
Citation: Do, D.-P.; Tran, N.-T.;

Hoxha, D.; Vu, M.-N.; Armand, G.

Time-Dependent Behavior of

Callovo-Oxfordian Claystone for

Nuclear Waste Disposal: Uncertainty

Quantification from In-Situ

Convergence Measurements.

Sustainability 2022, 14, 8465. https://

doi.org/10.3390/su14148465

Academic Editor: Vladimir Strezov

Received: 11 June 2022

Accepted: 8 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Time-Dependent Behavior of Callovo-Oxfordian Claystone for
Nuclear Waste Disposal: Uncertainty Quantification from
In-Situ Convergence Measurements
Duc-Phi Do 1 , Ngoc-Tuyen Tran 2 , Dashnor Hoxha 1,* , Minh-Ngoc Vu 3 and Gilles Armand 3

1 INSA CVL, Lamé, EA 7494, University Orléans, University Tours, 45100 Orléans, France;
duc-phi.do@univ-orleans.fr

2 Faculty of Engineering-Technology, Hatinh University, Hatinh 480000, Vietnam; tuyen.tranngoc@htu.edu.vn
3 Andra, R&D Division, 92298 Chatenay-Malabry, France; minh-ngoc.vu@andra.fr (M.-N.V.);

gilles.armand@andra.fr (G.A.)
* Correspondence: dashnor.hoxha@univ-orleans.fr; Tel.: +33-2-38-49-43-75

Abstract: The sustainability of geotechnical infrastructures is closely linked with their long-time
behavior. In fact, there is not a straightforward procedure to predict this behavior, and very often,
the back analyses of observed data are the best tool to understand their long-time response. In-
situ observations of drifts constructed in the Callovo-Oxfordian (COx) claystone, the potential host
formation for geological radioactive waste disposal, in France exhibit a progressive convergence.
These convergence measurements with quite significant dispersions reveal a considerable uncertainty
of time-dependent behavior of this argillaceous rock that can strongly affect the transmit loading
to liners, hence the long term stability of the drift. Consequently, the uncertain quantification of
the creep behavior of COx claystone presents an important task before analyzing the safety of the
waste disposal system. In this work, this challenge was conducted by using the well-known Bayesian
inference technique. For this aim, on the one hand, the effectiveness of the classical and hierarchical
Bayesian techniques to quantify the epistemic and aleatoric uncertainties of the time-dependent
behavior of the host rock were investigated using synthetic data. On the other hand, we dealt with
the uncertain quantification of the Lemaitre parameters that characterize the visco-plastic behavior of
COx claystone thanks to the real data of in-situ convergence measurements of drifts.

Keywords: uncertainty quantification; Bayesian inference; creep behavior; COx claystone; drift
convergence; anisotropy

1. Introduction

The world objectives for green energy, and the tensions about organic fuels, are
accompanied with efforts for carbon-free alternative energies. In all mitigation paths for
sustainable energy development in the future, the Intergovernmental Panel on Climate
Change (IPCC) reports on the global warming impact scheduled, among other tools, a
significant increase of the world nuclear energy production [1]. While the practice of low
and intermediate radioactive waste management has been largely conducted, the long-term
behavior of nuclear waste disposal is yet a challenging task and a dynamic field of study.
Nowadays, all different solutions in various countries worldwide make use in one way or
another of so called “geological barriers” as an element of the proposed solution.

Considered as a potential host formation for geological radioactive waste disposal
in France, the Callovo-Oxfordian (COx) claystone has been intensively studied in many
research programs led by the French National Radioactive Waste Management Agency
(Andra). Among them, the in-situ observations and experimentation in the Underground
Research Laboratory in Meuse and Haute Marne (URL M/HM) have been conducted
since 2000 to characterize both the short- and long-term behavior of this host formation.
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The convergence measurement of drifts within the URL exhibits not only a complex time-
dependent behavior but also an anisotropy of the convergence in all drifts [2–4]. Completed
by many other studies conducted in laboratories, it has also been shown that the short-
term behavior of this host rock seems to be predominant by the elastoplastic and damage
mechanisms, while at the long term, the creep behavior is dominant [5]. Further, a high
dispersion of the mechanical properties of COx claystone due to their dependence on
mineralogical composition has been observed.

Specifically, the measurement in URL highlights that the initial stress state is char-
acterized by three principal stresses: the minor horizontal stress is quasi-similar to the
vertical stress (σv ≈ σh ≈ 12.5 MPa), while the major horizontal stress is about 1.3 times
higher than the minor stress (σH ≈ 1.3σh) [1]. The excavation of drift in both directions
of the major and minor horizontal stresses induces a fractured zone. Indeed, for drifts
parallel to σH, it was observed that the fractured zone presents a dissymmetrical shape
despite the quasi-isotropic stress state in the drift section [2,3]. The extension of fracture
is more developed in the horizontal direction of the drift cross section. The observed
anisotropy is also confirmed in the convergence measurements that are conducted in the
horizontal and vertical directions. The higher convergence, about two times higher, is noted
in the horizontal direction, but the evolution in time of both the horizontal and vertical
convergence seems similar [2].

