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Abstract: With the development of electrified transportation, electric vehicle positioning technology
plays an important role in improving comprehensive urban management ability. However, the
traditional positioning methods based on the global positioning system (GPS) or roadside single
sensors make it hard to meet requirements of high-precision positioning. Considering the advantages
of various sensors in the cooperative vehicle-infrastructure system (CVIS), this paper proposes a
compound positioning method for connected electric vehicles (CEVs) based on multi-source data
fusion technology, which can provide data support for the CVIS. Firstly, Dempster-Shafer (D-S)
evidence theory is used to fuse the position probability in multi-sensor detection information, and
screen vehicle existence information. Then, a hybrid neural network model based on a long short-
term (LSTM) framework is constructed to fit the mapping relationship between measured and
undetermined coordinates. Moreover, the fused data are proceeded as the input of the hybrid LSTM
model, which can export the vehicular real-time compound positioning information. Finally, an
intersection in Shijingshan District, Beijing is selected as the test field for trajectory information
collection of CEVs. The experimental results have shown that the uncertainty of fusion data can be
reduced to 0.38% of the original level, and the maximum error of real-time positioning accuracy is
less than 0.0905 m based on the hybrid LSTM model, which can verify the effectiveness of the model.

Keywords: electrified transportation; connected electric vehicles; multi-source data fusion; D-S
evidence theory; deep learning; vehicular compound positioning

1. Introduction

With the development of the electric vehicle industry in recent years, intelligent
connected electric vehicles (CEVs) have become one of the choices for traveling. Compared
with the internal combustion engine vehicle, there are characteristics of the real-time
acquisition of vehicular data, energy transmission efficiency, and the accuracy of vehicular
speed control, which leads to the suitableness of electric vehicles in real-time high-precision
compound positioning [1–3]. The high-precision and robust information of vehicular
positioning can not only work for the navigation, but also provide the data support for the
perception, decision-making, and path planning modules in CEVs [4–6]. However, it is
hard to meet the requirements of high-precision perception though any single sensor in
real complex traffic environments [7–9].

Multi-sensor fusion is a technology that comprehensively processes and optimizes
the acquisition, representation, and internal relationships of various kinds of information,
which is widely used in object positioning. With the improvement of lidar hardware
accuracy, multi-sensor fusion is gradually applied in the compound positioning of CEVs.
Moreover, the data of different spatiotemporal dimensions collected by a sensor, which
is mounted on the roadside, can be provided to CEVs through the V2X units [10,11]. The
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accurate data perceived from compound positioning can be used as the data support and
the theoretical basis for optimizing the functions of traffic flow analysis [12,13], traffic flow
forecasting, and travel time reconstruction.

With the rapid development of the cooperative vehicle-infrastructure system (CVIS),
the compound positioning technology of CEVs was widely studied due to its high accuracy,
high reliability, and ultra-low latency [14,15]. Watta et al. [16] presented an intelligent
system based on V2V communication, which combined the synergy of neural networks
and geometric modeling. The model extracted the key geometric features as the input of a
trained neural network to detect and predict remote vehicular positions. Song et al. [17]
proposed a novel framework of a blockchain-enabled vehicle to everything (V2X) with com-
pound positioning for improving the vehicular global positioning system (GPS) positioning
accuracy, system robustness, and security. A self-positioning correction scheme for the CEV
was proposed to improve their positioning accuracy, which used the multi-traffic signs as
benchmarks to correct the vehicular position by a deep neural network (DNN) algorithm.
Kim et al. [18] proposed an intelligent position-tracking control algorithm for vehicles
considering actuator (DC motor) dynamics. The proposed controller formed the conven-
tional multiloop structure including disturbance observers for each loop. Jung et al. [19]
proposed a compound method for target classification based on evidence theory and the
fuzzy logic method to achieve target localization by fusing data obtained from cameras
and radar sensors. Ye et al. [20] proposed a two-stage Kalman filter algorithm, which em-
ployed two intertwined filters for channel tracking, position tracking, and abrupt channel
change detection. Ko et al. [21] achieved vehicular positioning by applying V2X, which
was helpful to realize autonomous driving. Caltagirone et al. [22] proposed a cross-fusion
algorithm based on lidar and camera data to detect vehicle targets on the road. The results
showed that the performance of the cross-fusion classification was better by comparing
the performance difference between one layer and all layers. Golestan [23] proposed an
advanced information fusion framework based on a multi-entity Bayesian network, which
could be used in dangerous driving state identification of CEVs. This method improved
the safety performance of vehicles greatly. Mostafavi et al. [24] regarded that GPS could be
used as a supplement to radio-based positioning techniques and proposed the combination
of distance and angle measurements with vehicle acceleration measurements to generate
position estimates. In order to accurately position wheeled vehicles in GPS-deprived sce-
narios, Onyekpe et al. [25] proposed a wheel odometry neural network (WhONet) to learn
and correct the uncertainty in wheel speed measurement required for accurate positioning
by adopting the deep learning method.

