
Citation: Ndong Engone, J.G.;

El Moumen, A.; Djelal, C.; Imad, A.;

Kanit, T.; Page, J. Evaluation of

Effective Elastic Properties for

Wood–Cement Composites:

Experimental and Computational

Investigations. Sustainability 2022, 14,

8638. https://doi.org/10.3390/

su14148638

Academic Editor: Nassim Sebaibi

Received: 20 May 2022

Accepted: 11 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Evaluation of Effective Elastic Properties for Wood–Cement
Composites: Experimental and Computational Investigations
Jean Gérard Ndong Engone 1, Ahmed El Moumen 2, Chafika Djelal 1, Abdellatif Imad 2, Toufik Kanit 2

and Jonathan Page 1,*

1 Univ. Artois, IMT Nord Europe, Junia, Univ. Lille, ULR 4515, Laboratoire de Génie Civil et
Géo-Environnement (LGCgE), F-62400 Béthune, France; jean.ndongengone@univ-artois.fr (J.G.N.E.);
chafika.dantec@univ-artois.fr (C.D.)

2 Univ. Lille, ULR 7512, Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France;
ahmed.el_moumen@ensta-bretagne.fr (A.E.M.); abdellatif.imad@polytech-lille.fr (A.I.);
tkanit@univ-lille.fr (T.K.)

* Correspondence: jonathan.page@univ-artois.fr; Tel.: +33-3-21-63-23-00

Abstract: In this work, wood–cement composites (WCC) based on poplar sawdust were developed
and fabricated by the extrusion process. The volume fraction of wood particles in the mixes was
varied from 23% to 46%. The mechanical properties of these WCC were characterized in compression
to determine the maximum compressive strength and the Young’s modulus. In the second part,
these Young’s modulus values were estimated in compression using a 3D numerical homogenization
which takes into account the variability in wood particle lengths and the random distribution in the
mixes. The obtained results show a good agreement between the experimental data and numerical
calculations up to a 35% volume fraction. The model’s poor estimation for large volume fractions
(over 35%) could be attributed to the experimental sample size, which is not representative for large
volume fractions, the percolation of the wood particles into the mixes and the inhibition of the
cement setting.

Keywords: wood–cement composites; effective elastic properties; numerical homogenization;
mechanical properties

1. Introduction

Over the past several years, environmental-protection objectives have led the con-
struction industry to produce sustainable building techniques with the use of bio-based
materials. Likewise, much research has been conducted to introduce plant fibers in ce-
mentitious materials [1–4]. A wide array of plant fibers are available for manufacturing
plant-fibers-based cementitious composites, with various dimensions and shapes [5]. In the
literature, plant fibers stemming from coconut [6,7], sisal [8,9], eucalyptus [10], bamboo [11],
rice husk [12], malva [13], hemp [14], wood byproducts [15], palm [16], bagasse [17] and
flax [18] are often included in the form of short or long fibers to produce cement compos-
ites. These vegetal particles contain significant amounts of cellulose, hemicelluloses, and
lignin [19]. Moreover, their incorporation into a cementitious material has an impact on
chemical reactions. Thereby, they influence the hardening of such materials by inhibiting
these reactions [20–22], resulting in a reduced formation of hydrated calcium silicates
(CSH) and lower composite compressive strengths. On the other hand, these plant-based
reinforcements often substantially improve the flexural strength, toughness [23] and impact
resistance of the composite [24]. These materials may also offer other advantages, such as
good thermal [25], acoustic [26] and fire-resistance properties [27], depending on the plant
fiber and the composite-mix design. Indeed, lower composite density and the composite’s
low cost enables a reduction in both the weight and cost of the designed material [28].
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However, over time, the efficiency of plant-based reinforcements may decrease due
to both the aggression of chemical (alkaline) components in the cement matrix and to the
mineralization of plant particles by the hydration products’ migration through component
pores [29]. In addition, the hydrophilic nature of these materials makes them sensitive to
size variations over a wide range of heat settings. This dimensional instability impairs
the mechanical properties of cement composites [30]. To overcome these issues, many
studies have been conducted to find new processes with an improvement in or stabilization
of the composite properties [31]. It should be noted that substituting cement with silica
fumes [32] has enhanced cement composite durability. Silica fumes react with the calcium
hydroxide located at the cement matrix/plant fiber interface to form additional hydrated
calcium silicates (CSH) [33]. This phenomenon raises the level of adherence between the
cementitious matrix and the reinforcements, while minimizing the dimensional variations
in reinforcements.