To reproduce the observed phenomenon of anisotropic convergence and the dissym-
metrical shape of the fractured zone around drift under the quasi-isotropic stress state,
different models have been developed to describe the complex short- and long-term be-
havior of COx claystone. Sophisticated models considering the anisotropy of plasticity,
visco-plasticity, or damage have been proposed. However, a large number of parameters
are needed in these models, and they are not easy to be determined [6–9]. To overcome this
drawback, some scholars [10,11] proposed a simplified approach to simulate the anisotropic
elasto-plastic behavior of the host rock. In their model, the anisotropy of fractured zones
was considered in the geometrical model of drift by defining explicitly their size and shape,
as characterized from in-situ monitoring [3]. These zones have similar elastic properties
but lower plastic properties compared to the intact rock. Further, the Mohr Coulomb was
chosen to describe the elasto-perfectly plastic behavior of both the fractured zone and the
intact rock.

Recently, in a contribution of the present authors [12,13], the stochastic analysis was
conducted to quantify the uncertainty effect of the time-dependent behavior of COx clay-
stone on the long-term stability of drift. Following that, the creep behavior of host rock
was characterized by the Lemaitre viscoplastic model, while the Kriging metamodeling
technique was chosen for the reliability analysis. The obtained results showed that the
stability of drift support can strongly depend on the uncertainty of creep behavior of the
host rock. However, in this last study, the uncertainty of the viscoplastic behavior of COx
claystone was only quantified from the triaxial creep tests performed in the laboratory.

In this work, the effectiveness and the applicability of the well-known Bayesian
inference (BI) to quantify the uncertainty of the time-dependent behavior of COx claystone
were demonstrated by using the in-situ data provided from the measurements of drift
convergence. In comparison with the previous study in [12], the difficulty and complexity
of the problem treated in this work relates to the consideration of the excavation damaged
zone around drift and its effect on the anisotropic convergence. For this purpose, we
shared the same idea as in [10,11] by considering the short-term anisotropic response of
drift convergence, in which we imposed ad hoc an elliptical shape of the fractured zone,
as characterized in situ. This elliptical zone, having also different plastic properties of
the intact rock, induced a redistribution of stress state and hence affected the long-term
response of the drift.

In what follows, the BI will be briefly presented in the next section. Then, the efficiency
of BI on the uncertainty quantification of creep rock behavior will be investigated using
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the synthetic data of tunnel convergence provided from the analytical solution. Finally, the
application on the time-dependent behavior of COx claystone behavior is conducted.

2. Uncertainty Quantification by Bayesian Inference
2.1. Classical Bayesian Inference

The deterministic calibration process of the model’s parameters from the experimental
data (i.e., inverse problem) has been largely conducted in the literature [14,15]. However,
this well-known method cannot capture the uncertainty of the obtained results when only
a single value of each parameter (i.e., the best-fit input parameters) can be determined. To
overcome this drawback, the stochastic inversion, such as the Bayesian inference, has been
intensively undertaken in the last two decades. Considering input parameters as random
variables, this statistical inference technique allows for quantifying the associated uncer-
tainty of these parameters, which is crucial for the reliability analysis and for optimization
of the design of the structure [12,13,16,17].

Supposing that the vector y = {y1, y2 . . . yN} is a data set of the observations, the
random input parameters of the considered model u(θ) are gathered in the vector θ = {θ1, θ2,
. . . , θM}. The principal idea of BI consists of computing the probabilistic distribution p(θ|y)
of the random vector θ conditional on training data y using the Bayes’ theorem [17,18]:

p(θ|y ) = p(y|θ )p(θ)
p(y)

=
p(y|θ )p(θ)∫
p(y|θ )p(θ)dθ

(1)

In Equation (1), p(θ) is the prior distribution of the random variables, which represents
the beliefs about θ a priori (i.e., before any data has been observed). Thus, Equation (1)
updates the belief about θ to the posterior by taking into account the observed data in
the computation of p(θ|y) to reduce the discrepancy between observation and simulation.
The function p(y|θ) and p(y) are referred to as the likelihood and marginal likelihood
(or evidence). Assuming that the discrepancy between the observation and the model
prediction u(θ) have a Gaussian distribution with a zero mean value and an unknown
variance σ2, the likelihood function p(y|θ) is written as:

p(y|θ ) =
N

∏
i=1

1√
(2πσ2)

N
exp
(
− 1

2σ2 (yi − u(θ))T(yi − u(θ))
)

(2)

Usually, the posteriori function p(θ|y) described in Equation (1) is implicit; hence,
the exploration of this function is difficult. The Monte Carlo (MC) sampling technique is
considered the most appropriated method in this case to explore this implicit posteriori
function. However, to reduce the required large number of samples in the classical MC
method to achieve statistical convergence, the Markov Chain Monte Carlo (MCMC), which
is a class of sequential sampling strategies, is commonly used. Following the MCMC
method, a Markov chain is constructed when the next sampled state depends on the current
state by using the Metropolis-Hastings or Gibbs sampling technique [18–20]. Depending
on the shape of the posteriori distribution, the required number of samples in MCMC can
remain high. Therefore, in case of a complex structure, the likelihood evaluation in the
MCMC-based model uncertainty quantification can be conducted by combining it with the
surrogate model that approximates the structure response to reduce the computational cost
of the numerical simulation. Some well-known surrogates, based on: Kriging, polynomial
chaos expansions (PCEs), and Artificial Neuron Network (ANN), are among the most
widely used [6,7,10–14].