In addition, in the research of compound positioning by multi-source data, it is neces-
sary to consider the working characteristics of different sensors and the complementarity
of applicable scenarios [26]. In addition, the compound positioning of CEVs in simple sce-
narios can be achieved through the global navigation satellite system (GNSS), and GNSS is
not effective for intersection scenarios with poor signals and complex environments [27,28].
At present, many scholars have considered the research on the fusion of compound multi-
source data and applied it to various traffic scenarios for CEVs. Altoaimy et al. [29] pro-
posed a positioning method based on fuzzy logic, which included the signal-to-noise ratio
(SNR) in the determination of weight factors. The method was evaluated in several sim-
ulation scenarios with different vehicle numbers, with positioning errors ranging from
0.85 m for 20 vehicles to 0.25 m for 200 vehicles. Escalera et al. [30] proposed a multi-sensor
data fusion method based on the global nearest neighbor algorithm for vision system,
laser sensors, and GPS, which was used for safe vehicular detection on single-lane roads.
This method overcame the limitations of single sensors and provided reliable safety for
traffic applications. Broughton [31] established a multi-sensor fusion system for detecting
pedestrians in conditions of foggy weather, which improved the accuracy of fused data
in dynamic and unknown environments. The experiments indicated that in the event of
the loss of information from a sensor, pedestrian detection and position estimation were
still effective. Mo et al. [32] proposed a compound positioning framework of information



Sustainability 2022, 14, 8323 3 of 23

fusion for CEVs and roadside infrastructure, which provided a solution for fusion between
CEVs, intelligent infrastructure, and intelligent control systems. Xiao et al. [33] developed
a unified theoretical framework for multiple-target positioning by fusing multi-source
heterogeneous information from the on-board sensors and V2X technology. Meanwhile, the
integrity of target sensing was significantly improved by the sharing of multi-source data
and development of map data. Kim et al. [34] proposed a particle filter fusion algorithm
based on information entropy theory, which integrated multi-layer vertical features and
road intensity features of maps in different periods for precise vehicular positioning in
urban traffic. With the gradual development of deep learning, positioning methods based
on neural networks brought better results. Onyekpe et al. [35] analyzed the performance
of long short-term memory (LSTM), input delay neural networks (IDNN), multi-layer
neural networks (MLNN), and the Kalman filter for high data rate positioning and have
shown that deep neural network-based solutions could have better performances. The
combination of neural networks and communication technology in autonomous driving
will further improve the robustness and accuracy of positioning.

Based on the above research, it can be summarized that there are two aspects of
research gaps:

• In the research of roadside-based traffic perception, the current studies mainly focus
on the dynamic detection of vehicles with single sensors on the roadside;

• In the compound positioning research of vehicles, the current studies mainly focus on
the multiple sensors of a single vehicle, and there is a gap in the cooperative compound
positioning of multiple vehicles based on vehicle-infrastructure information fusion.

In conclusion, with the rapid development of the CVIS, CEVs on the road perceive their
own position dynamically based on roadside multi-source data fusion technology, realizing
the positioning function [36]. Meanwhile, the vehicle on the road can be represented as
independent nodes, which continuously communicate with other nodes, roadside units,
and mobile devices in real time [37]. The system applied proposed method can realize the
compound positioning perception of the vehicles and improves the safety of driving as
well as the road traffic capacity.

This paper aims to study CEVs and vehicle-infrastructure information fusion tech-
nology, proposing a method based on a hybrid neural network model to realize real-time
perception of vehicular compound positioning. The main contributions of this paper can
be summarized as follows:

• A comprehensive system concept is provided based on the positioning accuracy
requirements of CEVs.

• A reliable compound positioning approach is developed to achieve higher positioning
accuracy among the data obtained from multiple roadside sensors and V2X units.

• Theoretical analysis and extensive experiment results, including the Dempster-Shafer
(D-S) evidence theory-based multi-source data fusion method and hybrid neural
networks, are provided to validate the proposed concept.

The remainder of this paper is organized as follows. The traffic scenario of multi-source
data fusion is described in Section 2, where the vehicle-infrastructure information fusion
method based on D-S evidence theory is constructed and clarified. Section 3 proposes
the perception model of compound positioning information to improve the positioning
accuracy of CEVs. Then, in Section 4, the training and test data are compared and analyzed
to verify the proposed method. Finally, the conclusion is provided in Section 5. The
technology roadmap of this paper is shown in Figure 1.
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2. Multi-Source Data Fusion Based on D-S Evidence Theory 
In order to integrate information from different sensors (e.g., on-board sensors, road-

side sensors, etc.) and remove data redundancy, a method based on D-S evidence theory 
is proposed to solve the uncertainty of multi-sensor detection information, which can ob-
tain vehicular compound positioning information. At the same time, traffic information 
data matrixes based on multi-source data fusion are constructed to improve the accuracy 
and reliability of the data. 

2.1. The Scenario of Multi-Source Data Fusion 
Multi-source data in the scenario of vehicle-infrastructure can be obtained from road-

side sensors and V2X units mounted on CEVs [38]. Roadside sensors include camera sen-
sors, lidar sensors, and radar sensors. 

The camera sensor is highly intuitive to provide a large amount of road information. 
Through the two-dimensional image features, the target vehicle can be better distin-
guished from other objects. Three-dimensional point cloud data can be output by lidar 
sensors, which have the advantages of a wide detection range and high detection accu-
racy. The 77 GHz radio waveforms can be emitted by the radar, with strong penetration 
and anti-interference ability, which can be applied in the detection of dynamic CEVs ac-
curately in rainy and foggy weather. Different sensors use different communication meth-
ods to obtain traffic information for subsequent data fusion. Thereby, the vehicular posi-
tioning information can be obtained quickly and accurately. The fusion scenario is shown 
in Figure 2. 
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2. Multi-Source Data Fusion Based on D-S Evidence Theory

In order to integrate information from different sensors (e.g., on-board sensors, road-
side sensors, etc.) and remove data redundancy, a method based on D-S evidence theory is
proposed to solve the uncertainty of multi-sensor detection information, which can obtain
vehicular compound positioning information. At the same time, traffic information data
matrixes based on multi-source data fusion are constructed to improve the accuracy and
reliability of the data.

2.1. The Scenario of Multi-Source Data Fusion

Multi-source data in the scenario of vehicle-infrastructure can be obtained from road-
side sensors and V2X units mounted on CEVs [38]. Roadside sensors include camera
sensors, lidar sensors, and radar sensors.

