW supercritical power plant on-site measurement data, Genetic Algorithms (GAs) have 

been implemented to optimize the unknown parameters of the model, which lead to 

covering the whole once-through mode of the plant. Haddad et al., (2021) [9] offered a 

simpler physics-based model that is more accurate than the previously published model 

(Mohamed et al., 2011, Mohamed, 2012). The authors identified the model parameters 

using two different techniques: particle swarm optimization (PSO) and a multi-objective 

Genetic Algorithm (MOGA), then presented the dynamic response analysis, which 

indicated SCPP’s appropriateness for maintaining a cleaner operation while adhering to 

power system rules. 

Ultra-supercritical power plants (USCPP) have gained similar attention from 

industry and academia. Liu et al., (2015) [10] modeled a once-through 1000 MW SCPP. 

The model structure was constructed using fundamental physical rules, appropriate 

simplifications, and data analysis. The authors used static and dynamic parameter 

estimation to identify the model parameters. 

Using an enhanced bird swarm technique, Huang and Sheng (2020) [11] suggested a 

data-driven model for a 1000-megawatt ultra-supercritical plant. The authors used a 

multivariable model of the boiler-turbine coupled process to build a transfer function 

matrix that makes future control schemes and performance optimization much simpler to 

design. 

A physics-informed model of a once-through power plant was built by Fan et al., 

(2020) [12]. Following the principle that mass and energy are always conserved, the 

authors created the model’s structure using nonlinear regression and optimization 

techniques to determine its static parameters. After dynamic validation, an open-loop 

simulation demonstrated that the model might be used for simulation analysis and 

controller design. 

Al-Momani et al., (2022) [13] presented a hybrid data-driven physical model for 

multiple processes starting from the startup recirculation to the once-through mode of 

operation and, finally, an emergency shutdown scenario. The presented model was built 

based on fundamental thermodynamics concepts, and the model parameters were 

identified using grey-wolf optimizer GWO; the study has shown that an adaptation in 

some parameters is enough for the transition between the processes without building a 

separate model for each process. 

The modeling review has ended, and the next subsection introduces the control 

system reviews. 



Sustainability 2022, 14, 8039 4 of 25 
 

1.2.2. Control System Review 

This subsection reports the main achievements of the control system for SCPP and 

USCPP. 

Mohamed et al., (2012) [14] introduced a model predictive control (MPC) approach 

for improving the dynamic responses of SCPP. The authors examined the dynamic 

responses of the plant and developed a mathematical model that properly represents the 

SCPP’s characteristics. To find the parameters, genetic algorithms (GA) were applied. The 

MPC determined the optimum water feed flow, coal feed flow, and steam valve position, 

then passed these values to the local controllers. A more rapid reaction is achievable with 

an ideal estimate of the predicted coal flow in advance. Thus, by using MPC to control the 

reference values of local controls, the overall dynamic response speed is enhanced. 

A high-fidelity dynamic model for a 605 MW sub-critical power plant with minimal 

boundary parameterization was constructed by Chen et al., (2017) [15]. They used on-site 

measured data from a coal-fired power station to test their model. The feed water valve 

was controlled to retain the superheated steam at 538°C, and the authors incorporated a 

PID control loop to manage the excess oxygen in the combustor in order to ensure near-

complete combustion. 

Thermal-control system coupling influences the dynamic responsiveness of thermal 

power plants during load cycling operations. Standard water flow control strategies were 

modified by Wang et al., (2018) [16] based on the thermal storage differential between 

stationary and real-time values. In order to enhance the load response and energy use of 

the coal-fired plant with a supercritical boiler. In-depth findings and a comparison of 

optimized and real-time data may be found in this publication. 

Sarda et al., (2018) [17] designed a steady-state model for an SCPP, which was then 

turned into a pressure-driven model utilizing an Aspen Plus simulator and ACM 

transaction. Due to the fact that low temperatures result in decreased efficiency and that 

high temperatures result in damage to the boiler’s superheater pipe and turbine’s front 

end. The design and installation of a Smith predictor for a time-delay system have been 

performed as part of the overall CCS for the purpose of controlling the temperature of the 

main steam when the load fluctuates. In order to evaluate the CCS performance, the plant 

load is dropped from 100% to 40% at a rate of 3% load change/min. 

Liang et al., (2018) [18] proposed a multi-model predictive control technique for a 

coal-fired power plant pulverizing system based on moving horizon estimates. The 

control approach is intended to improve the control accuracy of unmeasurable or poorly 

monitored important operational variables, as well as the tracking performance of the 

system over a broad operating range. 

The model described in [10] was used by Zeng et al., (2019) [19] to suggest an optimal 

control strategy. The core of this boiler combustion delay and inertia control technique is 

a stair-like predictive control algorithm. Consistent with conventional control, decoupling 

and feedforward control methods are used. Using this method, the feedwater and fuel 

flow may be optimally controlled, according to the simulation results. With the 

decoupling mode, the strategy reduces mid-point enthalpy and main steam pressure 

fluctuations greatly, boosting control system stability and interference immunity while 

ensuring safe, reliable, and cost-effective operation. 

Because ADRC is better at rejecting disturbances than traditional control techniques, 

it has a delayed response to the setpoint for high-order systems. In an in-service 

circulating fluidized bed unit, Wu et al., (2019) [20] demonstrated an improved ADRC and 

modified ADRC with PI controllers that increase superheated steam temperature control 

performance. High tracking and disturbance rejection resilience allows these controllers 

to regulate loads throughout a wider temperature deviation range while also providing 

improved load regulation capabilities. 

Circulating fluidized-bed units (CFB) have larger control challenges than regular 

pulverized-coal units because of the mismatch between their fast reaction to an AGC 

command and their considerable inertia characteristics. Improved control methods for 
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CFB units are being developed using dynamic models of the units. New control-oriented 

dynamic models of a subcritical CFB unit were developed by Zhang et al., (2019) [21]. 