In recent years, numerous studies have dealt with the use of wood byproducts such as
sawdust [34–36], wood chips [37,38], wood fibers [21] and wood ash [39,40] for incorpora-
tion into wood–cement composites (WCC). For valorization, byproducts come from both
hardwood [41,42] and softwood species [21,43,44]. Despite this numerous research devoted
to wood-based composites, their use in the field of construction remains marginal, and is
mainly devoted to partitioning walls and acoustic and/or thermal insulation. The weak
mechanical properties generally observed on these composites, as well as their limited or
unknown durability, can explain the low use of these wood composites in construction.
In addition, the variability in such characteristics with respect to both manufacturing
conditions and the materials employed influence composite use. Therefore, predicting
composites’ mechanical behavior becomes essential. Usually, a mechanical-behavior pre-
diction for WCC is based on statistical studies of experimental results [38]. Note the few
numbers of studies actually dedicated to predicting the mechanical behavior of wood–
cement composites using numerical modeling. The understanding of the mechanical and
structural behavior of WCC could contribute to improving and designing its properties at
the minimum cost [45].

This study aims to evaluate the possibility of using existing mechanical numeric
models for mortars and concretes, on wood-based cementitious composites, to identify the
limits and the parameters that must be adapted in these models. This work is based on a
joint comparison of numerical modeling and experimental results. Therefore, a prediction
of the mechanical behavior of WCC based on elastic behavior (calculation of Young’s
modulus) is proposed. This prediction is carried out by comparing three approaches:
an experimental approach, an approach based on common homogenization techniques
and a 3D numerical-modeling approach. An experimental program was also performed
for manufacturing a wood-based composite based on a cementitious binder and wood
sawdust by an extrusion process. Indeed, sawdust particles were introduced into the
mixture by replacing the sand. The volume content of wood particles into the different
investigated mixes varies from 23% to 46%. The Young’s modulus of these composites was
measured experimentally thought uniaxial mechanical testing in compression. Thereafter,
these compression Young’s modulus were estimated using a numerical-homogenization
technique, based on a 3D numerical-homogenization approach. For this modeling, we used
the finite element method, while the theory of bounds was chosen to perform the analytical
approach. The geometric 3D modeling also considered the variability in wood particle
lengths with a random distribution. The experimental and numerical data were compared
in order to validate the numerical homogenization approach.
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2. Experimental Program
2.1. Materials

This work aims to develop a wood-particle (WP)-reinforced cementitious composite
derived from wood waste (from sawmill). The wood particles used in this study originate
from poplar, which is a hardwood grown extensively in the northern France. The mor-
phologies at various scales of these WP are of a random shape (Figure 1a). A 2D image
analysis provided different dimensions (Figure 1b).
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Figure 1. (a) wood particles (WP) observation with the naked eye, (b) microscopic observation of
wood particles.

The average maximum and minimum lengths are, respectively, 25 mm and 80 µm,
while the average maximum and minimum widths were recorded as 4.4 mm and 80 µm,
respectively. The largest sized aggregates are of 2%, which matches the proportion of
minimum-sized aggregates.

The apparent and real densities of wood particles are 0.178 and 0.390 g/cm3, re-
spectively. Wood is known for its high water sensitivity, characterized by a large water-
absorption capacity, often exceeding twice its own weight. This water sensitivity could
significantly affect the material properties in fresh and hardened states [20]. The water
absorption kinetics was also assessed, providing information on the water absorption rate
of the WP and the time until saturation, which is 2 min for these wood particles. During
specimen production, this time will be respected for WP water saturation. The water
absorption capacity after 24 h is 174%.

The sand used in this study comes from the Seine river with a 0/4 particle grading, a
coefficient of absorption of 0.49% and a real density of 2.61 g/cm3. The cement used for the
composite manufacturing is a CEM I 52.5 N, with a real density of 3.11 g/cm3 and a 98%
clinker content.

2.2. Mix Design and Extrusion of Wood–Cement Composites (WCC)

The objective of the extrusion process performed herein was WCC-block manufactur-
ing with these dimensions: 105 mm × 60 mm × 220 mm, in accordance with to the NF EN
771-1/CN French standard. Extrusion is an efficient manufacturing process consisting of
forcing the flow of a plastic material or a fluid product through a die whose dimensions
have been defined beforehand and depend on the intended use of the extruded product.
In this work, 7 mixes were designed and extruded (Table 1). One design composed solely
of sand, cement and water was optimized for this extrusion process and then set as the
reference design (WCC0).
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Table 1. Various constituents concentrations of wood mortars, with δ(C + W), δ(S) and δ(WP) being
volume ratio of paste (cement + water), sand and sawdust in the mixture, respectively.