Note that, in the uncertainty quantification by the BI process, the construction of
the full posteriori probability is not crucial. Instead, one may be interested only on the
determination of its low-order moments, such as the mean and the variance. These last
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parameters can be estimated by finding the optimal values of θ that minimize the negative
log posterior (known also as the maximum a posteriori MAP):

θMAP = argmin
θ

[−log(p(θ|y ))] (3)

2.2. Hierarchical Bayesian Inference

The BI, as presented previously, allows for quantifying the uncertainty of the model’s
parameters by considering only the epistemic uncertainty in a data set. Following that,
this probabilistic inversion accounts for the uncertainty related to the lack of knowledge
and to measurement errors, while the heterogeneous characteristic of the material model
is ignored.

Recently, different scholars developed the hierarchical BI to take into account the
inherent variability of the input parameters of the material model [21–23]. In addition to
the epistemic uncertainty, the aleatory uncertainty that relates to the spatial variations of
the material properties is considered in this approach. Regarding the experimental data,
they are presented in multiple sets yj (j = 1, 2 . . . , Ns), and each data set yj = {y1, y2, . . . ,yNj}
of the jth experiment describes a realization θj of the random vector θ of input parameters.
Thus, the hierarchical BI consists of quantifying the corresponding unknown statistical
moments (i.e., the mean and standard deviation) χ = {µθ , σθ} of the input parameters θ by
considering these so-called hyperparameters as uncertain random variables.

The extension of the classical BI in this context can be conducted by substituting in
Equation (2) a corresponding joint posterior function:

p(θ, χ|y ) = p(y|θ, χ )p(θ, χ)

p(y)
=

p(y|θ, χ )p(θ|χ)p(χ)
p(y)

(4)

In Equation (4), the joint prior distribution p(θ, χ) is described by the input parameters’ prior
that is conditional on the hyperparameters p(θ|χ) with their own prior distribution p(χ).

The hierarchical BI focuses then on the uncertainty quantification of the hyperparame-
ters χ by integrating out the input parameters θ (which are considered nuisance parameters)
in the marginalized likelihood function [21–23]:

p(θ, χ|y ) = p(y|θ, χ )p(θ, χ)

p(y)
=

p(y|θ, χ )p(θ|χ)p(χ)
p(y)

(5)

where:

p(y|χ ) =
Ns

∏
j=1

p
(
yj|χ

)
(6)

p(yj

∣∣∣∣χ) = ∫
p
(
yj
∣∣θj
)

p
(
θj|χ

)
d θj (7)

p(y) =
∫

p(y|χ)p(χ)dχ (8)

The calculation of the evidence p(yj|χ) for each data set yj conditional on the hy-
perparameters χ in Equation (7) presents an important step in the hierarchical BI and
different methods have been developed in the literature. For example, Sedehi et al. [21]
used the Laplace asymptotic approximation in the integral (Equation (7)), while Nagel and
Sudret [22] proposed some advanced MCMC techniques. In their work, Wu et al. [23] ap-
proximated the integral by the important sampling method using the proposal distribution
p(θj|yj) to reduce the computational cost:

p
(
yj|χ

)
≈ 1

Mj

Mj

∑
k=1

p
(

yj

∣∣∣θ(k)j

)
p
(

θ
(k)
j |χ

)
p
(

θ
(k)
j

∣∣yj

) =
p
(
yj
)

Mj

Mj

∑
k=1

p
(

θ
(k)
j |χ

)
p
(

θ
(k)
j

) (9)
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In Equation (9), the samples
{

θ
(k)
j

∣∣k = 1, . . . , Mj

}
are drawn from the posterior distri-

bution p(θj|yj) of each data set. Thus, as the main advantage, this hierarchical BI comes
as a postprocessing of the results of the classical BI conducted for each data set, through
which the likelihood p(y|χ) can be estimated as:

p(y|χ ) ≈
Ns

∏
j=1

 p
(
yj
)

Mj

Mj

∑
k=1

p
(

θ
(k)
j |χ

)
p
(

θ
(k)
j

)
 (10)

In this work, this hierarchical BI was chosen and implemented in the well-known
Matlab toolbox UQLab [24]. In this process, the classical BI that is based on the sequential
sampling MCMC, using the adaptive Metropolis algorithm, was chosen to solve the inverse
problem of each data set. In addition, to reduce the computational cost of the numerical
simulation, the well-known Kriging metamodeling technique (see [12,13,16,17] for details)
was also used to approximate the structure response. More precisely, the Kriging meta-
model was constructed from the results of the numerical simulation of 240 samples of
the Design of Experiment (DoE) generated by the Latin Hypercube Sampling technique
to approximate the tunnel convergence. The postprocessing step was then conducted
by moving the posterior samples of each classical BI problem up the likelihood function
(Equation (10)) of the hierarchical BI.