Using a hybrid ADRC technique, Shi et al., (2020) [22] suggested a single-loop control 

strategy for coal-fired plant super steam temperature (SST). The theory of the hybrid 

ADRC is improved by analyzing the stability and capacity to reject secondary 

disturbances conceptually. It is then outlined how to tune the hybrid ADRC’s control 

performance by studying the effects of all parameters on control. 

Cheng et al., (2021) [23] developed a sophisticated fuzzy k-means cluster networker 

plant’s nonlinear dynamic process for the USC power plant. The improved FKN model is 

believed to be a more accurate representation of the actual USC unit due to the inclusion 

of data distribution features in the simulation. The author has also developed a well-

designed and updated generalized predictive control (GPC) based on the FKN model. In 

contrast to the regular GPC, this GPC is unique. Scheduling software has been presented 

that employs FKN membership to improve control efficiency for global GPC, which is an 

objective of the proposed scheduling program. 

Based on energy and mass conservation principles, Wu et al., (2021) [4] developed a 

clean fluidized-bed (FB) coal-fired power station model with a 300 MW capacity that is 

environmentally friendly. The researchers utilized field running data to validate model 

correctness, assess the control challenges associated with an already created model, and 

compare the control performance of “proportional integral derivative” (PID) and “active 

disturbance rejection control” (ADRC) control systems, among other things. 

Arastou et al., (2022) [24] created a universal model for dynamic analysis of all steam 

production units, including boiler-follow, turbine-follow, and coordinated control. The 

authors suggested a technique for extending the approach to AGC applications by 

calculating the appropriate input and output quantities. They determined the turbine’s 

mechanical torque using the unknown input reconstruction (UIR) approach. Due to the 

model’s nonlinearity and the lack of consistent parameter initialization, the GA was 

employed to find the model parameters. 

Environmental and energy engineers believe that the Air/Fuel Rate (AFR) must be 

decreased to limit the impact of thermal power plants on the environment and minimize 

emissions. An additional control for the air/fuel ratio has been suggested by Lee et al., 

(2020) [25]. The authors used a dynamic matrix control system for supplementary control 

(DMC). For modeling purposes, two possibilities are considered: an ultra-supercritical 

once-through power plant with a capacity of 1000 MW and a drum-type thermal power 

plant with a capacity of 600 MW. The results indicate that the DMC additional control 

effectively lowered the squared error total to 4.93 percent without compromising the 

operation of the current power plant. Thus, as compared to the conventional control, the 

extra DMC control successfully lowered emissions. 

In order to speed up the starting process of an SCPP, Abu Znad et al., (2022) [26] 

developed an improved control approach based on classical MPC. The plant’s start-up 

process was modeled using a state-space model MISO structure. After implementing the 

new control technique, the boiler’s pressure and the temperature were tested using 

Hammerstein–Wiener models to ensure their safety and efficiency. Checking 

environmental effects were achieved using the notion of the Air–Fuel Ratio. The results 

reveal that the MPC performed well, and the plant successfully integrated into the grid in 

66 m less time than the previous control method and with a lower level of unwanted 

emissions. 

Hou et al., (2020) [27] introduced an approach for gas turbine system control called 

“multi-objective economic model predictive control” MOEMPC, which is based on an 

enhanced WOA known as the quantum simultaneous whale optimization algorithm 

(QSWOA). Several economic indicators, as well as stability restrictions and the terminal 

cost function, are taken into consideration while developing the objective function for the 

MOEMPC approach. The economic index is updated in real-time to reflect changes in 

throttle losses and energy consumption. The stability restriction and the terminal cost 
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function operate together to assure monitoring accuracy throughout various operational 

conditions and external disturbances. According to the simulation results, the suggested 

approach outperformed the competition regarding the required economic performance, 

robustness, high accuracy, and speed. 

The Whale Optimization Method (WOA) was used by Bhatt et al., (2020) [28] to 

enhance the load frequency management and autonomous generator control of two area-

linked non-reheat thermal units. This innovative meta-heuristic optimization algorithm 

was inspired by nature. The authors created two similar PID controllers. The WOA has 

been used to establish parameters for both locations in order to reduce frequency settling 

time and tie-line power variation. 

The majority of reviews in the literature are either excessively comprehensive or 

comparative. However, Mohamed et al., (2020) [29] provided a recent critical review on 

supercritical and ultra-supercritical power plant modeling and control, with an emphasis 

on the model-based control of SCPP. The advantages are objectively reviewed, as is the 

supercritical process, the modeling methodologies utilized for these kinds of plants, the 

control tactics, and lastly, some issues that may be addressed for future studies that may 

bring advances to this field are suggested. 

Figure 2 shows the graphical summary of the path encountered during the 

aforementioned critical review, and Table 1 below summarizes the plant modeling and 

control strategy in prior research in the literature, as well as the methods employed for 

optimization and identification. 

 

Figure 2. Graphical summary of literature analysis. 

Table 1. Summary of the literature review including this paper. 

Recent 

Studies 
Plant Modeling Algorithm Control Strategy 

Mode 

Coordinated/Sliding 

Control System 

Objectives 

Mohamed et 

al., (2012) 
Physical model GA MPC Coordinated 

Enhance the overall dynamic 

responses 

Chen et al., 

(2017) 

Software-based 

model 
- 

Conventional 

PID 
Coordinated 

Maintain the fluid level 

under load changes 

Sarda et al., 

(2018) 
Steady-state model - 

Conventional 

PID 
Coordinated 

Maintain main and reheater 

steam temperature 

Liang et al., 

(2018) 
Physical model GA Multi MPC Coordinated 

improve the pulverizing 

system performance 
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Shi et al., 

(2020) 

Transfer function 

model 
GA Hybrid ADRC Coordinated 

Maintain the super-heated 

steam temperature 

Wu et al., 

(2021) 
Physical model MOGA ADRC & PID Coordinated 

Improve the load demand 

following responses 

Abu Znad et 

al., (2022) 
State-space model - Classical MPC Sliding Speed up the starting process 

This work Data-driven model 
GWO * 

& WO * 

Multivariable 

PI/PD 
Sliding 

Enhance the load demand 

following responses and 

reduce fuel and feedwater 

flow usage 

* Newly applied. 