Volume Ratio Concentrations (kg/m3)

Mix Design δ (C +W) δ (S) δ (WP) Cement Water Sand Wood Particles

WCC0 40% 60% 0% 488 244 1568 0
WCC23 40% 37% 23% 646 194 985 91
WCC26 40% 34% 26% 646 194 806 114
WCC32 40% 28% 32% 646 194 730 125
WCC35 40% 25% 35% 646 194 653 137
WCC40 40% 20% 40% 646 194 501 159
WCC46 40% 14% 46% 646 194 348 182

The sand was partially substituted (in volume) in this composition by WP in the mix,
varying from 23% (WCC23) to 46% (WCC46) (Table 1). However, the cement paste content
was set to 40% in volume and the water-to-cement ratio to 0.3, in all mixes. Moreover, in
order to avoid the absorption of the effective water used for the cement matrix hydration,
the wood particles were saturated for 2 min prior to mixing process. Then, the sand
and the cement were added into the mixture, and mixed for 1 min before introducing
the water progressively for 1 min. Then, a 3-min mixing cycle was run to homogenize
the mixture. The WCC0 mortar formulation was optimized for extrusion by varying the
cement paste volume (cement + water) and water–cement ratio to obtain an extrudable
mix. These choices of wood-particle incorporation ratio were derived from a previous
study conducted on the optimization of mortar extrusion using wood sawdust for masonry
building block [46]. The greater quantity of paste volume generates the reduction in inside
mix friction and of friction between extruder-wall and mix. Any rheology modifiers or
similar chemical admixtures were used to avoid complex physicochemical interactions in
the mix. Indeed, interactions between wood particles and rheology modifiers or chemical
additions are not well-studied in the literature.

The extrusion step was carried out with a piston extruder [47], with a 5 mm/s extrusion
speed. Following extrusion, the resulting blocks were stored in a humidity-controlled room
at a temperature of 20 ± 2 ◦C and a relative humidity of 65 ± 5%, until physical or
mechanical tests.

The mass density of the hardened specimens was determined at 14 days, according to
EN 12390-7 standard. Figure 2 displays the mass density evolution according to the wood-
particle content into the different mixes. A decrease in the mass density can be noted as the
wood particle volume in the mix increases. Compared to the reference composite (WCC0),
wood particles lead to a relative drop in density from 19% (with WCC23) to 35% (with
WCC46). A polynomial regression type confirmed by a very good correlation coefficient
(0.99) was obtained. This drop may be correlated with the mass density difference between
sand and WP. It turns out that the density of sand (equal to 2.64 g/cm3) is eight times
higher than that of WP (equal to 0.39 g/cm3). The low density inherent in extruded blocks
constitutes a real advantage in terms of reducing structural weight.
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2.3. Mechanical Tests

The compression test was performed in accordance with the EN 772-1 standard, using
a loading speed of 7 kN/s. Three specimens were tested for each test. Both stress and strain
were recorded during the test.

In Figure 3 are presented typical compressive stress–strain curves for three mixes
(WCC0, WCC23 and WCC35). The increase in the volume ratio of WP leads to a reduction
in the Young’s modulus and the maximum strength. An increase in strain at the failure
point is also noted. The incorporation of wood particles into the mixes seems to improve
the composites strain. This phenomenon is due to the high deformability of wood particles,
which allows composites to deform significantly under low stress.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 
Figure 2. Dry density of WCC specimens versus volume ratio of wood particles, at 14 days. 

2.3. Mechanical Tests 
The compression test was performed in accordance with the EN 772-1 standard, us-

ing a loading speed of 7 kN/s. Three specimens were tested for each test. Both stress and 
strain were recorded during the test. 

In Figure 3 are presented typical compressive stress–strain curves for three mixes 
(WCC0, WCC23 and WCC35). The increase in the volume ratio of WP leads to a reduction 
in the Young’s modulus and the maximum strength. An increase in strain at the failure 
point is also noted. The incorporation of wood particles into the mixes seems to improve 
the composites strain. This phenomenon is due to the high deformability of wood parti-
cles, which allows composites to deform significantly under low stress. 

The average Young’s modulus (Em) was determined from the stress–strain curves. In 
Figure 4 is shown the Young’s modulus according to the wood volume in the composite 
after 14 days of curing. The Young’s modulus decreases as wood volume in the mix in-
creases. Similar results were obtained by Bashar et al. for wood-chip-based composites 
[37]. 