3. Numerical Applications Using Synthetic Data

BI has been largely used to identify parameters and their associated uncertainty of the
time-independent behavior, such as the elastic or elastoplastic behavior of materials [19,25,26].
Its application to quantify the uncertainty of the creep behavior is not much discussed
in the literature. For instance, in [27], the authors investigated the capability of BI to
identify the uncertainty of the viscoelastic parameters, in which the synthetic data of
different experiments (e.g., relaxation and creep experiments, constant strain rate test) are
artificially created. The efficiency of the classical BI was discussed, and the higher accuracy
of identified values could be improved by increasing the number of measurements.

In this work, the applicability of BI was investigated to quantify the uncertainty of
creep rock behavior using the results of in-situ tunnel convergence measurements. For this
aim, we firstly used the synthetic data of tunnel convergence, which were artificially created
by using the analytical solution of a deep tunnel drilled in an elasto-viscoplastic rock under
a hydrostatic stress P0 (Figure 1a). This solution was recently presented in [28], in which
the time-dependent behavior of creep rock was characterized by the fractional derivative
viscoplastic (FDVP) model. This constitutive model was established from the connection in
a series of different components: the fractional-order Maxwell element, the Klevin element,
and the Mohr-Coulomb plastic slider. For the sake of simplicity, in this work, we used
the simpler FDVP, in which only the fractional-order Maxwell was connected in a series
with the Mohr-Coulomb plastic slider (see Figure 1a). In comparison with the contribution
in [28], the number of parameters used to characterize the elasto-viscoplastic behavior
of rock was lower, being represented by the spring GM, the fractional-order derivation
dashpot ηM and fractional-order coefficient β of Maxwell element, as well as the three
well-known parameters of the Mohr-Coulomb model (i.e., the cohesion C, the friction angle
ϕ, and the dilation angle ψ).



Sustainability 2022, 14, 8465 6 of 17Sustainability 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

 
 

(a) (b) 

Figure 1. (a) Circular tunnel in the FDVP rock; (b) calculated convergence on the surface of tunnel 
without and with additive noise. 

While the derivation of this analytical solution was detailed in [28], we capitulated 
as follows the explicit expression of convergence uevp on the surface tunnel: 𝑢௘௩௣𝑅 = 𝐹ଵ2(𝑁ఝ + 𝑁ట)ቆ 1𝐺ெ + 𝑡ఉ𝜂ெ. 𝛤(1 + 𝛽)ቇ + 𝐹ଶ ൬𝑅௣𝑅 ൰ேഗାଵ (11)

where: 𝐹ଵ = ൫1 − 𝑁ట൯ ൤൫1 − 𝑁ఝ൯(1 − 𝜆)𝑃଴ − 2𝐶ට𝑁ఝ൨ (12)

𝐹ଶ = 12 ቈ𝜆௘𝑃଴ − 𝐹ଵ𝑁ఝ + 𝑁ట ൬𝑅௣𝑅 ൰ேകିଵ቉ ቆ 1𝐺ெ + 𝑡ఉ𝜂ெ. 𝛤(1 + 𝛽)ቇ (13)

𝑅௣ = 𝑅 ቈ 2𝑁ఝ + 1 ൫𝑁ఝ − 1൯𝑃଴ + 2𝐶ඥ𝑁ఝ(1 − 𝜆)൫𝑁ఝ − 1൯𝑃଴ + 2𝐶ඥ𝑁ఝ቉ேകିଵ (14)

𝜆௘ = 1𝑁ఝ + 1ቆ𝑁ఝ − 1 + 2𝐶ඥ𝑁ఝ𝑃଴ ቇ (15)

𝑁ఝ = 1 + 𝑠𝑖𝑛(𝜑)1 − 𝑠𝑖𝑛(𝜑) , 𝑁ట = 1 + 𝑠𝑖𝑛(𝜓)1 − 𝑠𝑖𝑛(𝜓) (16)

In Equations (11) to (16), the parameters R and λ are the radius of the circular tunnel 
and the deconfinement ratio, while Γ(β) is the well-known gamma function, with respect 
to the fractional-order coefficient β. 

The chosen values of the input parameters to calculate the tunnel convergence using 
Equation (11) are summarized in Table 1. The additive noise characterized by a normal 
distribution with a zero mean and a standard deviation of σn = 1(mm) was generated in 
the convergence of the tunnel to create the synthetic data for the uncertainty quantification 
(Figure 1b). Totally, a data set with 50 values of tunnel convergence were artificially gen-
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While the derivation of this analytical solution was detailed in [28], we capitulated as
follows the explicit expression of convergence uevp on the surface tunnel:

uevp

R
=

F1

2
(

Nϕ + Nψ

)( 1
GM

+
tβ

ηM·Γ(1 + β)

)
+ F2

(
Rp

R

)Nψ+1
(11)

where:
F1 =

(
1− Nψ

)[(
1− Nϕ

)
(1− λ)P0 − 2C

√
Nϕ

]
(12)