The goal of this paper is to improve the control system of a 600 MW SCPP by building 

a simplified non-linear mathematical model for a supercritical clean coal power plant, and 

optimizing its parameter based on three meta-heuristic algorithms, then designing a 

robust MIMO control system for the model built above. The primary goal of the control 

system is to cover the variations in load demand over the complete once-through process. 

The second control system goal is to minimize the amount of fuel flow and feedwater 

entering the SCPP. The reason behind using this control strategy will be examined in total 

throughout verified simulation studies, with appropriate background and details. The 

meta-heuristic optimizers have been compared in terms of simulation accuracy and 

control system performance. 

The SCPP has been intentionally chosen since it has a cleaner effect on the 

environment than other subcritical units, and it is believed that the SCPP will contribute 

heavily to future global power generating scenarios, which is then likely to contribute to 

the target of zero-emissions power generation. Furthermore, another essential goal of the 

controller is to cover the load variation as quickly as possible while keeping lower 

amounts of fuel flow and feedwater. 

Based on the literature stated above, the following three main contributions are 

presented in this study: 

1. A simplified MIMO Transfer matrix model for the sliding pressure operation mode 

of the supercritical power plant has been built. This model is validated for the entire 

OT operational characteristic. 

2. The second potential addition is that state-of-the-art optimization techniques will be 

applied to identify the parameters, which are the Whale Optimizer (WO) and Grey-

Wolf Optimizer (GWO). It would be fascinating to compare these techniques against 

commonly used techniques, such as Genetic Algorithms, to see which one is truly 

more accurate for SC plants and control systems. It can be newly argued that the WO 

is more accurate in modeling and control than other techniques in both objectives 

concerned with system dynamics, energy efficiency, and cleaner operation. 

3. The third feasible contribution is that the study presents the design of a practically 

adequate multivariable PI/PD control system that is compatible with sliding pressure 

operation and integrates into the previously mentioned model for system dynamics 

and sudden load changes. This control system is capable of increasing the speed of 

load demand response while simultaneously lowering the plant’s fuel and feedwater 

consumption. 

The rest of this paper is organized as follows: an overview of the whale optimizer 

(WO) is discussed in Section 2. Section 3 provides the model description of a MIMO 

transfer matrix for the sliding pressure operation mode of SCPP, as well as its parameter 

identification and validation. Section 4 presents the PID controller tuning and testing. 

Section 5 discusses the simulated results of this study. Finally, the conclusion is presented 

in Section 6. 
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2. An Overview of the Whale Optimizer (WO) 

Meta-heuristic optimization algorithms are famous for being simple, flexible, and 

stochastic in nature, resulting in a large search space. Whale Optimizer is a Swarm 

Intelligence (SI) population-based meta-heuristic optimization approach inspired by 

humpback whales, which was initially presented by Mirjalili et al., (2016) [30]. The 

algorithm’s inspiration and mathematical model are discussed in this section. 

2.1. Inspiration 

Whales are awe-inspiring, majestic animals. They are often considered to be the 

biggest creatures on the planet. Depending on the species, an adult whale may grow to be 

30 m long and weigh 180 t. This huge mammal is divided into seven species: killer, 

humpback, Sei, blue, finback, right, and Minke. Whales are often regarded as predators. 

They cannot sleep since they acquire oxygen from the ocean’s surface. In actuality, around 

half of the brain is at rest. Whales are intriguing because they are believed to be intelligent 

and emotional creatures. 

The most remarkable part of humpback whales is their one-of-a-kind hunting 

strategy, which is known as lunge-netting (also known as bubble-netting). These agent 

whales begin to blow bubbles as they move in a circular pattern, forming a ring of bubbles 

that scare the fish and prevent them from swimming through or skipping the bubbles. 

The whales move in tighter and smaller circles, tightening the spiral and emitting high-

pitched noises to confuse the fish. The whales then leap into the bubble net, jaws open, 

eating hundreds of fish in a single breath [30]. 

2.2. Modeling and Optimization of the Algorithm 

In this part, the mathematical models of the prey surrounding technique, the spiral 

bubble-net feeding mechanism, and the searching method are introduced. After that, the 

algorithm of the WOA is presented. 

2.2.1. Encircling Prey 

In the hunt, encircling the prey simulates forming a neighborhood around the 

solution; this behavior has been represented mathematically as follows: 

�⃑⃑� = |𝐶 . 𝑋∗⃑⃑⃑⃑  (𝑡) − 𝑋 (𝑡)| (1) 

𝑋 (𝑡 + 1) = 𝑋∗⃑⃑⃑⃑  (𝑡) − 𝐴 . �⃑⃑�    (2) 

where vectors 𝐴  and 𝐶  may be computed in the following manner: 

𝐴 = 2𝑎 . 𝑟 − 𝑎  (3) 

𝐶 =  2. 𝑟   (4) 

As 𝑟  is a random vector in the range [0,1] and vector 𝑎  declines linearly from 2 to 0, 

the components 𝑎  and 𝑟  are vectors that vary the coefficient vectors 𝐴  and �⃑⃑� , which 

will consequently adjust the whale location. The whale’s position will be updated at 

random and will be around the supposed prey. 

2.2.2. Hunting Technique 

Humpback whales use several hunting strategies, both as a group or individually; 

After the search agents find or approach the prey, |𝐴 | ≤ 1. they begin to surround the prey 

in order to chase it in two mechanisms at the same time. These approaches are presented 

in the following: 

1. Shrinking encircling technique: 

This mechanism is produced by reducing vector 𝑎 ’s value. As a result, the value of 

vector 𝐴  will drop as well. As mentioned before, the 𝑎  value decreases from 2-0, 
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substituting in Equation (2) the range of 𝐴  is [−1,1]. The new location of a search agent 

may be given at any point in the neighborhood circle between the starting location of the 

agent and the current best location. 