The camera sensor is highly intuitive to provide a large amount of road information.
Through the two-dimensional image features, the target vehicle can be better distinguished
from other objects. Three-dimensional point cloud data can be output by lidar sensors,
which have the advantages of a wide detection range and high detection accuracy. The
77 GHz radio waveforms can be emitted by the radar, with strong penetration and anti-
interference ability, which can be applied in the detection of dynamic CEVs accurately
in rainy and foggy weather. Different sensors use different communication methods to
obtain traffic information for subsequent data fusion. Thereby, the vehicular position-
ing information can be obtained quickly and accurately. The fusion scenario is shown
in Figure 2.
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For multi-source data fusion, there are generally two types of data that need to be
fused: the original data collected by each sensor and the detection information that has been
reprocessed. According to the classification of abstraction level, data fusion can be divided
into pixel level, feature level, and decision level [39]. The decision-level data fusion can
still work when one or more sensors detect distortion, failure, and damage, thus ensuring
the fault tolerance and real-time performance of the detection results. Therefore, this paper
fuses the vehicular detection information. Through the fusion of multi-source data, the
accuracy of vehicular compound positioning perception can be improved.

2.2. Data Fusion Rules of D-S Evidence Theory

The data collected by a single sensor have poor robustness, which usually lead to the
uncertainty of detection results. The D-S evidence theory-based data fusion method can deal
with uncertain, incomplete, and imprecise information. According to the characteristics of
target detection, this paper assigns credibility assignments based on statistical evidence,
which weights vehicular positioning information detected by different sensors. Then,
credibility assignment of each sensor is obtained by a trust function, and the way of basic
credibility assignment is shown in Table 1. There are three detection states of the sensor,
namely, detected vehicle, undetected vehicle, and uncertain detected vehicle, which can be
represented by events A, B, and C, respectively.

Table 1. The basic credibility assignment.

Sensor Type
Sensor State Detected Undetected Uncertain

(A) (B) (C)

Camera sensor (1) m1 (A) m1 (B) m1 (C)
Lidar sensor (2) m2 (A) m2 (B) m2 (C)
Radar sensor (3) m3 (A) m3 (B) m3 (C)

V2X unit (4) m4 (A) m4 (B) m4 (C)

The detection result of each sensor is considered as a piece of evidence. Then, the
multi-sensor information is fused based on evidence fusion rules. Taking the fusion process
of two sensors as an example, the calculation method is shown in Equation (1).

m1,2(A) = (m1 ⊕m2)(A) =
1

1− K ∑
B∩C−A 6=∅

m1(B)m2(C) (1)
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where K is the normalization coefficient. The calculation method is shown as follows:

K = ∑
B∩C=∅

m1(B)m2(C) (2)

which can be equivalent to:

1− K = ∑
B∩C 6=∅

m1(B) ·m2(C) = 1− ∑
B∩C=∅

m1(B) ·m2(C) (3)

Once the multi-sensor data are fused, the amount of evidence from each sensor will
increase with the number of sensors. As a result, the data dimension grows geometrically,
which reduces the efficiency of fusion. Therefore, the two pieces of evidence are fused based
on the calculation in Equation (3), and the iterative process is continued until the fusion of
multiple pieces of evidence is completed. The operation process is shown in Figure 3.
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According to the D-S evidence theory, after fusing all sensor information, the maximum
probability is regarded as the final decision, as shown in Equation (4). If Equation (4) is
satisfied, then A is the final decision.

m(A)−m(B) > ε1
m(Θ) < ε2
m(A) > m(Θ)
m(A) = max{m(A), m(B), m(Θ)}

(4)

where ε1 and ε2 are the preset threshold.
If Equation (5) is satisfied, then B is the final decision:

m(B)−m(A) > ε1
m(Θ) < ε2
m(B) > m(Θ)
m(B) = max{m(A), m(B), m(Θ)}

(5)

In summary, the rules for the final decision are summarized as follows:
Rule 1: The trust value of the selected event detection result should be greater than

that of other detection results, and the difference is greater than a certain lower limit.
Rule 2: The trust value occupied by uncertain events must be less than a certain

upper limit.
Rule 3: The trust value of the selected event detection result must be greater than the

uncertainty trust values.
Rule 4: The event with the largest trust value is selected as the detection result.
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However, in the actual fusion process, the determination of thresholds ε1 and ε2 needs
to consider the actual traffic fusion scenario, which can obtain better decision results by
choosing different thresholds.

In the vehicular position judgment based on the probability fusion algorithm, the
detection probabilities of four sensors are fused. Then, according to the fusion results,
determine whether there is a vehicle at the position. According to the vehicular position
detection results of each sensor, the detection results can be randomly combined in 16
combination forms, which is shown in Table 2.

Table 2. The combination of the detection results for four sensors. “Yes” represents that a vehicle is
detected at the position. “No” represents that there is no vehicle at the position.

Sensors

Combination
Forms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Camera Yes Yes Yes Yes No Yes Yes No Yes No No No No No No No
Lidar Yes Yes Yes No Yes Yes No No No Yes Yes Yes Yes No No No
Radar Yes Yes No Yes Yes No No Yes Yes No Yes No No Yes No No

V2X unit Yes No Yes Yes Yes No Yes Yes No Yes No Yes No No Yes No

Taking composition form 1 as an example, the camera, lidar, radar, and V2X unit
simultaneously detect the presence of vehicles in the detected area. The basic reliability
of four sensors are m1 = (A, B, Θ), m2 = (A, B, Θ), m3 = (A, B, Θ), m4 = (A, B, Θ),
respectively. The multi-source data fusion process under this combined form is shown
as follows:

• For m1⊕2 fusion, the normalized coefficient 1-K value is obtained using the D-S evi-
dence fusion rule, which is shown in Equation (6).