F2 =
1
2

[
λeP0 −

F1

Nϕ + Nψ

(
Rp

R

)Nϕ−1
](

1
GM

+
tβ

ηM·Γ(1 + β)

)
(13)

Rp = R

[
2

Nϕ + 1

(
Nϕ − 1

)
P0 + 2C

√
Nϕ

(1− λ)
(

Nϕ − 1
)

P0 + 2C
√

Nϕ

]Nϕ−1

(14)

λe =
1

Nϕ + 1

(
Nϕ − 1 +

2C
√

Nϕ

P0

)
(15)

Nϕ = 1+sin(ϕ)
1−sin(ϕ)

, Nψ = 1+sin(ψ)
1−sin(ψ) (16)

In Equations (11) to (16), the parameters R and λ are the radius of the circular tunnel
and the deconfinement ratio, while Γ(β) is the well-known gamma function, with respect
to the fractional-order coefficient β.

The chosen values of the input parameters to calculate the tunnel convergence using
Equation (11) are summarized in Table 1. The additive noise characterized by a normal
distribution with a zero mean and a standard deviation of σn = 1 (mm) was generated in
the convergence of the tunnel to create the synthetic data for the uncertainty quantification
(Figure 1b). Totally, a data set with 50 values of tunnel convergence were artificially
generated in the range of 2500 days.

Table 1. Chosen parameters for the calculation of synthetic data.

GM
(GPa)

ηM
(GPa.year)

C
(MPa)

ϕ
(◦)

ψ
(◦) β

P0
(MPa)

R
(m) λ

1.73 3.06 6 20 0 0.35 12.5 2.6 1
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Using the synthetic data, the classical BI was conducted to identify the time-dependent
behavior parameters characterized by the two parameters ηM and β, while the other me-
chanical properties representing the short-term behavior of rock mass (i.e., the elastoplastic
parameters GM, C, ϕ, ψ) were assumed known and constants.

As an example, the results of the prior and posterior distributions, as well as the
posterior predictions issues from the BI, are presented in Figure 2. More precisely, the
BI was conducted by using the best-fit parameters ηM = 3.09 (GPa.year) and β = 0.32
obtained from the deterministic calibration as the mean values of the prior distribution. By
assuming the Gaussian function of the prior distribution, their chosen standard deviations
were calculated from a chosen value of coefficient of variation COV = 30%. The obtained
results show that the mean values of the posterior distribution of these two parameters were,
respectively, ηM = 3.08(GPa.year) and β = 0.35, with the standard deviations 0.102(GPa.year)
and 0.02.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

Table 1. Chosen parameters for the calculation of synthetic data. 

GM 
(GPa) 

ηM  
(GPa.year) 

C  
(MPa) 

ϕ 
(°) 

ψ 
(°) β 

P0 
(MPa) 

R 
(m) λ 

1.73 3.06 6 20 0 0.35 12.5 2.6 1 

Using the synthetic data, the classical BI was conducted to identify the time-depend-
ent behavior parameters characterized by the two parameters ηM and β, while the other 
mechanical properties representing the short-term behavior of rock mass (i.e., the elasto-
plastic parameters GM, C, ϕ, ψ) were assumed known and constants. 

As an example, the results of the prior and posterior distributions, as well as the pos-
terior predictions issues from the BI, are presented in Figure 2. More precisely, the BI was 
conducted by using the best-fit parameters ηM = 3.09(GPa.year) and β = 0.32 obtained from 
the deterministic calibration as the mean values of the prior distribution. By assuming the 
Gaussian function of the prior distribution, their chosen standard deviations were calcu-
lated from a chosen value of coefficient of variation COV = 30%. The obtained results show 
that the mean values of the posterior distribution of these two parameters were, respec-
tively, ηM = 3.08(GPa.year) and β = 0.35, with the standard deviations 0.102(GPa.year) and 
0.02. 

  

(a) (b) 

 
(c) 

Figure 2. Results of the classical BI using the synthetic data of tunnel convergence in creep rock:
(a) prior distribution; (b) posterior distribution of the time-dependent behavior parameters (ηM, β) of
the FDVP model; (c) the posterior predictions.

The effect of prior distribution on the results of BI was then investigated. Different
prior mean values of ηM and β were considered. This effect is highlighted in Figure 3,



Sustainability 2022, 14, 8465 8 of 17

in which the evolution of mean values of the posterior distribution of ηM and β were
plotted as functions of their chosen prior mean values. As expected, the accuracy of the
results provided by the classical BI would improve when the prior values approach the
exact parameters. We can state from this investigation that the results of the deterministic
inversion can provide an appropriate choice for the mean values of the prior distribution of
the BI.
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The influence of the additive noise magnitude was then found by changing its standard
deviation values σn on the results of the identified parameters. As illustrated in Figure 4,
the mean values of the posterior distribution of the two parameters ηM and β matched
well with their exact values when the additive noise was small. The higher magnitude of
noise reduced the correctness of the identified parameters. More precisely, the difference
between the posterior mean values and the exact parameters was more pronounced, and
their corresponding standard deviations of the posterior functions were also higher when
the additive noise magnitude was more important.
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The synthetic data generated by adding the random noise of Gaussian distribution
with a mean of zero in the deterministic results of tunnel convergence presented, in effect,
the ideal case of the homogeneous behavior of rock. This additive noise, known as the
epistemic uncertainty, represents the lack of knowledge caused by measurement errors or a
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small number of measurements. However, the rock formation is usually heterogeneous
in nature, and the inherent randomness of rock properties contribute another source of
uncertainty to the so-called aleatoric uncertainty.