2. Spiral updating position: 

This procedure starts by computing the distance between the current whale (best 

solution) and the supposed prey location. To imitate the helix-shape behavior of 

humpback whales, the spiral formula between the whale’s location and its prey is 

developed as follows: 

𝑋(𝑡 + 1) = 𝐷′⃑⃑  ⃑. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ∗ (𝑡) (5) 

where 𝐷′⃑⃑  ⃑ = |𝑋∗⃑⃑⃑⃑ (𝑡) − 𝑋 (𝑡)|  denotes the vector representing the distance between the 

nearest whale and the prey. 

Humpback whales hunt their prey in a spiral-shaped pattern around their target, 

which shrinks as they do. The equation underlying this behavior is as follows, assuming 

that there is a 50% probability of picking any of the approaches mentioned above [22]: 

𝑋 (𝑡 + 1) = {
𝑋 ∗ (𝑡) − 𝐴 . �⃑⃑�                                 𝑝 < 0.5

𝐷′⃑⃑  ⃑. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ∗ (𝑡)         𝑝 ≥ 0.5
 (6) 

2.2.3. Searching for Prey 

Vector 𝐴  may be modified to locate prey using the same technique (exploration). 

Humpback whales, in reality, explore at random, dependent on where they are in relation 

to other whales. As a consequence, random numbers greater than or equal to 1 are used 

to move the search agent away from the reference whale in order to avoid detection. A 

randomly picked search agent is used to update the location of search agents in the 

exploration phase, rather than the best search agent discovered so far. Mathematically, it 

may be expressed as follows: 

�⃑⃑� = |𝐶 . 𝑋𝑟𝑎𝑛𝑑
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ − 𝑋 |   (7) 

𝑋 (𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ − 𝐴 . �⃑⃑�  (8) 

where in this phase the vector |𝐴  | > 1, allows the humpback whales to search globally 

for prey. 

The WOA algorithm begins with a set of random solutions. A random search agent 

or the best solution so far is used to compare the search agents’ positions at the end of 

each iteration. Vector 𝑎  is lowered from 2 to 0 to facilitate exploitation and exploration. 

When |𝐴  | < 1, a random search agent is selected, whereas when |𝐴  | ≥ 1 the optimal 

solution being used to update the search agent locations. Based on the value of p, the WOA 

may transition between spiral and circular motions. Finally, when a termination condition 

is met, the WOA algorithm ends. Figure 3 shows the WOA algorithm’s flowchart. 
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Figure 3. Whale optimizer algorithm flowchart. 

3. Model Structure and Parameter Identification 

3.1. MIMO Transfer Matrix for Sliding Pressure Mode 

A multi-input multi-output transfer matrix was constructed to relate the outputs of 

a 600 MW power plant with a SC boiler under sliding pressure to its inputs. The model 

structure had two-input and two-output for the multivariable control system. Physically, 

concentrating on load demand following while ignoring other safety limitations is 

insufficient. When the turbine valve is opened to enable additional heat energy to be 

transferred to the turbine, the pressure and temperature of the boiler fall, as a result, the 

feedwater and fuel flow rates must be raised in order to maintain energy production while 
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maintaining the boiler’s thermal balance. Therefore, maintaining the desired values of 

temperature and pressure [31,32]. The model structure is shown in Figure 4. 

 

Figure 4. 2-input 2-output supercritical SC scheme. 

Assuming the turbine control valve is fully opened, DEH command = 100% the 

inputs u1 and u2 correspond to the coal feed flow and water feed flow, respectively. Many 

indirect inputs may be incorporated into the control system depending on the objectives 

of the system, but these are the ones that are required to achieve the basic operational 

requirements [32]. Power and boiler pressure are represented via the 𝑦1 and 𝑦2 outputs, 

which are the produced output power and boiler pressure. The MIMO system with a 2 × 

2 transfer function matrix equation is as follows: 

[
𝑦1
𝑦2

] = [
𝐺11 𝐺12
𝐺21 𝐺22

] [
𝑢1
𝑢2

] (9) 

Therefore, 

𝑦1 = 𝐺11 ∗ 𝑢1 + 𝐺12 ∗ 𝑢2 (10) 

And, 

𝑦2 = 𝐺21 ∗ 𝑢1 + 𝐺22 ∗ 𝑢2 (11) 

where the vector G [G11,..., G22] is the desired transfer function matrix that is both proper 

and stable. It is feasible to express system dynamics using algebraic equations in the s-

domain utilizing the principle of the transfer function. A standard second-order transfer 

function with zero was chosen for this model as follows: 

𝐺𝑚𝑛(𝑠) =
𝑎𝑚𝑛. 𝑠 + 𝑏𝑚𝑛

𝑐𝑚𝑛. 𝑠
2 + 𝑑𝑚𝑛. 𝑠 + 𝑒𝑚𝑛

 (12) 

where a, b, c, d, and e are unknown parameters to be identified. To maintain the stability 

of this MIMO transfer function, all of its poles must lie on the left complex half of the s-

plane. The poles of the transfer function are derived by identifying the frequencies (values 

of s) that cause the denominator to equal zero as follows [33]: 

𝑐𝑚𝑛. 𝑠
2 + 𝑑𝑚𝑛. 𝑠 + 𝑒𝑚𝑛 = 0 (13) 

The placement of that zero has a significant impact on overshoot and settling time. 

The zero of the transfer function is calculated by finding the frequency (value of s) that 

makes the numerator equal to zero as follows: 

s =
−𝑏𝑚𝑛

𝑎𝑚𝑛
 (14) 
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The trial-and-error method was used to find the poles and zeros of the transfer 

function matrix, and then the various meta-heuristic algorithms were implemented in 

order to identify and optimize these parameters.  

The SCPP mathematical model is shown in a simplified form in Figure 5. 

 

Figure 5. MIMO transfer function model of the SCPP. 

In order to minimize thermal shocks in the waterwalls, the economizer begins 

preheating the feedwater before it enters the waterwalls to turn water into steam. As well, 

an induction motor is used to mill the coal before it enters the burner [13,34]. A time delay 

block was used in the model to reflect the slow dynamics and reactions in the economizer 

and milling process. 

