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Abstract: The development of metro systems can be a good solution to many problems in urban
transport and promote sustainable urban development. A metro system plays an important role
in urban public transit, and the passenger-flow forecasting is fundamental to assisting operators in
establishing an intelligent transport system (ITS). In order to accurately predict the passenger flow of
urban metros in different periods and provide a scientific basis for schedule planning, a short-term
metro passenger-flow prediction model is constructed by integrating ensemble empirical mode
decomposition (EEMD) and long short-term memory neural network (LSTM) to solve the problem
that the existing empirical mode decomposition (EMD) is prone to modal aliasing. According to the
processed metro-card data, the time series of historical OD data of metro passenger flow is obtained.
After EEMD modal decomposition, several intrinsic mode functions sub-items and residual items
are obtained. Then, an LSTM network is constructed for prediction. The time step of the network
is decided according to the partial autocorrelation functions. The prediction results of intrinsic
mode function (IMF) and residual items are integrated to obtain prediction results. The station is
classified according to the land types around the station, and the model is tested by using the metro
automatic fare collection (AFC) data. In order to test the actual prediction, a different number of
training set samples are selected to predict. The measured data of the next day is continuously
added to the original training set to compare the prediction accuracy. The results show that the mean
absolute percentage error (MAPE) and root mean square error (RMSE) of the EEMD-LSTM model
are better than the EMD-LSTM in predicting the OD value of commercial–residential stations and
scenic–residential stations. Compared with the EMD-LSTM model, the EEMD-LSTM model showed
an average reduction by 3.112% in MAPE values and 15.889 in RMSE, indicating that the EEMD-
LSTM has higher prediction accuracy, and EEMD-LSTM model has higher accuracy in short-term
metro passenger-flow prediction. The average MAPE for the 35-to-42-day historical data sample
decreased from 13.02% to 10.39% with a decreasing trend. It shows that the prediction accuracy keeps
improving as the training set samples increase.

Keywords: traffic engineering; passenger-flow prediction; ensemble empirical mode decomposition;
long short-term memory neural network; deep learning

1. Introduction
1.1. Background

In recent years, with the rapid development of urban society and economy, and the
increasing travel demand of residents, urban traffic congestion has become increasingly
prominent. The urban metro system boasts the advantages of a large capacity, fast speed,
comfort and safety, and is not affected by ground traffic, which effectively alleviates traffic
congestion. However, as an increasing number of passengers choose to travel by metro,
there are rising concerns about the operation efficiency and safety of the metro system, such
as the mismatch between the capacity and demand in peak hours, the delayed evacuation
of passengers gathered on the platform, and the frequent occurrence of congestion and

Sustainability 2022, 14, 8562. https://doi.org/10.3390/su14148562 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148562
https://doi.org/10.3390/su14148562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su14148562
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148562?type=check_update&version=1


Sustainability 2022, 14, 8562 2 of 14

even stampede accidents. Therefore, it is necessary to carry out in-depth research into
high-precision prediction methods of short-term metro passenger flow, so as to provide a
data basis for metro operation organization and management departments to formulate
reasonable train operation plans. LSTM models are widely used in the field of traffic
prediction. This is because the spatial and temporal distribution characteristics of metro
passenger flow are becoming more and more complex. When the passenger flow fluctuates
randomly, the prediction accuracy of the traditional model is often greatly affected. The
prediction error of LSTM models can be very large, so combining with other methods will
give better results. The EMD algorithm is the basic algorithm, and the EEMD algorithm
is the improved algorithm. The EEMD algorithm is an effective method for analyzing
and processing nonlinear non-stationary signals. The EEMD algorithm can effectively
eliminate the interference noise in the signal and ensure the accuracy of prediction. In order
to effectively process complex signals and reduce noise interference, a short-term metro
passenger-flow prediction model is constructed by integrating ensemble empirical mode
decomposition and a long short-term memory neural network to solve the problem that
the existing empirical mode decomposition is prone to modal aliasing. The EEMD-LSTM
model not only solves the mode mix problem of the EMD-LSTM model, but also improves
the model prediction accuracy.