 
Figure 3. Example of stress–strain curves obtained during the compressive test, at 14 days. Figure 3. Example of stress–strain curves obtained during the compressive test, at 14 days.

The average Young’s modulus (Em) was determined from the stress–strain curves. In
Figure 4 is shown the Young’s modulus according to the wood volume in the composite after
14 days of curing. The Young’s modulus decreases as wood volume in the mix increases.
Similar results were obtained by Bashar et al. for wood-chip-based composites [37].
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Two different zones can be distinguished in Figure 4. In the first area, a linear decline
of the Young’s modulus is observed, up to 35% of wood particles. For this WP content, the
Young’s modulus is 6.02 GPa, corresponding to a relative reduction by 51%. This decrease
in the Young’s modulus in the first area can be attributed to various parameters, including
the inhibition of the cement hydration reaction, the increased mixture porosity, the low
stiffness of wood particles (WP), and the distribution of the WP in the mixture [46]. The per-
turbation or inhibition of the cement hydration occurs in the fresh state during the contact
between cement paste and wood particles. The alkaline matrix derived from the cement
dissolution interact with the polysaccharides present in wood particles. This chemical
interaction either disturbs or inhibits the cement hydration, which is the primary parameter
controlling the microstructure formation and responsible for cementitious-material me-
chanical properties [21,48,49]. The assessment of the influence of the wood particles used
in this study on the cement hydration (in a standardized mortar) has been demonstrated on
previous studies using an isothermal calorimeter with a temperature setting of 20 ◦C [46].
The same experimental procedure was performed on three mixes (WCC0, WCC35 and
WCC46). In Figure 5 is presented the heat flow evolution (in isothermal conditions) of the
fresh mixes during the 48 h after mixing. It can be observed that the incorporation of wood
particles leads to a reduction in the maximum heat flow peak. This is accompanied by a
slowdown of the kinetics of hydration. Thus, the introduction of wood particles disturbs
the cement hydration of the fresh composite, which may affect the formation of cement
hydrates. In parallel, there is a delay in the appearance of the maximum heat peak, which
suggests that the cement hydration in the mix is gradually disturbed. The maximum heat
flow reductions are by 26% and 39% for WCC35 and WCC46, respectively. The time of
the cement setting is 2 h 30 min for the WCC0 and more than 5 h for WCC35 and WCC46
composites. The setting time delay is, therefore, approximately equal to 2 h 30 min, i.e.,
a doubled setting time. This inhibition is even more pronounced as the content of wood
particles in the composite is high.

The porous structure of wood particles leads to an increasing in the composite poros-
ity [46]. During the compressive tests, this porosity leads to a reduction in the compactness
of the composite, which would reduce the mechanical performance. The random distri-
bution of wood particles and their elongation will create weakness areas in the composite
structure. This effect on the composite mechanical behavior is related to the wood-particle
content in the composite.



Sustainability 2022, 14, 8638 7 of 17Sustainability 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 
Figure 5. Typical hydration isotherms (heat flow vs time) for three mixes. 

The porous structure of wood particles leads to an increasing in the composite po-
rosity [46]. During the compressive tests, this porosity leads to a reduction in the compact-
ness of the composite, which would reduce the mechanical performance. The random dis-
tribution of wood particles and their elongation will create weakness areas in the compo-
site structure. This effect on the composite mechanical behavior is related to the wood-
particle content in the composite. 

Beyond a wood-particle volume content of 35%, a strong decrease in the Young’s 
modulus is noticed, with a lower value of 1.40 GPa, i.e., a relative decrease by 89% in 
comparison with WCC0. This wood-particle (WP) content seems to correspond to a thresh-
old volume beyond which WP percolates into the composite. Several micrographs were 
performed on several longitudinal sections and cross-sections of the blocks in a previous 
study [36]. The observations confirmed the assumption of WP percolation. Saturation can 
be observed in the structure by wood particles from the WCC40 compared to other com-
posites. 

The saturation of wood particles leads to a percolation phenomenon, which modifies 
the composite mechanical behavior [47]. Due to this percolation, the wood particles are 
randomly entangled, which leads to a higher composite porosity and creates a large area 
of minimum stiffness. This increased porosity may also be linked to the high water-ab-
sorption capacity of the aggregates, causing dimensional variations in the plant particles. 
The higher porosity of extruded mortars incorporating wood particles was also high-
lighted in a previous study [36]. The mechanical strengths will then be deteriorated due 
to this greater porosity. Furthermore, due to the flexibility of the wood particles, this also 
creates zones of weakness in the composite, which tend to reduce the rigidity of the block 
(reduction in the Young’s modulus), and, therefore, of the mechanical properties. 