3.2. Parameter Identification 

In this work, a real data set has been utilized to represent the behavior of a power 

plant with a supercritical boiler. This plant has these specifications or operating 

characteristics a final superheater outlet temperature and steam pressure of 571 °C, 25.1 

MPa, respectively, a pulverized coal fuel flow rate of 72.29 Kg/s, and a superheated steam 

flow rate of 480 Kg/s [8]. 

Figure 6 illustrates a sample power data set that demonstrates the once-through 

operation loading up to the rated power of the plant. In a MATLAB environment, the 

MIMO transfer function matrix parameters will be identified using three different meta-

heuristic optimization techniques such as GA with heuristic crossover, Grey-wolf 

optimizer, and Whale optimizer. It has been decided that the output power (MW) and 

main steam pressure (MPa) are the responses that will be determined and validated. The 

generalized technique for parameter identification is represented in Figure 7. The 

objective function that has been adopted is the mean squared error (MSE) as follows: 
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MSE = √
1

𝑛
∑(𝑦 − �̃�)2
𝑛

𝑖=1

 (15) 

 

Figure 6. Data set sample for the once-through operation. 

 

Figure 7. The generalized technique for parameter identification flowchart. 
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3.2.1. Genetic Algorithm 

GA is a population-based optimization technique that progresses through the phases 

of reproduction, crossover, and mutation to identify a solution to a given problem in its 

supplied copy of the gene data structure. During the reproduction stage, the fittest 

individuals of the population have a strong chance of contributing to the generation of the 

next generation of offspring, and they are chosen for generation by a selection operator. 

This is also referred to as selecting. The crossover step, also known as recombination, 

occurs when each of the two selected individuals (solutions) combines to generate two 

new solutions for the future generation. There are numerous crossover methodologies, 

and this research employs the heuristic crossover. Finally, in the mutation stage, which is 

a secondary activity that occurs at a certain pace, one or maybe more people are modified 

as a result of the development of new solutions (children) [35,36]. The GA parameters are 

listed in Table 2. Finally, a GA flowchart was developed and presented in Figure 8, which 

simplifies the idea. 

Table 2. GA parameters configuration. 

GA Option Setting 

Population size 30 

Number of generations 50 

Crossover function Heuristic 

Mutation function Adaptive feasible 

Selection function Tournament 

Migration direction Forward 

 

Figure 8. Genetic algorithm (GA) flowchart. 
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3.2.2. Grey-Wolf Optimizer 

The Grey wolf optimization algorithm is abbreviated as GWO. It is a novel method 

of meta-heuristic optimization that was initially produced by Mirjalili et al., (2014). Its 

overarching concept is to replicate the cooperative hunting behavior of grey wolves in the 

wild. The search procedure starts with the generation of a random population of grey 

wolves via the GWO algorithm (potential solutions). Alpha, beta, and delta wolves 

evaluate the prey’s expected location throughout the iteration phase. Each possible 

solution’s distance from the prey is updated. As in the whale optimizer, the vector a is 

lowered from 2 to 0 to promote exploitation and exploration phases. Table 3 shows the 

GWO configurations. Finally, Figure 9 depicts the GWO flowchart, which is drawn to 

describe its concept [37]. 

Table 3. GWO parameters configuration. 

GWO Option Setting 

Population size (Number ofsearch agents) 30 

Number of iterations 50 

 

Figure 9. Grey-wolf algorithm (GA) flowchart. 
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3.2.3. Whale Optimizer 

The whale optimizer that was discussed in Section 2 is applied to identify the 

unknown SCPP transfer function matrix parameters. The WO settings are shown in Table 

4. 

Table 4. WO parameters configuration. 

WO Option Setting 

Population size (Number of search agents) 30 

Number of iterations 50 

The normalized root-mean-squared error (NRMSE) between both the real-time 

operating unit measured data and the simulated response model data was used to 

validate the power and pressure responses. The general NRMSE formula is the following: 

NRMSE =
√1

𝑛
∑ (𝑦 − �̃�)2𝑛

𝑖=1

𝑦𝑖𝑚𝑎𝑥 − 𝑦𝑖𝑚𝑖𝑛
 

(16) 

where n indicates the number of data points, y indicates the real values, and �̃� indicates 

the simulated values. The once-through mode, as illustrated in Figure 6, was simply used 

for identification, while the validation trends are load-up data starting at 300 MW and 

growing to the rated power. The identified parameters of each transfer function are shown 

in Table 5. Finally, the minimized NRMSE of power and pressure for each optimization 

technique are shown in Table 6. 

Table 5. the identified parameter for each meta-heuristic optimization technique. 

Unknown Parameter GA GWO WO 

a11 0.77 0.3465 0.2615 

b11 0.369 0.3 0.2297 

c11 1.548 2.5 3.0653 

d11 2.952 2.2 1.9263 

e11 1.861 1.8 1.8844 

a12 0.536 0.7378 0.7006 

b12 0.168 0.201 0.2702 

c12 2.804 1.8 1.9268 

d12 68.48 60 52.1208 

e12 6.382 6.5 7.4443 

a21 1.942 1.0448 1 

b21 3.967 2.9705 2.5 

c21 6.102 7.5 6.034 

d21 1.724 2.0092 4 

e21 0.849 0.6124 0.998 

a22 5.787 4.6825 4 

b22 1.317 0.7091 0.5392 

c22 9.434 8.1908 9.5 

d22 30.574 30 20.8656 

e22 2.147 1.2 0.6003 

Figure 10 depicts the input feedwater flow and fuel flow that have been utilized to 

run and operate the plant for a total of 100 min in the once-through and sliding pressure 

operation mode. 
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(a) (b) 

Figure 10. Supercritical power plant input flow over 100 min (a) input feedwater flow. (b) input fuel 

flow. 