In what it follows, both the additive noise (with σn = 1 mm) and aleatoric uncertainty
were taken in the synthetic data of tunnel convergence. For the generation of this latter
uncertainty, the two parameters (ηM and β) of the FDVP rock were assumed to be random,
whose distributions are Gaussian, and the mean values are equal to the ones in Table 1
(i.e., µηM = 3.06 (GPa.year) and µβ = 0.35). The variability of each parameter was character-
ized by a coefficient of variation (COV). For the sake of simplicity, the same COV = 15%
was supposed for these two input parameters (i.e., their corresponding standard deviations
were σηM = 0.46(GPa.year) and σβ = 0.053). As an example, Figure 5 presents ten synthetic
data sets of convergence determined at ten sections along the tunnel axis, using both
aleatoric uncertainty and additive noise.
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Figure 5. Synthetic data of tunnel convergence using: (a) aleatoric uncertainty; (b) both aleatoric and
epistemic uncertainty.

The hierarchical BI technique, as described in the previous section, can be used now to
solve this stochastic inversion problem. Following that, for each data set, the deterministic
inversion was carried out to calibrate the two input parameters that were then chosen as
the mean values of the prior distribution. The postprocessing by drawing samples from the
posterior distribution obtained from the results of the classical BI conducted on each data
set was undertaken to simulate the likelihood function, as defined in Equation (10).

Figure 6 illustrates the results of the hierarchical BI using different numbers of syn-
thetic data sets (Ns = 5, 10, 20, 50). Following that, the posterior distributions of the
hyperparameters (i.e., the mean and standard deviation of the two parameters ηM and β)
presented a quite similar tendency. When increasing the number of data sets, the point
estimates by hierarchical BI approached the true values of the mean and standard deviation
of each parameter of the FDVP rock. Their correspondingly-estimated uncertainty also
decreased, as expected, using the higher number sets of convergence.
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The results provided by the hierarchical BI were then compared with the ones calcu-
lated from the classical BI using different numbers of data sets. Note that, in this latter
inversion process, the aleatoric uncertainty was no longer accounted for, but instead it was
considered as another source that increases the epistemic uncertainty. Figure 7 captures
the results of both methods. While the mean values of the two parameters ηM and β of
FDVP rock can be determined quite well by the classical BI, their corresponding standard
deviations were very far from the exact values and from the mean of posterior distribution
evaluated by hierarchical BI. Consequently, as summarized in Table 2, the distribution of
the two parameters ηM and β ranging from the minimum to the maximum values (which
correspond to the lower and upper quantiles of 2.5% and 97.5%) were very different with
respect to the exact results and the ones of the hierarchical BI.
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Table 2. Minimum and maximum values (corresponding to lower quantile 2.5% and upper quantile
97.5%) of FDVP parameters using classical and hierarchical BI.

Method
ηM (GPa.year) β

Min Max Min Max

Exact 2.16 3.96 0.25 0.45
Classical BI (Ns = 10) 3.34 3.50 0.35 0.39
Classical BI (Ns = 50) 3.28 3.37 0.38 0.41

Hierarchical BI (Ns = 10) 0.95 5.56 0.25 0.46
Hierarchical BI (Ns = 50) 1.45 4.80 0.16 0.53

4. Uncertainty of Time-Dependent Behavior of COx Claystone

The capability of the BI to quantify the uncertainty of the time-dependent behavior of
creep rock was discussed in the previous part using synthetic data. More specifically, the
efficiency of the BI was demonstrated when both the epistemic and aleatoric uncertainties
could be accounted for. The BI was then applied in this section to quantify the uncertainty
of viscoplastic properties of COx claystone using the real data of convergence of drifts
in URL.

4.1. Description of the Numerical Model

It was observed that the excavation of drift in the COx claystone induced a fractured
zone [2,3]. Specifically, for drifts parallel to the major horizontal stress σH, a dissymmet-
rical shape of the fractured zone was observed despite the quasi-isotropic stress state
(σv ≈ σh ≈ 12.5 MPa) in the drift section [2,3]. The fracture zone was more developed
in the horizontal direction, with an extension to about 1 time the diameter of the drift
(Figure 8a). The convergence measurements also highlighted a higher convergence about
two times in the horizontal direction, but the evolution in time of both the horizontal and
vertical convergence seemed similar (Figure 8b) [2].
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drifts excavated following the direction of major horizontal stress [1].