In addition to the effect of the WP percolation, the chemical interactions between 
wood and cement may also significantly influence the mechanical properties and then 
decrease the Young’s modulus. The extent of setting inhibition is, in fact, proportional to 
WP volume in the mix, as the wood volume fraction increases the quantity of inhibiting 
agents [46]. The decrease in a composite’s mechanical properties could be associated with 
a percolation phenomena coupled with inhibition. 

The normalized Young’s modulus of the composites was calculated from Equation 
(1). This equation is widespread in the literature [50]. 𝐸𝐸 = 𝐶 ·  ൬𝜌𝜌൰

 (1) 

Figure 5. Typical hydration isotherms (heat flow vs time) for three mixes.

Beyond a wood-particle volume content of 35%, a strong decrease in the Young’s mod-
ulus is noticed, with a lower value of 1.40 GPa, i.e., a relative decrease by 89% in comparison
with WCC0. This wood-particle (WP) content seems to correspond to a threshold volume
beyond which WP percolates into the composite. Several micrographs were performed on
several longitudinal sections and cross-sections of the blocks in a previous study [36]. The
observations confirmed the assumption of WP percolation. Saturation can be observed in
the structure by wood particles from the WCC40 compared to other composites.

The saturation of wood particles leads to a percolation phenomenon, which modifies
the composite mechanical behavior [47]. Due to this percolation, the wood particles are
randomly entangled, which leads to a higher composite porosity and creates a large area of
minimum stiffness. This increased porosity may also be linked to the high water-absorption
capacity of the aggregates, causing dimensional variations in the plant particles. The
higher porosity of extruded mortars incorporating wood particles was also highlighted in a
previous study [36]. The mechanical strengths will then be deteriorated due to this greater
porosity. Furthermore, due to the flexibility of the wood particles, this also creates zones of
weakness in the composite, which tend to reduce the rigidity of the block (reduction in the
Young’s modulus), and, therefore, of the mechanical properties.

In addition to the effect of the WP percolation, the chemical interactions between wood
and cement may also significantly influence the mechanical properties and then decrease
the Young’s modulus. The extent of setting inhibition is, in fact, proportional to WP volume
in the mix, as the wood volume fraction increases the quantity of inhibiting agents [46].
The decrease in a composite’s mechanical properties could be associated with a percolation
phenomena coupled with inhibition.

The normalized Young’s modulus of the composites was calculated from Equation (1).
This equation is widespread in the literature [50].

Ec

E0
= C·

(
ρc

ρ0

)n
(1)

In the previous equation, the subscript E0, ρ0 and Ec, ρc denote the Young’s modulus
and the bulk density of the reference mix and the composite, respectively. C and n are
constants determined by experiments.

Considering the experimental results for WCC0 to WCC35, a relative function of the
Young’s modulus was obtained with Equation (2).

Ec

E0
=

(
ρc

ρ0

)3.4
(2)
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Normalized Young’s modulus and the relative function expressed by Equation (2)
(relative modulus of elasticity) are expressed according to the normalized density in Figure 6.
In phase 1, there is a good correlation between the relative function and the normalized
Young’s modulus. In phase 2, the values of the relative function are greater than the
normalized Young’s modulus. This can be explained by the percolation phenomena and
the significant inhibition of cement hydration, which does not allow good agreement with
the normalized Young’s modulus.
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3. Predictive Numerical Modeling

The experimental characterization of cement–wood composite specimens was pre-
sented in the previous section. In keeping with the experimental characterization, this
section aims to numerically simulate these material properties. The macroscopic elastic
behavior of the material was studied using a multi-scale analysis, based on knowledge
of the mechanical behavior of each phase of the composite. For this multi-scale analy-
sis, numerical techniques based on the finite element method (FEM) as well as analytical
homogenization models were used. Following this, a comparison between the results of
the homogenization steps (analytical and numerical) and the experimental results was,
finally, proposed.