1.2. Purpose and Significance

In light of such a research background, it is necessary to achieve accurate OD point-
to-point passenger-flow prediction between metro stations. With the development of
intelligent transport devices such as AFC systems, real-time data such as the starting
stations and destinations of passengers and their travel times can be quickly obtained
and passenger-flow patterns can be quickly analyzed, making it possible to use intelligent
technologies such as AFC data for OD demand forecasting [1]. According to existing
research, the combined model of EEMD and LSTM can solve modal mixing and improve
model prediction accuracy. Validated with the OD passenger-flow data of metro stations,
the research shows that dynamic prediction, where the size of the training set continues
to increase, has higher prediction accuracy than static prediction, where the size of the
training set never changes. The research results have important practical significance for
improving the prediction accuracy of OD passenger flow in short-term metro stations and
reducing safety hazards such as metro station congestion. Accurate short-term forecast
of metro passenger flow can reflect the travel needs of passengers on the metro network
in the future, and passengers can obtain real-time and effective travel information, which
helps them to choose premium travel routes and improve travel efficiency. It can provide
effective information for relevant departments and operating organizations, and be used to
make plans for a large number of passenger flows during peak hours. In case of emergency,
it can serve as a basis for relevant departments to quickly formulate emergency plans, so as
to efficiently evacuate passengers, which can not only ensure the safety of passengers, but
also save operating costs and maintain the well-ordered operation of the metro.

2. Literature Review

At present, the methods of short-term passenger-flow prediction can be classified into
two categories: the parametric model and non-parametric model. The former assumes that
the passenger flow follows a certain probability distribution, and uses historical data to
calibrate the model. The representative methods include the autoregressive differential
average model [2,3], Kalman filter [4], and grey model [5]. Since the establishment of
parametric models depends more on the a-priori knowledge of the research problem, it has
a certain subjectivity. The latter makes no assumption on the probability distribution of
passenger flow, and directly uses historical data to predict, which is more objective than
the former, yet not conducive to being promoted. For example, Sun et al. [6] designed
the wavelet-support vector machine (SVM) hybrid model, used the wavelet technology to
decompose the passenger-flow data in high and low frequency, and then used the SVM
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model to predict. Li et al. [7] proposed a multi-scale radial basis function network prediction
method with sudden passenger flow as the research object. Zhang et al. [8] proposed a
Conv-GCN deep-learning model for short-term passenger-flow prediction of urban rail
transit by combining a graph convolution network and three-dimensional convolution
neural network. In addition, the probability tree [9] and the decision tree [10] are also used
in short-term metro passenger-flow forecasting.

With the development of big data, some scholars began to try to apply neural net-
works [11,12] to short-term passenger-flow forecasting, including long-term and short-
term memory neural network [13,14], fully connected deep neural network [15], stack
autoencoder [16], and deep belief network [17]. Among them, long short-term memory
neural network (LSTM) prediction has attracted much attention due to its high accuracy.
Li et al. [18] proposed an algorithm based on a back propagation long short-term memory
algorithm, which can predict the speed of each vehicle on the road. Zhang et al. [19] used
LSTM to predict short-term passenger flow through clustering to capture the characteris-
tics and trends of passenger flow, and evaluated the reasonable time granularity interval.
Li et al. [20] proposed a prediction model that combines inbound passenger flow charac-
teristics with LSTM by extracting the characteristics affecting the accuracy of prediction.
Some scholars improved the LSTM neural network. For example, Yang et al. [21] proposed
an improved model based on the LSTM neural network, which improved the long-term
correlation characteristics in passenger-flow data; Jia et al. [22] combined long short-term
memory neural networks with stacked automatic encoders, and predicted the short-term
passenger flow of metro stations. In order to effectively deal with complex signals and
reduce noise interference, scholars combined empirical mode decomposition (EMD) with
other models. Wei et al. [23] used an EMD and BP neural network combination model
to predict short-term metro passenger flow, and the prediction accuracy was better than
using a BP neural network alone; Wang et al. [24] used EMD and ARIMA to predict vehicle
speed, and the prediction accuracy was better than ARIMA and ANN prediction methods
in different scenarios.