1− K = m1(A) ·m2(A) + m1(A) ·m2(Θ) + m1(Θ) ·m2(A) (6)

where K is the degree of evidence conflict.

• The values of the mass function for each hypothesis are obtained as follows:

m1(A)⊕m2(A) = 1
1−K · (m1(A) ·m2(A) + m1(A) ·m2(Θ)) + m1(Θ) ·m2(A)))

m1(B)⊕m2(B) = 1
1−K · (m1(A) ·m2(B) + m1(B) ·m2(Θ)) + m1(Θ) ·m2(B)))

(7)

• The confidence intervals are obtained as follows:

The confidence interval of A is [m1(A)⊕ m2(A), m1(A)⊕ m2(A) + m1(Θ) · m2(Θ)].
The confidence interval of B is [m1(B) ⊕ m2(B), m1(B) ⊕ m2(B) + m1(Θ) · m2(Θ)]. The
length of the confidence interval is m(Θ).

• Therefore, the credibility of m1⊕2 fusion is m1⊕2 =

 m(A1)
m(A2)
m(Θ)


• According to D-S evidence theory, m1⊕2 and m3 are fused, which represent the com-

bined credibility of camera, lidar, and radar is obtained: m1⊕2⊕3.
• In the same way, the credibility of four sensors fusion is finally obtained, which is

m1⊕2⊕3⊕4.

Table 3 shows the credibility comparison results of 16 combination forms.



Sustainability 2022, 14, 8323 8 of 23

Table 3. Fusion results of 16 combination forms.

Combination
Form

Sensor
Number m(A) m(B) m(Θ) Fusion

Result

1 4 0.949350 0.050634 0.000016 A
2 3 0.777015 0.222413 0.000572 A
3 3 0.798684 0.200929 0.00387 A
4 2 0.419643 0.571429 0.008929 B
5 3 0.981207 0.018715 0.000078 A
6 2 0.906375 0.090504 0.003121 A
7 2 0.901087 0.098755 0.00159 A
8 1 0.65 0.28 0.07 A
9 3 0.901087 0.098755 0.000159 A

10 2 0.627191 0.36803 0.00478 A
11 2 0.657519 0.339188 0.003293 A
12 1 0.22 0.72 0.06 B
13 2 0.962065 0.037144 0.00079 A
14 1 0.82 0.15 0.03 A
15 1 0.84 0.14 0.02 A
16 0 —— —— —— Θ

Compared with the fusion results of 16 combination forms, it can be observed that the
uncertainty of fusion results decreases with more sensors. It is proved that the false rate
of detection results is lower after the fusion of multi-sensor detection information by D-S
evidence theory.

3. The Perception Model of Compound Positioning Information

In Section 2.2, D-S evidence theory is used to fuse the multi-sensor detection infor-
mation collected by four detectors, so that the vehicular position probability with high
accuracy can be obtained. This paper proposes a hybrid neural network model based on
the LSTM framework, which can obtain the compound positioning information of the CEV
in real time. The structure of the hybrid LSTM model is shown in Figure 4.
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As shown in Figure 4, the latitude, longitude, and time of CEV position information
are taken as the inputs of the hybrid LSTM model, where L = {P1, P2, . . . , Pn} denotes
the set of track points of the CEV within n time steps, Pi = (lati, loni, ti) denotes the i-th
positioning point of CEV, lati denotes the latitude, loni denotes the longitude, and ti denotes
the time. These inputs are passed through the data preprocessing layer, CNN layer, LSTM
layer, self-attention layer, dropout layer, and dense layers. The final output of the model is
vehicular compound positioning information (lati, loni, ti) in real time.

After the input data are extracted, the input data will be transmitted to the LSTM
layer, and the historical data are stored and transmitted downward along the positioning
sequence to predict the next position. The attention vector is calculated through the
previous hidden state from the LSTM layer to the self-attention layer. At the same time, the
dropout layer can prevent the overfitting of the neural network, and the fully connected
layer mainly classifies the feature vector. Finally, the output layer combines the output of
the previous layer to obtain the CEV compound positioning data in real time.

In fact, the calculation of compound positioning P’ perception is to learn the mapping
function f, which is based on intersection topology matrix N and positioning vector P, as
shown in Equation (8):

P′t = f (N; (Pt−n, . . . , Pt−1, Pt)) (8)

where n denotes length of historical time series.

3.1. Date Preprocessing Layer

In the scenario of vehicle-infrastructure information fusion, each sensor is an indepen-
dent information source. Therefore, the position coordinates of the CEV collected by each
sensor can be assigned as the basic probability of evidence, and these pieces of evidence do
not completely conflict.

Therefore, in the preprocessing layer, multiple trust functions can be synthesized into
a trust function by the corresponding evidence synthesis rules, and this trust function can
be seen as the comprehensive trust function of these pieces of evidence. Moreover, the basic
probability assignment of four sensors is used to fuse the multi-sensor positioning data to
obtain the comprehensive trust estimation of each reference point. Finally, through the D-S
evidence synthesis rule, the comprehensive trust estimates m(A) and m(B) of two definite
states and an uncertain state trust estimate m(C) are obtained. Similarly, the comprehensive
trust estimation of the state relationship between the target and multiple reference points
can be calculated.

According to the relationship between trust function and likelihood function, an ideal
reference point should be satisfied by the following requirement: the credibility of the
target at the reference point is greater than the credibility of the target not at the reference
point, and greater than the uncertainty of the target, as shown in Equation (9):

mi(A) > mi(B)
mi(A) > mi(C)

(9)

According to Equation (9), the reference point set of vehicular position can be obtained,
and these reference points continue to be used as inputs to the next layer.