Figures 11 and 12 demonstrate that the simulated responses of the plant’s power 

(MW) and main steam pressure (MPa) have effectively tracked the measured results of 

the actual plant, with the same trend as the measured results. On the other hand, error 

quantification is necessary in order to pick the most accurate optimization strategy 

available. According to Table 6, it is obvious that the WO obtained lower NRMSE than the 

other approaches in both power and pressure responses, with values of 0.0561 and 0.0409, 

respectively. The reason why WO has superiority over the other strategies is because of 

its phenomenal spiral movement, which is used to update search agent positions and find 

the optimal solutions. 

 

Figure 11. Simulated power responses for each optimization technique. 
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Figure 12. Simulated pressure responses for each optimization technique. 

Table 6. NRMSE values for each algorithm. 

Response NRMSE/GA NRMSE/GWO NRMSE/WO 

Power 0.088 0.0868 0.0561 

Pressure 0.0765 0.0735 0.0409 

The following discussion will be in-depth; it is important to mention that the 

optimized parameters of the assumed transfer functions have successfully captured the 

dynamic behavior of the power plant under study with sufficiently high accuracy as the 

power changes from around 289 MW to 628 MW and the pressure from 11.16 MPa to 24.48 

MPa. These parameters are practically meaningful per se; for example, the parameter d of 

all the elements in the transfer matrix should be much higher than a and c in order to 

follow the variation trends of the practical power plant more accurately. Further practical 

implications can be realized by introducing the transpose delays, saturation, and rate 

limiters. With the aid of the pre-described robust optimization techniques, the optimum 

parameters are found as three different sets of parameters with the highest accuracy 

attained by the WO technique. The computational reason that causes the WO to be 

superior is because of the spiral movements of the search agents to reach the globally 

optimum parameter (say a, b, c, d, and e), whereas the progressive iterative mechanism 

of the GWO (encircling) and GA (parallel population of parameters) are found to be lower 

in optimality than WO. 

However, the above algorithmic comparison among the optimizers is meaningless in 

terms of cleaner production in order to prove the practical value of WO; it has been used 

in the next section to tune the controller along with other optimizers. 

4. Control Tuning and Testing 

A MIMO control system with a multivariable PI/PD controller has been designed and 

integrated into the previous model in order to enhance the load demand following 

responses while simultaneously reducing the fuel flow and feedwater flow consumption 
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of the plant. The reason behind choosing the conventional PID controller is because it is 

the most stable and accurate of the available controllers. Additionally, it has the potential 

to improve the plant while keeping the changed inputs within prescribed limitations. 

The PID control equation is written as follows: 

𝐺𝑃𝐼𝐷(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
+

𝐾𝑑. 𝑠

𝑇𝑑 . 𝑠 + 1
 (17) 

The proportional gain, integral gain, and derivative gain are represented by Kp, Ki, 

and Kd, respectively. Where the constant Td is corresponded to filter time. It is worth noting 

that when Kd = 0, PID becomes PI. Figure 13 shows the SCPP control system model. 

 

Figure 13. MIMO PI/PD control system structure. 

The PID controller, which is comparable to the lag-lead compensator, has been 

created by utilizing PI and PD controllers in a cascading configuration. The PI controller 

is a limited version of the lag compensator that is designed to reduce the steady-state 

error. On the other hand, the PD controller is a limited version of the lead compensator 

that increases the rising time and, as a result, improves the fast reactions [33]. The same 

meta-heuristic optimization techniques are implanted for tuning the controller 

parameters in order to provide a faster load demand following responses and lower fuel 

consumption for the plant. The optimal parameters of the controller have been obtained 

by minimizing the mean squared error function “MSE” as follows: 

MSE = √
1

𝑛
∑(𝑦 − �̃�)2
𝑛

𝑖=1

 (18) 

The three optimization techniques are used to achieve the smallest possible value of 

the objective function. The identified controller parameters for each optimization 

technique are shown in Table 7. 
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Table 7. Identified controller parameter for each technique. 

Parameter /Technique GA GWO WO 

Kp1 7.5433 5.6564 8.0019 

Ki1 1.5321 0.0331 0.0312 

Kp2 0.2770 0.6726 3× 10−6 

Ki2 0.0870 0.1315 4× 10−7 

Kp3 0.8270 0.8404 0.7765 

Kd 11.4520 11.5471 11.6 

Td 20.0010 24.1048 24.1048 

The average (mean) values of feedwater and fuel flow consumption have been used 

to validate the control system. The average value is defined as: 

Average =
∑ 𝑥𝑁

𝑖=1

𝑁
 (19) 

where ∑ 𝑥𝑁
𝑖=1 , and N correspond to the summation and the total number of data values. 

The average consumption values of the plant for each algorithm are shown in Table 8. 

Table 8. Average feedwater and fuel consumption for each algorithm. 

Input/ Technique GA GWO WO 

Fuel flow (Kg/s) 73.4991 72.2625 68.8226 

Feedwater flow (Kg/s) 425.7973 428.5004 418.4478 

5. Control System Performance Results 

This section demonstrates the simulation results of the power plant’s control 

performance. The simulations have been carried out on a PC using the MATLAB/Simulink 

program. The proposed control system shown in Figure 13 is applied to the plant model 

that has been mentioned previously to study the system dynamics and power plant 

consumption under sudden load changes. The same data set shown in Figure 5 and model 

parameters shown in Table 5 have been used to compare the newly implemented 

algorithms WO, GWO, and the most common algorithm GA. 