Although domestic and foreign scholars have carried out a series of research on
short-term metro passenger-flow prediction, the spatial and temporal distribution char-
acteristics of metro passenger flow are becoming more and more complex. When the
passenger flow fluctuates randomly, the prediction accuracy of the traditional model is
often greatly affected.

According to the existing research, since the OD time series between subway stations
is affected by the time and location of the entry or exit, it often exhibits nonlinearity and
non-stationarity. If the basic data is directly input into the LSTM neural network, its own
noise will interfere with the model to identify the spatial–temporal relationship between
input and output passenger flow, resulting in reduced model prediction accuracy. Therefore,
it is necessary to preprocess the time series before using neural network forecasting. Mixed
modes refer to the inclusion of very different characteristic time scales in one IMF, or the
distribution of similar characteristic time scales in different IMFs. This phenomenon is
caused by the multiple jumps of the local extrema in a very short time interval in the process
of empirical mode decomposition. Basically, the data is mixed with noise or discontinuous
signals that we do not know about. For this problem, this paper proposes the ensemble
empirical mode decomposition (EEMD) method to avoid mode mixing by stacking different
Gaussian white noises with equal amplitude, and combines the advantages of long-term
and short-term memory neural network (LSTM) in memory and forgetting. The EEMD-
LSTM combination model is applied to the short-term passenger-flow prediction of a metro
to ensure the accuracy of short-term prediction. Taking into account of the shortcomings of
existing research, this paper makes two contributions as follows:

1. In view of the fact that the EMD method is prone to modal aliasing, EEMD can avoid
modal aliasing by stacking different Gaussian white noise with equal amplitude.
With the advantages of the memory and forgetting of LSTM, the combination model
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is applied to the field of metro short-term passenger-flow prediction to ensure the
accuracy of short-term prediction.

2. The accuracy of EEMD-LSTM prediction in practical application is further explored.
By changing the scale of the training set to achieve the effect of dynamic prediction,
the feasibility of the model in practice is verified by comparing the static prediction
results of dynamic prediction without changing the training set.

3. Methodology
3.1. Data Sources

Dalian Metro Line 1 and Line 2 basically covers the administrative center, the trans-
portation hub, commercial area, universities and tourist attractions of Dalian. The AFC
data of 42 stations of Dalian Metro Line 1 and Line 2 was selected for 91 days from 1 April
to 30 June 2020. The missing value and abnormal value were processed to obtain the OD
distribution among stations. The OD value among stations on 29 May is shown in Figure 1.
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Figure 1. OD desire line of station.

The POI data of various metro stations and surrounding facilities are obtained from the
Open Street map website. The K-Means clustering algorithm is easy to understand, operate
and can be used in many fields. The algorithm is used as an unsupervised classification;
it can effectively mine the internal features in a dataset [25]. According to the proportion
of land use types within 500 m of the station, these stations are divided into residential
stations, commercial stations, the hub station, scenic stations and the university stations by
K-means cluster analysis in SPSS. The classification results are shown in Figure 2.

During the period of research, the passenger flow between commercial–residential
stations is relatively high, while that between scenic–residential stations is relatively low,
which is suitable for testing the prediction accuracy of the model. According to the classifi-
cation results of Figure 2, the historical OD values between the typical commercial station
Xi’an Road Station, the scenic station Xinghai Square Station and the residential station
Malan Square Station were selected as research data, as shown in Figure 3.
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3.2. Ensemble Empirical Mode Decomposition (EEMD)

EMD is a signal-processing method for non-stationary time series, and it believes
that any signals can be decomposed into several simple signals with different periods
and a residual signal. However, EMD method is easy to give rise to modal aliasing, that
is, the signals of the same scale or frequency are divided into multiple eigenfunctions.
Once the IMF experiences aliasing, the IMF is not a single frequency component, and
the accurate instantaneous frequency cannot be obtained. EMMD is a noise-aided data-
analysis method to make up for the shortcomings of EMD method. In EEMD, random
Gaussian white noise sequence is added into the input signal, and the noised signal is
decomposed by EMD. When the number of decompositions reaches the overall average
number, the decomposition stops. When calculating the average number of IMF in the
end, the minimum number of code components in each IMF decomposed by M times of
experiments should be selected. The larger the overall average number of times M is, the
closer the overall average of the random Gaussian white noise added is to zero [26]. In M
times of experiments, the average value of each IMF is shown in Formula (1).

di =

M
∑

m=1
di,m

M
(1)

where, di is the ith IMF obtained by EEMD decomposition; m is the number of times of
experiments; and M is the overall average number of times.