3.2. CNN Layer

A convolutional neural network (CNN) is used to process data with multiple array
forms. Considering the characteristics of CEV tracking points, the two-dimensional data
array of position and time is adopted in this paper. The combination of position and time
variables at each tracking point of the CEV are extracted by the CNN to capture correlation
between variables.

The CNN has a unique network structure, which consists of five layers: input layer,
convolution layer, pooling layer, fully connected layer, and output layer. The structure of
CNN is shown in Figure 5.
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1. Input layer

The input layer is used to capture the spatial features information of road traffic. In
this paper, the traffic spatial features within the intersection range are transformed into the
pixel matrix as the input of the model. As shown in the input layer in Figure 5, the traffic
feature of the intersection area can be regarded as a pixel matrix, whose matrix dimension
can be expressed by [length × width × depth], where length and width represent image size,
and depth represents the color channel.

2. Convolution layer

The convolution layer is the core layer of the CNN, which extracts the spatial features
of traffic parameters using a convolution algorithm. The filter or convolution kernel is
mainly used for feature extraction of the input spatial matrix. The convolution operation of
the CNN can be expressed as Equation (10).

ai,j = f

(
M−1

∑
m=0

N−1

∑
n=0

wm,nxi+m,j+n + wb

)
(10)

where the size of the filter matrix is M rows and N columns; xi,j represents the input two-
dimensional data at i-th row and j-th column; wm,n represents weight value at m-th row
and n-th column of the filter matrix; wb represents the filter bias value; f is the activation
function; ai,j represents the i-th row and j-th column of the feature map.

3. Pooling layer

The pooling layer can reduce the number of nodes in the fully connected layer, to
reduce the parameters in the whole neural network. Although the pooling layer will not
change the depth of the matrix, it can reduce the size of the matrix. The pooling layer can
retain effective information by reducing feature dimensions of data. Generally, pooling
methods include maximum pooling, mean pooling, and mixed pooling.

4. Fully connected layer and output layer

After several rounds of convolution and pooling, the feature matrix of the vehicular
track state at the intersection has been abstracted into features with higher information
content. Lastly, the output dimension is adjusted by the fully connected layer and the
output layer, and the final result is output at the same time.

3.3. LSTM Layer

In terms of time dimension, the LSTM network with deep structure has memory units
that store historical time series information, which can generate multi-step predictive vari-
ables through mass training by supervised learning. The LSTM network can automatically
extract and transmit the relevant information along the long sequence chain for prediction,
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which is suitable for learning the sequential motion pattern of CEV positioning data. There-
fore, the LSTM network is selected to obtain the compound positioning information of the
CEV in real time.

The LSTM network is a kind of recurrent neural network in time series, which can
remember information within a certain time. The LSTM network has three gates, including
the input gate, forget gate, and output gate. The structure of the LSTM neural network is
shown in Figure 6.
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At time t, there are three inputs in the LSTM network: the vehicular compound
positioning data xt, and the output value ht−1 and ct−1 in the previous hidden layer. The
output of the LSTM network is the real-time compound positioning data of the CEV. The
status of the input gate, forget gate, and output gate in the LSTM network are it, ft, and ot,
which are from 0 to 1. The calculation process can be summarized as follows:

ft = σ(Wx f xt + Wh f ht−1 + b f ) (11)

it = σ(Wxixt + Whiht−1 + bi) (12)

ot = σ(Wxoxt + Whoht−1 + bo) (13)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (14)

ht = ottanh(ct) (15)

where Wx f , Wxi, Wxo, Wxc represent the weight matrices for the spatial feature; input
xt is the compound positioning data; Wh f ,Whi,Who,Whc represent the weight matrices of
hidden layer ht respectively; b f , bi, bo, bc represent the bias vector, respectively; σ and
tanh represent the sigmoid function and hyperbolic tangent function, which are defined in
Equations (16) and (17).

σ(x) =
1

1− e−x (16)

tanh(x) =
2

1 + e−x − 1 (17)

In addition, the training process of the LSTM network can continue if the input value
is too large or even empty. Therefore, even if the error of the fused positioning input value
is too large or even empty, the training of the model can be carried out.

3.4. Self-Attention Layer

In the self-attention mechanism layer, the correlation between different positions in
the CEV trajectory and the feature information of input position in the previous layer in
each step of the training process can be paid more attention by the hybrid model. The
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self-attention mechanism can enhance the performance of the hybrid LSTM model and
improve the compound positioning accuracy. The calculation process is shown as follows:

gt,t′ = tanh
(

Wght + Wg′ht′ + bg

)
(18)

et,t′ = σ
(
Wagt,t′ + ba

)
(19)

at,t′ =
exp

(
et,t′
)

∑j exp
(
et,j
) (20)

At = ∑
t′

at,t′ht′ (21)

where ht and ht’ represent the hidden state of the LSTM layer in current time step t and
the previous time step t′, respectively; σ represents the sigmoid function; Wg and Wg′

represent the weight matrices corresponding to ht and ht’; Wa represents the weight matrix
corresponding to its nonlinear combination; bg and ba represent deviation vectors.

The attention output At at the time step t is the weighted sum of all previously
hidden states ht’, which is weighted by at,t′ . Additionally, at,t′ represents the similarity or
dependence between ht and ht′ , where the similarity is the relationship between the current
position at time t and the previous position at t’ in the input trajectory.

3.5. Dropout Layer

The dropout layer refers to the discarding of neural network elements according
to certain probabilities during training of deep learning networks. However, in model
training, problems such as overfitting and time-consuming issues are always encountered.
Therefore, the dropout function is mainly to reduce the occurrence of overfitting during the
experiment. The dropout layer can improve the robustness of the model when training the
vehicular trajectory data and improve the model’s generalization ability.