Figures 14 and 15 demonstrate the control model’s power and pressure performance 

responses following a sudden and fictitious change in load demand from 550 MW to 595.5 

MW and main steam pressure from 23.5 MPa to 25.5 MPa. In terms of power response, 

the WO outperforms the other approaches. It has smaller overshoots and undershoots 

with a range of ±1 MW, as well as a shorter settling time of less than 10 min. While in the 

pressure response, GA has a somewhat smaller overshoot than WO and GWO only when 

there is a sudden increase in pressure. On the other hand, the WO has a superior overall 

performance with ±0.6 MPa overshoot and undershoot, as well as a faster settling time of 

less than 8 min. Figure 16 illustrates that the plant’s optimized inputs, such as feedwater 

flow (FWF) and the fuel flow for each algorithm are regulated within the restrictions set 

by the 600 MW SCPP. This demonstrates that the suggested multi-variable PI/PD 

controller improved the plant’s dynamic reactions while maintaining the inputs within 

safe operating ranges. By using the WO algorithm, the enhanced control technique has 

resulted in a reduction in fuel consumption. The average quantity of fuel saved over the 

GWO was 3.4426 Kg/s, which equals 12.393 t/h on average. In a similar manner, the 

feedwater consumption of the WO is 7.3495 kg/s lower than that of the GA. The average 

usage of the SCPP is shown in Table 8. 
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Figure 14. Power responses for a sudden change in the load demand. 

 

Figure 15. Pressure responses for a sudden change in the main steam pressure. 
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(a) (b) 

Figure 16. Optimized input flow of the SCPP (a) optimized feedwater flow. (b) optimized fuel flow. 

A further in-depth discussion to justify the WO performance. It can be seen that the 

WO attained the optimum controller parameters globally because of the following two 

reasons: first, it is capable of updating positions and searching for another optimum 

solution at the same time. Second, since the last advantage is also gained by GWO, it is 

worth repeating that the screw or spiral motion of WO towards the optimal solution is the 

ultimate way to obtain the controller parameters in order to have practically feasible and 

economical investments on the input. 

6. Conclusions 

The paper presents a modern tuning strategy for a MIMO PI/PD controller for 

supercritical power plants with an emphasis on better output responses and lower fuel 

consumption. The motivation and challenge of such research are still evident for some 

practical reasons, mainly the introduction of renewable energy resources worldwide, 

which requires more flexible and repeated part-load operation of the flexible generators. 

Because the flexible power stations are likely to operate in a part-load mode, the sliding 

pressure mode can be the best choice for control to obtain higher part-load efficiency and 

hence cleaner operation. However, further improvements in sliding pressure control are 

found in this research over what has been already published, which can be shown as the 

salient features and new findings of the paper as follows: 

- A simplified transfer matrix model for supercritical generation units has been 

developed with some additional blocks to capture the system nonlinearities and 

delays in the fuel preparation system. This structure is more suitable from a control 

point of view in sliding pressure operational modes. 

- The parameters of the transfer matrix are identified to fit a practical 600 MW SCPP 

via three different metaheuristic optimization techniques, which are the Whale 

Optimizer, Grey-Wolf Optimizer, and Genetic Algorithms. Considerable effort has 

been made to adjust the settings of the various optimization methods to yield the best 

possible results for all chosen techniques. 

- The Whale Optimizer has proven to be more robust and accurate than the Grey-Wolf 

Optimizer and Genetic Algorithms for parameter estimation. The criterion chosen for 

the modeling part is the NRMSE of the pressure and power responses and through a 

basic inspection of the depicted responses. 

- A robust controller has been designed and successfully implemented to govern part-

load operation changes. Again, the three techniques of Whale Optimizer, Grey-Wolf 
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Optimizer, and Genetic Algorithms have been evaluated against tuning the 

parameters for optimum control performance. The Whale Optimizer technique of 

parameter tuning is found to be better than other techniques in terms of lower fuel 

consumption and better output responses. 

As a future recommendation, it is suggested to test more advanced optimization 

algorithms for better or comparable performance with the existing ones. More effort can 

be appreciated to integrate both modes of coordinated control and sliding pressure control 

as switchable controllers in the same power station. The disturbance effect maybe also 

analyzed and included. Although some practical and economical constraints may arise 

for practical implementation of the controllers, however, new conclusions could be 

reached through accurate simulation studies. The study can feasibly be extended to ultra-

supercritical power plants, combined-cycle gas turbines (CCGT), concentrated solar-

thermal power plants (CSP), and so on. 
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Nomenclature 

List of abbreviations 
CFP Coal-fired Plant 

DEH Digital Electro-Hydraulic 

FWF Feedwater Flow 

GA Genetic Algorithm 

GWO Grey-wolf Optimizer 

MIMO Multi-input Multi-output 

MSE Mean-squared Error 

NRMSE Normalized Mean-squared Error 

OT Once-Through 

PID Proportion integration differentiation 

SCPP Supercritical Power Plant 

SLO Sliding Pressure Operation 

DMC Dynamic Matrix Control 

CCS Coordinated Control System 

MST Main Steam Temperature 

WO Wolf Optimizer 

AGC Automatic Generation Control 

MPC Model Predictive Control 

ADRC Active Disturbance Rejection Control 

SI Swarm Intelligence 

  



Sustainability 2022, 14, 8039 24 of 25 
 

References 

1. Heard, B.P.; Brook, B.W.; Wigley, T.M.; Bradshaw, C.J. Burden of proof: A comprehensive review of the feasibility of 100% 

renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. 

2. Machowski, J.; Lubosny, Z.; Bialek, J.W.; Bumby, J.R. Power System Dynamics: Stability and Control; John Wiley & Sons: Hoboken, 

NJ, USA, 2020. 

3. Pudasainee, D.; Kurian, V.; Gupta, R. Coal: Past, present, and future sustainable use. In Future Energy; Elsevier: Amsterdam, 

The Netherlands, 2020; pp. 21–48. 

4. Wu, Z.; He, T.; Liu, Y.; Li, D.; Chen, Y. Physics-informed energy-balanced modeling and active disturbance rejection control for 

circulating fluidized bed units. Control. Eng. Pract. 2021, 116, 104934. 

5. Rayaprolu, K. Boilers for Power and Process; CRC Press: Boca Raton, FL, USA, 2009. 

6. Basu, S.; Debnath, A.K. Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants; Academic Press: 

Cambridge, MA, USA, 2014. 

7. Kundur, P. Power System Stability and Control; McGraw Hill: Columbus, OH, USA, 1994. 

8. Mohamed, O.; Wang, J.; Guo, S.; Wei, J.; Al-Duri, B.; Lv, J.; Gao, Q. Mathematical modelling for coal fired supercritical power 

plants and model parameter identification using genetic algorithms. In Electrical Engineering and Applied Computing; Springer: 

Dordrecht, The Netherlands, 2011; pp. 1–13. 