3.3. Long Short-Term Memory Neural Network (LSTM)

LSTM is a memory cell designed on the basis of RNN and can select to memory
important information and filter out the noise information, thereby reducing the memory
burden and maintaining the long-term memory of the neural network, so that the model
can also be well used for long-term sequences. For RNN, since the network layer updates
information without restriction, it will make the information chaotic and easy to disappear
and change, so the problem of gradient disappearance may happen. LSTM network adds
forgetting unit and memory unit in the hidden layer. When there is new information
input, LSTM network will filter out information which will be kept or discarded, and store
important information into long-term memory. LSTM network has a relatively complex
internal structure, conducts information transmission in a selective manner through unique
gating unit and has a circular network structure with more complex neurons. The LSTM
internal structure diagram is shown in Figure 4 [27].

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 
Figure 4. LSTM internal structure diagram. 

3.4. EEMD-LSTM Model 
The OD time series s(t) between metro stations is affected by the time and locations 

of entering or leaving the station, and often exhibits nonlinearity and non-stationarity. If 
s(t) is directly input to the LSTM neural network as the basic data, its own noise will in-
terfere with the spatial–temporal relationship between the input and output passenger 
flow of the model identification, resulting in a decline in the prediction accuracy of the 
model. Therefore, it is necessary to preprocess s(t) before conducting neural network pre-
diction. Through the original AFC data processing, the OD time series s(t) between sta-
tions is obtained. In view of the nonlinear and non-stationary characteristics of s(t) and to 
avoid modal superposition, this paper adopts the ensemble empirical mode decomposi-
tion (EEMD) to decompose s(t), and changes the signal extremum by adding different 
white noises with the same amplitude each time. After many rounds of decomposition, a 
series of intrinsic mode function sub-items (IMFs) are obtained and their overall average 
value is calculated to offset the added white noise, so as to suppress the occurrence of 
modal aliasing. For each IMF sub-item and residual, the corresponding LSTM models are 
trained, respectively. The Adam algorithm was used for model training, and it was deter-
mined through trial-and-error experiments that the number of iterations with the lowest 
average absolute percentage error was 200, the initial learning rate was 0.01, and the learn-
ing rate degradation factor was 0.2. After the LSTM network of each component is trained, 
the prediction results of each component are integrated and superimposed. Given that the 
result at this time is the one obtained by normalizing the data and is distributed in [0, 1], 
the final predicted results are obtained by conducting inverse normalization to the inte-
grated results. Finally, the prediction results of each model are integrated to obtain the 
prediction results of passenger flow. 

The specific steps of prediction are as follows: 
1. The AFC data is pre-processed to obtain the OD time series s(t) between stations. 
2. EEMD method is used to decompose s(t) to obtain n components of intrinsic mode 

function (IMF) and residuals. 
3. The partial autocorrelation function (PACF) is used as an index to calculate the auto-

correlation between the components of each eigenfunction and the residual, and the 
corresponding LSTM time step is determined. 

4. The function components and residuals of the intrinsic model are divided into train-
ing set and test set to predict IMFs and residuals, respectively. 

5. The predicted daily OD passenger-flow data is obtained by integrating the predicted 
intrinsic mode function components and residuals. 

Figure 4. LSTM internal structure diagram.