To sum up, the hybrid neural network model based on the CNN and LSTM is proposed
in this paper. Firstly, the original CEV position data are preprocessed to ensure the stability
of positioning sequence data. Convolutional networks are used to capture the depth
features of data in the model. Then, the position sequence with depth characteristics is
input into the LSTM layer, and the time features are obtained by multi-step prediction
variables. Finally, the self-attention mechanism is combined with the LSTM network to
obtain the position correlation in the CEV positioning data series. Therefore, the hybrid
LSTM model can better capture the position dependence of each compound positioning
trajectory sequence and improve the positioning effect of the hybrid LSTM model in the
self-attention layer.

4. Field Experiment and Analysis

In order to verify the proposed hybrid model in this paper, a typical urban intersection
was selected as the experiment scenario [40,41]. In this experiment, real-time vehicular
compound positioning data were selected as the model input.

4.1. Test Field and Datasets

In the experiment, an intersection in Shijingshan District, Beijing was selected as the
test field for trajectory information collection of the CEVs. There are four lanes at the
entrance of the intersection, with a U-turn lane as the left-most lane.

There were three CEVs in this experiment, named C1, C2, and C3, respectively. In
addition, CEVs were within the detection range of roadside sensors during the whole
driving process. In Figure 7, the origin and destination of the driving route are marked.
The CEV first passes through the straight road section at a uniform speed from the left-most
lane, then makes a U-turn at the intersection, and finally runs at a uniform speed.
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Roadside multi-source sensors include camera, lidar, and radar sensors, which can not
only track the position of the target vehicle in real time, but also detect the environmental
parameters of roadside infrastructure. The V2X unit mounted on the CEVs can obtain
positioning information based on positioning data from CAN-Bus. In the field test, we
also calculated the actual traffic flow of the road at different times based on the roadside
multi-source sensors.

About 12,000 pieces of effective data were obtained after preprocessing, cleaning, and
merging the data collected in the experiment, as shown in Table 4.

Table 4. Dataset example.

ID V2X Longitude Latitude
Steering

Angle
(◦)

Speed
(m/s)

Acceleration
(m/s2)

Horizontal
Distance

(m)
Heading Angle (◦)

76 Yes 116.2138743 39.9306605 2.3 0.16 −0.16 7.82 88.22

77 No 116.2139375 39.9306708 —— 2.11 —— 12.14 82.92

...
...

...
...

...
...

...
...

...

95 No 116.2127606 39.9306348 —— 2.14 0.20 17.17 154.52

96 No 116.2120122 39.9306519 —— 5.58 —— 15.17 82.59

In order to improve the effect of model training, we divided the collected data into a
test set and training set, in which 80% of the data were randomly selected as the training
data set and the other 20% as the test data set.

4.2. Parameter Setting and Evaluation Index

The construction of the hybrid model proposed in this paper was based on the NVIDIA
Geforce GTX 1050ti GPU hardware platform. Moreover, the hybrid network was trained
with the PyTorch 1.4 framework. Considering the range of features and the computing
power of the device, a 16 × 16 convolution layer was selected in the CNN. Meanwhile, in
order to preserve the features to be detected as completely as possible, we chose the size of
the pooling layer as 8 × 8. The number of hidden layers in the LSTM was related to the
prediction error and complexity of the model. Through practical verification, the number
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of hidden layers was set to 2, and there was no overfitting. Moreover, the number of nodes
in the hidden layer needs to match the number of hidden layers, so we set the number of
nodes in the hidden layer to 200. The hybrid network model has been trained and adjusted,
and the main parameters of each layer network model are shown in Table 5.

Table 5. Parameter setting of hybrid LSTM model.

Parameters Value

CNN
Input layer size 256 × 256

Convolution layer size 16 × 16
Pooling layer size 8 × 8

LSTM
Number of hidden layers 2

Number of hidden layer nodes 200

Epoch 20

Batch Size 100

Loss Function MSE

Learning Rate 0.001

Optimizer Adam

After inputting the vehicular positioning sequence into the model and obtaining the
corresponding output, it was necessary to compare the output of the model with the
label used for supervision training. Since the outputs of the neural network were two-
dimensional coordinates, the model selects the minimum mean square error (MSE) as the
loss function to evaluate the positioning results, as shown in Equation (22). The smaller the
MSE is, the better the fitting of the neural network, and the training set is shown as follows:

MSE =
1
n

n

∑
1
(outputi − labeli)

2

(22)

where outputi is the output of the network; labeli is the label of supervised training.
In order to make a clearer and intuitive evaluation of the model fitting results, root

mean square error (RMSE) and mean absolute percentage error (MAPE) are given as one
of the evaluation indexes of fusion performance. The smaller the RMSE, the better the
compound positioning effect. The specific RMSE and MAPE definitions are shown in
Equations (23) and (24).

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)
2 (23)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (24)

where ŷi represents the output of the network compound positioning; yi represents the
actual position of the vehicle; n and m are the number of samples calculated by RMSE and
MAPE, respectively.

4.3. Uncertainty Analysis of Multi-Source Data Fusion

Before multi-sensor fusion, the detection effect of each single sensor was tested after
sensor perception correction, whose detection errors are shown in Table 6. Comparing the
measured value with the collected data, the maximum value (m), minimum value (m), and
average value (m) of the detection error of each single sensor are listed in Table 6, and the
MAPE is also calculated and listed in Table 6.
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Table 6. Comparison results of detection error.

Error

Sensor
Category Camera Lidar Radar V2X Unit

Maximum (m) 18.4623 0.8268 2.0168 20.9980
Minimum (m) 0.1917 0.0082 0.0607 0.0488
Average (m) 3.5881 0.2111 0.7138 8.1386

MAPE 19.26% 0.70% 23.72% 26.87%

In order to better evaluate the effect of multi-source data fusion, the uncertainty should
be analyzed firstly. As shown in Section 2.2, in order to reduce the uncertainty of target
detection by a single sensor, this paper selects multi-sensors to fuse information without
changing the contradiction degree to increase the information amount.