9. Haddad, A.; Mohamed, O.; Zahlan, M.; Wang, J. Parameter identification of a highly promising cleaner coal power station. J. 

Clean. Prod. 2021, 326, 129323. 

10. Liu, J.Z.; Yan, S.; Zeng, D.L.; Hu, Y.; Lv, Y. A dynamic model used for controller design of a coal fired once-through boiler-

turbine unit. Energy 2015, 93, 2069–2078. 

11. Huang, C.; Sheng, X. Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by 

improved bird swarm algorithm. Energy 2020, 205, 118009 . 

12. Fan, H.; Su, Z.G.; Wang, P.H.; Lee, K.Y. A dynamic mathematical model for once-through boiler-turbine units with superheated 

steam temperature. Appl. Therm. Eng. 2020, 170, 114912. 

13. Al-Momani, A.; Mohamed, O.; Elhaija, W.A. Multiple processes modeling and identification for a cleaner supercritical power 

plant via Grey Wolf Optimizer. Energy 2022, 252, 124090. 

14. Mohamed, O.; Al-Duri, B.; Wang, J. Predictive control strategy for a supercritical power plant and study of influences of coal 

mills control on its dynamic responses. In Proceedings of the 2012 UKACC International Conference on Control, Cardiff, UK, 

3–5 September 2012; pp. 918–923. 

15. Chen, C.; Zhou, Z.; Bollas, G.M. Dynamic modeling, simulation and optimization of a subcritical steam power plant. Part I: 

Plant model and regulatory control. Energy Convers. Manag. 2017, 145, 324–334. 

16. Wang, C.; Zhao, Y.; Liu, M.; Qiao, Y.; Chong, D.; Yan, J. Peak shaving operational optimization of supercritical coal-fired power 

plants by revising control strategy for water-fuel ratio. Appl. Energy 2018, 216, 212–223. 

17. Sarda, P.; Hedrick, E.; Reynolds, K.; Bhattacharyya, D.; Zitney, S.E.; Omell, B. Development of a dynamic model and control 

system for load-following studies of supercritical pulverized coal power plants. Processes 2018, 6, 226. 

18. Liang, X.; Li, Y.; Wu, X.; Shen, J. Nonlinear modeling and inferential multi-model predictive control of a pulverizing system in 

a coal-fired power plant based on moving horizon estimation. Energies 2018, 11, 589. 

19. Zeng, D.; Gao, Y.; Hu, Y.; Liu, J. Optimization control for the coordinated system of an ultra-supercritical unit based on stair-

like predictive control algorithm. Control Eng. Pract. 2019, 82, 185–200. 

20. Wu, Z.; He, T.; Li, D.; Xue, Y.; Sun, L.; Sun, L. Superheated steam temperature control based on modified active disturbance 

rejection control. Control Eng. Pract. 2019, 83, 83–97. 

21. Zhang, H.; Gao, M.; Hong, F.; Liu, J.; Wang, X. Control-oriented modelling and investigation on quick load change control of 

subcritical circulating fluidized bed unit. Appl. Therm. Eng. 2019, 163, 114420 . 

22. Shi, G.; Wu, Z.; Guo, J.; Li, D.; Ding, Y. Superheated steam temperature control based on a hybrid active disturbance rejection 

control. Energies 2020, 13, 1757. 

23. Cheng, C.; Peng, C.; Zhang, T. Fuzzy K-means cluster based generalized predictive control of ultra supercritical power plant. 

IEEE Trans. Ind. Inform. 2020, 17, 4575–4583. 

24. Arastou, A.; Rabieyan, H.; Karrari, M. Inclusive modelling and parameter estimation of a steam power plant using an LMI-

based unknown input reconstruction algorithm. IET Gener. Transm. Distrib. 2021, 16, 1425–1437. 

25. Lee, T.; Han, E.; Moon, U.C.; Lee, K.Y. Supplementary control of air–fuel ratio using dynamic matrix control for thermal power 

plant emission. Energies 2020, 13, 226 . 

26. Znad, O.A.; Mohamed, O.; Elhaija, W.A. Speeding-up Startup Process of a Clean Coal Supercritical Power Generation Station 

via Classical Model Predictive Control. Process Integr. Optim. Sustain. 2022, 1–14. https://doi.org/10.1007/s41660-022-00243-5 

27. Hou, G.; Gong, L.; Yang, Z.; Zhang, J. Multi-objective economic model predictive control for gas turbine system based on 

quantum simultaneous whale optimization algorithm. Energy Convers. Manag. 2020, 207, 112498. 

28. Bhatt, R.; Parmar, G.; Gupta, R. Whale optimized PID controllers for LFC of two area interconnected thermal power plants. 

ICTACT J. Microelectr. 2018, 3, 467–472. 

29. Mohamed, O.; Khalil, A.; Wang, J. Modeling and control of supercritical and ultra-supercritical power plants: A review. Energies 

2020, 13, 2935. 

30. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. 



Sustainability 2022, 14, 8039 25 of 25 
 

31. Mohamed, O.; Wang, J.; Guo, S.; Al-Duri, B.; Wei, J. Modelling study of supercritical power plant and parameter identification 

using genetic algorithms. In Proceedings of the World Congress on Engineering; Springer: Berlin/Heidelberg, Germany, 2010; 

Volume 2. 

32. Mohamed, O.R.I. Study of Energy Efficient Supercritical Coal-Fired Power Plant Dynamic Responses and Control Strategies. 

Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2012. 

33. Ogata, K. Modern control engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2010; Volume 5. 

34. Zhao, Y.; Wang, C.; Liu, M.; Chong, D.; Yan, J. Improving operational flexibility by regulating extraction steam of high-pressure 

heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation. Appl. Energy 2018, 212, 1295–1309. 

35. Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland, 2019; pp. 43–55. 

36. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. 

37. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. 