Sustainability 2022, 14, 8562 7 of 14

3.4. EEMD-LSTM Model

The OD time series s(t) between metro stations is affected by the time and locations
of entering or leaving the station, and often exhibits nonlinearity and non-stationarity.
If s(t) is directly input to the LSTM neural network as the basic data, its own noise will
interfere with the spatial–temporal relationship between the input and output passenger
flow of the model identification, resulting in a decline in the prediction accuracy of the
model. Therefore, it is necessary to preprocess s(t) before conducting neural network
prediction. Through the original AFC data processing, the OD time series s(t) between
stations is obtained. In view of the nonlinear and non-stationary characteristics of s(t) and to
avoid modal superposition, this paper adopts the ensemble empirical mode decomposition
(EEMD) to decompose s(t), and changes the signal extremum by adding different white
noises with the same amplitude each time. After many rounds of decomposition, a series
of intrinsic mode function sub-items (IMFs) are obtained and their overall average value
is calculated to offset the added white noise, so as to suppress the occurrence of modal
aliasing. For each IMF sub-item and residual, the corresponding LSTM models are trained,
respectively. The Adam algorithm was used for model training, and it was determined
through trial-and-error experiments that the number of iterations with the lowest average
absolute percentage error was 200, the initial learning rate was 0.01, and the learning rate
degradation factor was 0.2. After the LSTM network of each component is trained, the
prediction results of each component are integrated and superimposed. Given that the
result at this time is the one obtained by normalizing the data and is distributed in [0, 1], the
final predicted results are obtained by conducting inverse normalization to the integrated
results. Finally, the prediction results of each model are integrated to obtain the prediction
results of passenger flow.

The specific steps of prediction are as follows:

1. The AFC data is pre-processed to obtain the OD time series s(t) between stations.
2. EEMD method is used to decompose s(t) to obtain n components of intrinsic mode

function (IMF) and residuals.
3. The partial autocorrelation function (PACF) is used as an index to calculate the

autocorrelation between the components of each eigenfunction and the residual, and
the corresponding LSTM time step is determined.

4. The function components and residuals of the intrinsic model are divided into training
set and test set to predict IMFs and residuals, respectively.

5. The predicted daily OD passenger-flow data is obtained by integrating the predicted
intrinsic mode function components and residuals.

3.5. Model Building

The OD value from 1 April to 9 June 2020 was selected as the training sample, account-
ing for about 3/4 of the total, and the OD value from 10 June to 30 June 2020 was selected
as the verification sample. MATLAB was employed to construct the historical OD time
series from 1 April to 9 June 2020, and then EEMD decomposition was carried out. The
standard deviation of white noise was set to 0.1, the number of adding noise was set to
10, and the number of integrations was set to 100. For example, in commercial–residential
OD, five IMF subsequences and one residual item were obtained after decomposition. The
decomposition results are shown in Figure 6. The flow chart of the prediction model is
shown in Figure 5.

The lags of IMF and residuals are synchronized with the corresponding LSTM time
step and usually determined by PACF, whose confidence interval was set to 95%. The
decomposition results are shown in Figure 7. It can be seen from Figure 7 that the time
steps of component 1–5 and residual are 3, 5, 7, 7, 7, 6, in turn, and the component 3–5
with low frequency is related to the OD value of the previous 7 days. This is because the
passenger-flow regularity is mostly presented with one week as a cycle.
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When constructing LSTM network, the training data was normalized to have zero
mean and unit variance. The IMF components obtained by EEMD decomposition were
predicted, respectively. In this paper, 20 neurons were set, and the number of neurons in
the output layer is 1. Since only the passenger-flow characteristics in the time dimension
are considered, the input length at each time step is 1. In order to improve the learning
efficiency, Adam optimization algorithm was introduced, and 200 rounds of training were
set. The initial learning rate was 0.01. After 100 rounds of training, the learning rate was
reduced by multiplying factor of 0.2, so as to ensure that the optimal solution was quickly
approached and there was no significant fluctuation.
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4. Model Validation
Results and Analysis of Precision

Mean absolute percentage error (MAPE) reflects the relative deviation between the
observed value and the true value. It can directly measure the quality of the prediction
results and is often used to evaluate the pros and cons of the prediction model, but it cannot
directly reflect the difference between the observed value and the true value. Root mean
square error (RMSE) can directly reflect the absolute difference between the observed value
and the true value, and is very sensitive to large or small errors. It is an effective supplement
to MAPE when comparing the accuracy of the model. Therefore, in this paper, MAPE
and RMSE were used as evaluation indexes of the prediction model. The EMD-LSTM
and EEMD-LSTM were used to predict the intrinsic mode function (IMF) components and
residuals, and the prediction results were integrated to obtain the prediction results—the
OD passenger flow from 10 June to 30 June. The prediction results were compared with the
actual value, as shown in Figure 8. MAPE and RMSE were used to compare the accuracy of
the two models, as shown in Table 1.
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Table 1. Model prediction error comparison.