To reproduce the observed phenomenon of the anisotropic convergence of drift, in
this work, we adopted the simplified approach proposed in [10,11]. Following that, in
the 2D plane strain model of the drift of 5.2 m of diameter, the dissymmetrical shape of
the fractured zone was imposed (Figure 9a). More precisely, this fractured zone had an
elliptical form extended around the drift to about 1 and 0.125 times the diameter, following
the correspondingly horizontal and vertical direction. The symmetric conditions allowed
us to model only one quarter of the section of drift. The normal stress that equals to the
isotropic initial stress of 12.5MPa was imposed on the top and right boundaries found at
26 m with respect to the center of drift (i.e., about ten times the radius of the drift). At the
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other boundaries (i.e., on the left and bottom boundaries) the displacement was fixed in
the normal direction.
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Figure 9. (a) Geometrical model with the elliptical fractured zone around the drift; (b) elastic-perfectly
plastic Mohr Coulomb model of intact and fractured rocks.

The Mohr-Coulomb criterion was adopted to describe the instantaneous behavior
of COx claystone. While the elastic properties were similar in the whole medium, the
plastic properties of the intact rock and fractured zone that correspond to the peak and
residual plastic parameters of the uniaxial compression stress-strain curve were different
(Figure 9b). It was also assumed that both fractured and intact rock had the same time-
dependent behavior that was characterized by the well-known viscoplastic Lemaitre model
(see [12] for more details of this model). Thus, following the adopted approach, the cou-
pled elastoplastic-viscoplastic model (characterized by the corresponding Mohr-Coulomb
criterion and Lemaitre model) was considered in this study, while the predefined dissym-
metrical shape of the fractured zone was the principal source to describe the anisotropy
of drift’s convergence. Totally, ten parameters were used in this model, which consist of:
two elastic parameters (Young’s modulus E and Poisson’s ratio ν), three parameters of the
plastic Mohr-Coulomb criterion of intact rock (Ci, ϕi, ψi) and of the fractured zone (Cf, ϕf,
ψf), and three parameters of the viscoplastic Lemaitre model (K, n, m).

As an illustration purpose, Figure 10 highlights the evolution in time of horizontal and
vertical convergences calculated correspondingly at the springline and crown of drift. These
results were provided from the deterministic simulation, using the finite element Code_Aster
with input parameters summarized in Table 3. While the elastoplastic parameters taken
were similar to those in [11], the viscoplastic parameters of the Lemaitre model were taken
from the deterministic calibration of convergence data captured at a section of the drift. The
anisotropic convergence was well observed by the numerical simulation, which confirmed
the capability of the simplified method by considering, explicitly, the dissymmetric shape
of the fractured zone.
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Table 3. Elasto-plastic properties of COx claystone.

E
(GPa) υ

Ci
(MPa)

ϕi
(◦)

ψi
(◦)

Cf
(MPa)

ϕf
(◦)

ψf
(◦)

6.6 0.3 6 20 0 1 25 5

4.2. Results of the Bayesian Inversion and Discussions

To simplify the inversion procedure, herein, we considered the deterministic elasto-
plastic parameters that characterize the instantaneous behavior of the intact and fractured
rocks to be known. Thus, the BI was conducted to quantify only the uncertainty of three
random variables of the viscoplastic Lemaitre model, which described the time-dependent
behavior of COx claystone. For this purpose, the horizontal and vertical convergences mea-
sured at six sections of drift, as shown in Figure 8b, were used throughout the BI process.

Both the classical and hierarchical BI were considered in the stochastic inversion to
determine the mean and standard deviation of the viscoplastic Lemaitre parameters. More
precisely, in the former BI technique, by ignoring the heterogeneous characteristic (i.e., the
aleatoric uncertainty) of the COx viscoplastic properties, whole convergence data measured
at six sections were used. Regarding the hierarchical BI, the classical BI was carried out to
determine the mean and standard deviation of the viscoplastic Lemaitre parameter of each
section of drift (Figure 11). Note that, in the classical BI, the results of the deterministic
calibration process were chosen as the mean values of the prior distribution of these random
parameters. Then, based on the postprocessing of the results obtained from these classical
BI, we quantified, in the hierarchical BI process, the uncertainty of the hyperparameters
(i.e., mean and standard deviation) of the Lemaitre parameters.
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Table 4 summarizes the results of the classical BI conducted using data of each section and
of six sections of drift at the same time. Figure 12 presents the results of the mean and standard
deviation of the viscoplastic Lemaitre parameters of the COx provided by the classical and
hierarchical BI. The comparison of the two BI process showed an important difference of
the obtained standard deviation of each viscoplastic parameter. The deterministic results
calculated by the classical BI method were much higher than the mean value of the posterior
distribution provided by the hierarchical BI. Regarding the corresponding mean value of each
Lemaitre parameters, we stated that the difference was moderate.

Table 4. Mean and standard deviation (Std) of viscoplastic properties of COx claystone at different
sections using the classical BI.