Based on the distribution of uncertainty after statistical data fusion, the detection
results of uncertainty distribution for each sensor are shown in Figure 8. The detection
result of uncertainty distribution after multi-source data fusion is shown in Figure 9.
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By comparing Figures 8 and 9, the uncertainty of the fused data is significantly lower
than that before the data fusion operation in the detection area. The average value of
uncertainty decreased from 8% to 0.03%, which is about 0.38% of the original level. The
reduction of uncertainty indicates that the accuracy of data recognition is higher, and the
corresponding detection error is smaller after data fusion.
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The uncertainty of some regions with high uncertainty in Figure 8 is also significantly
reduced in Figure 9 after multi-source data fusion. For example, in areas with high vehicle
density, the vehicle speed is unstable, which leads to low detection accuracy of individual
sensors and high uncertainty in the evaluation of this region. Therefore, by comparing the
distribution of uncertainty, it can be seen that the detection results based on multi-source
data fusion have higher reliability.
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4.4. Analysis of Compound Positioning Model

In the process of model training, the RMSE of the hybrid LSTM model changes with
increase of the number of iterations, as shown in Figure 10. In order to present the trend
of RMSE function more intuitively, Figure 10 shows the smoothed RMSE curve and the
original RMSE curve, respectively. The smoothed RMSE curve uses the method of a 5-point
moving average to smooth the original data. Moreover, the RMSE value of the hybrid
LSTM model tends to be stable after 200 rounds of iterations. Owing to the LSTM needs
of the use of the historical sequence to predict the output, the training RMSE value in the
initial iteration is high.
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In order to evaluate the performance of the hybrid LSTM model in compound posi-
tioning perception, the LSTM model was compared in the comparative experiment [42].
At the same time, some network structures still have certain advantages in dealing with
the field of compound positioning. Considering that a multi-view 3D object (MV3D) has
the characteristics of less resource occupation and RoarNet has the characteristics of high
robustness and high accuracy, MV3D and RoarNet were selected as comparative models in
the experiment [43,44]. In the experiment, the calculation times of LSTM, MV3D, RoarNet,
and hybrid LSTM models were 122, 45, 87, and 48 ms, respectively. Since the collection
period of sensors was 50 ms, the total calculation periods of these models were 122, 50, 87,
and 50 ms, respectively.
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The comparative experiment randomly selects anchor points and randomly positioned
each anchor point 50 times under different speed conditions, to verify the compound
positioning effect of different models. The compound positioning solution results of the
four methods were recorded, and the distribution is shown in Figure 11.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 24 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 
  

(j) (k) (l) 

Figure 11. Distribution of CEV compound positioning under different methods and different 
speeds. (a) The position distribution of LSTM model at 15 km/h; (b) the position distribution of 
LSTM model at 30 km/h; (c) the position distribution of LSTM model at 45 km/h; (d) the position 
distribution of MV3D at 15 km/h; (e) the position distribution of MV3D at 30 km/h; (f) the position 
distribution of MV3D at 45 km/h; (g) the position distribution of RoarNet model at 15 km/h; (h) the 
position distribution of RoarNet model at 30 km/h; (i) the position distribution of RoarNet model at 
45 km/h; (j) the position distribution of hybrid LSTM model at 15 km/h; (k) the position distribution 
of hybrid LSTM model at 30 km/h; (l) the position distribution of hybrid LSTM model at 45 km/h. 

In the comparative experiment at different speeds, the positioning status of the 
MV3D and RoarNet model was relatively discrete and the positioning accuracy was low, 
which is shown in Figure 11. In addition, as the vehicular speed was below 30 km/h, the 
compound positioning distribution of the LSTM is similar to the method based on the 

0 0.2 0.4 0.6
X−axis (m)

−0.3

−0.2

−0.1

0

0.1

0.2

Y−
ax

is
 (m

)

V=15km/h

Actual Postion
LSTM Fusion Point
LSTM Distribution

0 0.2 0.4 0.6
X−axis (m)

−0.3

−0.2

−0.1

0

0.1

0.2

V=30km/h

Actual Postion
LSTM Fusion Point
LSTM Distribution

0 0.2 0.4 0.6
X−axis (m)

−0.3

−0.2

−0.1

0

0.1

0.2

V=45km/h

Actual Postion
LSTM Fusion Point
LSTM Distribution

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Y−
ax

is
 (m

)

Figure 11. Distribution of CEV compound positioning under different methods and different speeds.
(a) The position distribution of LSTM model at 15 km/h; (b) the position distribution of LSTM model
at 30 km/h; (c) the position distribution of LSTM model at 45 km/h; (d) the position distribution of
MV3D at 15 km/h; (e) the position distribution of MV3D at 30 km/h; (f) the position distribution
of MV3D at 45 km/h; (g) the position distribution of RoarNet model at 15 km/h; (h) the position
distribution of RoarNet model at 30 km/h; (i) the position distribution of RoarNet model at 45 km/h;
(j) the position distribution of hybrid LSTM model at 15 km/h; (k) the position distribution of hybrid
LSTM model at 30 km/h; (l) the position distribution of hybrid LSTM model at 45 km/h.
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In the comparative experiment at different speeds, the positioning status of the MV3D
and RoarNet model was relatively discrete and the positioning accuracy was low, which is
shown in Figure 11. In addition, as the vehicular speed was below 30 km/h, the compound
positioning distribution of the LSTM is similar to the method based on the hybrid LSTM
model. However, once the speed increases, the stability of the LSTM model was affected,
and the results of compound positioning were more divergent, which cannot describe
the positioning information of the CEV accurately. Therefore, it can be seen from the
distribution map that the distribution region of the compound positioning was more
concentrated, and the distribution shape was more convergent after training of the hybrid
LSTM model. For compound positioning results with a large offset, they are closer to real
values after correction by the hybrid LSTM model.