Commercial–Residential
Station

Residential–Commercial
Station

Scenic–Residential
Station

Residential–Scenery
Station

EMD-LSTM EEMD-LSTM EMD-LSTM EEMD-LSTM EMD-LSTM EEMD-LSTM EMD-LSTM EEMD-LSTM

MAPE 8.434 8.158 22.418 9.082 15.195 15.124 13.375 12.556

RSME 69.557 58.842 138.272 56.070 20.174 20.039 16.749 16.171

Note: mean absolute percentage error (MAPE); root mean square error (RMSE); ensemble empirical mode
decomposition (EEMD); long short-term memory neural network (LSTM).

According to Table 1, compared with the EMD-LSTM model, the EEMD-LSTM model
showed an average reduction of 3.112% in MAPE values and 15.889 in RMSE, indicating
that the EEMD-LSTM has higher prediction accuracy. The MAPE and RMSE values of
EEMD-LSTM are lower than EMD-LSTM in predicting the OD traffic between commercial–
residential and scenic–residential types, indicating that EEMD-LSTM has higher accuracy.
Modal aliasing occurs in the EMD-LSTM model prediction of residential–commercial type,
resulting in high MAPE. The MAPE value of the OD prediction results of the commercial–
residential type are lower than that of the scenic-residential type, indicating that this
method is more suitable for the prediction of large traffic volume. The RMSE between
the commercial area and residential area is higher than that between the scenic spot and
residential area because the passenger flow of the commercial area and residential area
were higher in the target day, which makes the error between the predicted value and the
real value more sensitive.
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In order to further verify the accuracy of the model in practical application, the 35-day
historical data of commercial–residential and scenic–residential stations were used as the
training set to predict the following 7-day amount, and then the actual data of the latter
day were added to the training set. Then, 36-day historical data was used to predict the
following 7-day amount, and so on, until the 42-day historical data was used to predict
the following 7-day amount, when the prediction accuracy was compared. The prediction
results are shown in Figure 9.
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According to Figure 9, the average MAPE for the 35- to 42-day historical data sample
decreased from 13.02% to 10.39% with a decreasing trend. The MAPE and RMSE values of
the 42-day sample are the lowest, indicating that its prediction accuracy is the best. That
is, with the increase in the number of training-set samples, the prediction error gradually
decreases. The reason behind this is that, the more samples of statistical passenger flow
there are, the more obvious the passenger-flow law will be, and the predictability of
passenger flow will also increase. In practical application, the measured OD value of the
next day can be added to the original historical data to predict the future OD value, which
can effectively improve the prediction accuracy.

5. Discussion

The traditional passenger-flow prediction model achieves an effect similar to the
passenger-flow characteristics by adjusting the neural network parameters [20,21]. EEMD
is an improved algorithm for EMD that is prone to modal aliasing and can avoid modal
aliasing by adding Gaussian white noise [26]; due to its unique memory forgetting function,
LSTM has an advantage over RNN and ARIMA models in dealing with long text data [20].
Although EMD is a flexible and adaptive time-frequency data analysis method and per-
forms good analysis and interpretation effects on nonlinear or non-stationary noise, it also
has some defects: EMD does not consider the noise in the original signal that will interfere
in actual conditions, so to adopt EMD to decompose signals with noise will give rise to
modal aliasing, that is, signals of the same scale or frequency are divided into multiple
eigenfunctions. Once the IMFs are aliased, the IMFs are not a single frequency component
and cannot accurately obtain the instantaneous frequency, which is mainly related to the
frequency characteristics of the original signal and the algorithm of the EMD itself [28].
When the signal is stochastic, the modal aliasing will lead to a large fluctuation in the
time–frequency distribution of the EMD decomposition results. The EMD decomposition
results are poor when the signal is random. EEMD is an analysis method for the phe-
nomenon of modal aliasing. The main idea for improvement is to insert a random Gaussian
white noise sequence into the input signal, so that the original signal is continuous on
different characteristic time scales, thereby eliminating the sawtooth lines appearing in the
time–frequency distribution.
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RNN can integrate historical information and current information well. When it comes
to long text data, RNN will experience gradient dispersion and gradient explosion due to
the fact that historical data transmission becomes too large or too small. When gradient
dispersion occurs, the weights in the RNN will not be updated, which will eventually
lead to training failure; when the gradient explosion occurs, the parameters in the RNN
will change greatly and the optimal parameters cannot be obtained. In addition, the RNN
is in the long text data. There will also be a phenomenon of long-distance dependence,
that is, the input at the beginning has less and less influence on the subsequent moments.
Compared with RNN, a forgetting unit and memory unit are added to the hidden layer
of the LSTM network, which enables the model to memorize or forget information. In the
model operation, the network will determine the information that needs to be retained or
the information that needs to be discarded, and continue to transmit the information that
needs to be retained to the next neuron.