Section
n 1/m 1/K (GPa−1)

Mean Std Mean Std Mean Std

OHZ170B 9.22 1.78 0.26 0.040 8.25 1.95
OHZ170C 8.97 1.72 0.25 0.039 7.19 1.79
OHZ170D 8.94 1.69 0.24 0.038 7.15 1.78
OHZ170E 8.92 1.70 0.25 0.038 7.35 1.83
OHZ170F 8.48 1.55 0.23 0.035 7.07 1.78
OHZ170G 8.95 1.63 0.25 0.037 7.49 1.88

Six sections 8.66 1.82 0.23 0.041 8.36 2.16
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ministic results calculated by the classical BI method were much higher than the mean 
value of the posterior distribution provided by the hierarchical BI. Regarding the corre-
sponding mean value of each Lemaitre parameters, we stated that the difference was mod-
erate. 
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To improve the results of the hierarchical BI, we proposed to increase the number
of data sets for this inversion process. To this end, the horizontal convergence curve of
one section can be gathered with the vertical convergence curve of another section. Thus,
thirty-six convergence data sets (Ns = 36) can be generated for the hierarchical BI instead
of six initial data sets (Ns = 6). As observed in Figure 12, the increase of the number of
data sets reduced the uncertainty of the hyperparameters of the viscoplastic COx claystone,
notably their mean values represented by a narrower posterior distribution. Finally, in
Table 5, we summarized the ranging values evaluated at the 2.5% and 97.5% quantiles of
the viscoplastic properties of host rock that were calculated from the two BI methods. The
range of each parameter was reduced as expected by increasing the number of data sets.

Table 5. Minimum and maximum values (corresponding to the lower quantile 2.5% and the upper
quantile 97.5%) of viscoplastic Lemaitre parameters using classical and hierarchical BI.

Method
n 1/m 1/K (GPa−1)

Min Max Min Max Min Max

Classical BI 5.09 12.24 0.15 0.31 4.12 12.60
Hierarchical BI (Ns = 6) 3.91 13.74 0.10 0.40 2.68 12.17

Hierarchical BI (Ns = 36) 8.07 10.42 0.18 0.26 5.63 9.39

For the sake of clarity, the uncertainty quantification of the time-dependent behavior
of COx claystone conducted in this work was based on different hypotheses. Firstly, the
observed anisotropy of drift convergence was only reproduced in the simplified manner
by imposing ad hoc an elliptical fracture zone around the drift. Secondly, the constant
elastoplastic parameters of COx claystone were adopted in this study. These parameters
played an important role in the distribution of the stress state in the host rock around
the drift, and they could potentially affect the result of the probabilistic inversion of the
Lemaitre viscoplastic properties. One can expect an improvement of this BI inversion by
considering the short-term mechanical properties (e.g., the Young’s modulus and Mohr
Coulomb parameters of both intact and fractured rocks), being also random variables
whose uncertainties must be quantified. In the other future work, the uncertainty of the
time-dependent behavior of the host rock can be reconsidered, in which we use a more
rigorous elasto-viscoplastic model of COx claystone that can reproduce accurately the
anisotropic phenomenon of in-situ convergence measurements.

It is worth to note that, as an important contribution of this work, the effectiveness
and the applicability of the BI to quantify both the epistemic and aleatoric uncertainty
of creep rock were investigated. While most studies in the literature focus on the time-
independent behavior of underground structures or are limited to time-dependent behavior
by using the synthetic data of laboratory creep tests, the present study accounted for
the in-situ convergence measurements in the inversion procedure. The structure effect
made this considered problem more complex, so that the combination of the BI with the
numerical simulation and metamodeling technique became a necessity. The efficiency of
this combination was well demonstrated in this study, in which both the classical and
hierarchical BI were considered. This process provided an interesting and useful tool that
can be applied in different sites with different geological conditions.

5. Conclusions

In this work, the uncertainty quantification of the time-dependent behavior of COx
claystone by BI was conducted using the real data of drift convergence. The process was
firstly undertaken using the synthetic data that were generated from the analytical solution
of the circular tunnel constructed in the fractional derivative viscoplastic rock. Gaussian
additive noises with zero mean were artificially added in these synthetic data to represent
the epistemic uncertainty related to the measurement error. The effects of the chosen prior
distribution and magnitude of additive noise on the results provided by the classical BI
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were highlighted. Particularly, the efficiency of the hierarchical BI was also demonstrated
to solve the inverse problem, in which the aleatoric uncertainty was involved. The BI was
then applied to quantify the uncertainty of the viscoplastic properties of COx claystone.
To this end, real data of in-situ convergence measurements of the deep drift excavated in
the major horizontal stress were considered. To simulate the complex time-dependent and
anisotropic convergence of drift as observed in situ, we adopted the simplified approach to
solve the deterministic problem. Following that, the combined elastoplastic-viscoplastic
model using the Mohr Coulomb and Lemaitre models were chosen to characterize the
instantaneous and time-dependent behavior of the host rock. Then, in the geometrical
model, the same dissymmetric fractured zone, induced by excavation, was imposed. While
the intact and fractured rocks had the same elastic and viscoplastic properties, their plastic
properties were different. The uncertainty of the viscoplastic parameters of COx claystone
quantified by hierarchical BI were provided, and the results can be improved when the
number of data sets increases.
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