In order to verify the reliability of the hybrid LSTM model, the test numbers of
anchor points were increased in the same experimental scenario. Table 7 shows the av-
erage difference between the trained position of the four models and the real position
when the three additional anchors (Anchor 2, Anchor 3, and Anchor 4) were involved in
compound positioning.

Table 7. Average difference between real and trained position of the four models (m).

Model Anchor 2 Anchor 3 Anchor 4

LSTM 0.1179 0.0821 0.0630
MV3D 0.1475 0.1322 0.1071

RoarNet 0.1121 0.0690 0.0610
Hybrid LSTM 0.0910 0.0609 0.0399

In Table 7, with the increase of anchors, the average difference between the trained
position of models and real position gradually decreases. Especially for the hybrid LSTM
model, when four anchors participate in positioning at the same time, the average differ-
ence is only 0.0399 m, which can satisfy most vehicle requirements of positioning accuracy.
Therefore, the above experimental results show that, compared with the LSTM, MV3D,
and RoarNet models, the hybrid LSTM model can effectively achieve real-time vehicu-
lar compound positioning based on multi-source sensor fusion data, under the limited
resource conditions.

In order to evaluate the perception accuracy of the hybrid LSTM model, the training
effects of the model before and after multi-source data fusion were compared. The posi-
tioning effect of CEVs collected by single sensors and multi-source data fusion is shown
in Figure 12.
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As shown in Figure 12, the effect of single sensor positioning is worse than that of
multi-source data fusion positioning. In the same time series, the vehicular positioning
data after fusion processing is closer to the real data, where the positioning accuracy is
0.0905 m. Based on the compound positioning model, the fused data not only performs
well in the accuracy of data, but also performs well in the stability of data fluctuation.

In addition, the errors in different time steps for the X and Y direction were analyzed,
which is shown in Figures 13 and 14. The black straight line is the reference standard value
of tested CEV; the red stars are the data errors of the fused data in different time steps for
the X or Y direction; and the yellow circles are the optimal sensor errors of the current
single sensors in different time steps for the X or Y direction.
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According to the trajectories of the CEV in Figure 12, it can be observed that the CEV
decelerates when the time step is 0 (error convergence for the X direction); completes the
U-turn in the period of about 300–500 time steps (error transformation for the X and Y
direction); then, the vehicle accelerates away from the sensing area (error divergence for the
X direction). After analysis, the following conclusions can be drawn: Firstly, the error of the
fused data is significantly more convergent than that of the vehicle single sensor. Secondly,
the error of the vehicle in the forward direction is significantly smaller than that in the
vertical direction. Thirdly, the error of the vehicle in the forward direction is positively
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correlated with vehicular speed. In addition, more than 97.9% of the detection data are less
than 0.1 m, which meets the accuracy requirements of high-precision perception.

The above models were trained on the dataset respectively, and the error values of
RMSE and MAE were used as evaluation indexes to compare the training performance of
each model. The comparison results are shown in Figure 15.
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It can be seen from Figure 15 that the hybrid LSTM model is the smallest error in
the perception of target position. It is proven that the hybrid LSTM model has obvious
advantages in compound positioning of CEVs based on multi-source data fusion.

In different periods of time, three CEVs were tested in an intersection to verify the
detection effect of CEVs’ compound positioning under different traffic flows. The analysis
of vehicular detection error at different traffic flows and time periods is shown in Figure 16.
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Figure 16. Average detection error in different time periods of situations.

In Figure 16, the green polyline represents the average volume of traffic flow in the
current period, and the orange bars represent the average error of the tested CEV during this
period, where the upper edge and the lower edge represent the maximum and minimum
error detection of a CEV in the driving cycle. Analysis of the situation shown in Figure 16
has shown that there is a certain positive correlation between the vehicle detection error and
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the volume of traffic flow, while the detection time has no direct correlation with detection
error. The reason for the decrease of detection accuracy may be due to the increased
probability of vehicles being blocked in high-saturated traffic flow. However, the maximum
detection error occurs in the morning peak hours, which is still lower than 0.03 to meet the
high-precision positioning requirements of CEVs.

5. Conclusions

This paper mainly studies the vehicular compound positioning of CEVs based on
multi-source data fusion technology in a vehicle-infrastructure information perception
environment. First, the development of the existing real-time compound positioning
method and vehicle communication method were analyzed. Secondly, a deep learning-
based vehicle-infrastructure information fusion method was proposed to perceive the
real-time driving position of CEVs. Then, this paper conducted an actual vehicle test by
designing a traffic perception scenario based on vehicle-infrastructure information fusion.
Finally, by analyzing and sorting out the real vehicle data, it was proven that the model
proposed in this paper can accurately and efficiently complete the real-time positioning
of CEVs.

In addition, there are still limitations in the research of this paper, which need to be
further improved in follow-up work. In our study, the influence of objective conditions was
not considered; for example, communication delay and data packet loss on the compound
positioning accuracy of CEVs.

In future research, we will further improve the traffic scenarios, and consider the
problems of data packet loss and communication delay during data transmission. Further-
more, there are many driving behaviors in the driving process of CEVs, such as continuous
turning, linear acceleration and deceleration, sharp U-turns, etc., which depend on high-
precision compound positioning. Therefore, how to guide the CEVs to make decisions
based on the compound positioning information is also the direction of future research.
Therefore, how to improve the intelligent driving decision-making and control ability of
CEVs based on compound positioning information is also a direction of future research.
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