Combining the advantages of EEMD and LSTM, the combined model for short-term
passenger-flow prediction of a metro is proposed. The prediction accuracy is compared
with the existing research on EMD-LSTM [29] by using AFC data of the Dalian metro.
Moreover, most existing studies employ static prediction, that is, using the same size of
the training set to predict [18–20]. By changing the size of the training set to achieve
the effect of dynamic prediction, EEMD-LSTM is used to compare dynamic and static
prediction accuracy. The prediction error of the EMD-LSTM model is 14.855%, and the error
of EEMD-LSTM is 11.230%. In contrast, the error of the EEMD-LSTM model is reduced
by 3.625%. Using the EEMD-LSTM model and the dynamic prediction method, with the
continuous conversion of new data into training sets to participate in training, the error
is further reduced from 12.57% to 10.06%, which is a great improvement compared to the
original. The results show that EEMD-LSTM has higher prediction accuracy than EMD-
LSTM in commercial–residential and scenic–residential OD prediction. On the other hand,
by comparing the static prediction without changing the scale of the training set and the
dynamic prediction with the gradually increasing scale of the training set, the prediction
accuracy of the dynamic prediction is higher.

This study has important theoretical value and practical significance for improving
the accuracy of short-term passenger-flow prediction, alleviating traffic congestion and
making passengers feel more comfortable, and for the planning and operation of urban
rail transit. Accurate passenger-flow prediction can better synergize the metro and other
transportation modes, provide theoretical support for the development of overall urban
public transportation systems, and realize the sustainable development of cities.

6. Conclusions

1. On the basis of the existing LSTM neural network prediction of short-term passenger
flow, EEMD is used to decompose the local characteristic signal of the passenger-
flow sequence at the entry and exit stations at different time, so as to weaken the
interference of sample noise in the accuracy of the prediction model. With the AFC
data of the Dalian metro Line 1 and Line 2 used for testing, the prediction error of the
EEMD-LSTM model was reduced by 3.625% on average, compared with that of the
EMD-LSTM model, indicating that EEMD-LSTM has higher prediction accuracy.

2. Starting from the 35-day historical data, the OD value of the next 7 days was predicted.
The actual amount of the next day was added to historical data, and then the OD
value of next 7 days was predicted again. By analogy, until 42 days is taken as
historical data, the prediction accuracy of training samples with different historical
data was compared. The results show that the average prediction error of historical
samples from the 35-day one to the 42-day one decreases from 12.57% to 10.06%, and
shows a trend of further decreases, indicating that the dynamic prediction has higher
accuracy than the static prediction method by continuously increasing the scale of the
training set.
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Due to limited research resources and conditions, the long-term OD volume was
not selected to verify the accuracy of the model in the case analysis, and the influence
of weather, season, the epidemic situation and other factors on passenger flow were not
considered. It is one-sided to only consider the comparison with the EMD-LSTM model,
but despite this, in terms of error improvement, data preprocessing, etc., the prediction
model and general rules constructed in this study can still be used as reference for similar
studies. The problem of the small volume of case object can be gradually overcome in
subsequent research.
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