There are several analytical methods that can be used to evaluate the effective elastic
properties of multiphase composites. The most common are the Voigt and Reuss (VR)
bounds [51,52], Hashin and Shtrikman’s bounds (Hashin and Shtrikman [53]) and Mori-
Tanaka’s theory [54]. The proposed estimation typically depends on inclusion parameters,
such as the particle shape and its distribution. These models converge whenever the volume
fraction of particles (inclusion) or the difference between the properties of both phases is
insufficient. Otherwise, a notable difference and divergence becomes apparent. However,
in this study, a numerical method was used to solve the homogenization problems. In this
case, it is essential to consider the concept of representative voluminal element (RVE). The
RVE must contain a sufficiently large number of wood particles as in cementitious materials,
while remaining small enough to both allow the convergence and to be considered as a
volume element of continuum mechanics [55].

Several methods numerically generate the geometry of cement composites. Some
methods are based on a simple shape (sphere), such as those of Bentz [56], Béjaoui et al. [57]
and Bishnoi et al. [58]. Nagai et al. assessed the linear elastic behavior of concrete using
successive 2D sections to obtain the 3D concrete microstructure [59]. Wriggers et al. intro-
duced a model of concrete made of spherical particles (concrete aggregates) associated to a
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cement matrix [60]. In this model, the material is supposed to be isotropic and numerical
outputs of the effective properties are obtained. Otherwise, Caballero et al. has proposed
a model of concrete as aggregates generated in the form of polyhedra, as obtained by the
Voronoï tessellation, into a mortar composite [61]. Recently, Escoda et al. developed model
based on a random morphology for concrete microstructures using a multiscale Poisson
polyhedral [62]. This two-phase model used cementitious matrix aggregates. He et al.
tested both of the polyhedral and ellipsoidal shapes and compared with various models
based on X-ray tomography data [63].

In this section, the mechanical properties of wood–cement composites will be deter-
mined with homogenization techniques and will be compared with experimental data
presented in Section 2.2. In addition, this study proposes to investigate the accuracy of
some analytical models widely used for cementitious materials by way of comparison with
experimental data and numerical simulations. For this purpose, 3D cement-composite
samples were generated in various volume fractions (0% to 46%).

3.1. Analytical Homogenization Models

In the literature, there are different methods of analytical homogenization, the most
widespread of which are based on an approach in the isotropic case: the Voigt [51] and
Reuss [52] first-order bounds (VR), the Mori and Tanaka (MT) model [54], and the Hashin and
Shtrikman optimal bounds (HS) [53]. Elastic properties of composites can be determined from
these models from the properties of each phase, “m: matrix” and “i: inclusion”, and wood
volume fraction “p”. Analytical expressions are provided in Equations (3)–(9) and (12):

• VR bounds

EVoigt = pEi + (1− p)Em (3)

EReuss =
EiEm

(1− p)Ei + pEm
(4)

• Upper and lower HS bounds, HS+ and HS−{
kHS− = km + p

1/(ki−km)+3(1−p)/(3km+4µm)

kHS+
= ki +

(1−p)
1/(km−ki)+3p/(3ki+4µi)

(5)

{
µHS− = µm + p

1/(µi−µm)+6(1−p)(km+2µm)/5µm(3km+4µm)

µHS+
= µi +

(1−p)
1/(µm−µi)+6p(ki+2µi)/5µi(3ki+4µi)

(6)

The bulk k and shear µ modulus were calculated with HS analytical models. To derive
Young’s modulus E, Equation (5) allow relations all of elastic properties. Note that EHS+

and EHS− represent upper and lower Young’s modulus, respectively.

EHS+
− =

9kHS+
−µHS+

−

(3kHS+
− + µHS+

− )
(7)

• Mori–Tanaka model

kMT = km(1 +
p(ki − km)

km + α(1− p)(ki − km)
) (8)

µMT = µm(1 +
p(µi − µm)

µm + β(1− p)(µi − µm)
) (9)

α =
3km

3km + 4µm
(10)

β =
6(km + 2µm)

5(3km + 4µm)
(11)
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Finally, from the Equation (12) is calculated the Mori–Tanaka Young’s modulus, EMT.

EMT =
9kMTµMT

(3kMT + µMT)
(12)

The evolution of the homogenized Young’s modulus according to the wood volume
fractions was studied (Figure 4). For volume fractions ranging from 0% to 46%, the
analytical results were plotted and compared with experimental data provided by the
compression test on WCC specimens.

With proportions of wood particles up to 35%, the experimental Young’s modulus
values of WCC are always close to the HS bounds, which is in agreement with homog-
enization theory (Figure 7). Furthermore, experimental results closely match with both
MT models and HS bounds. Beyond a proportion of 35%, the experimental values are
below the values of all investigated models, and even the VR model, which has the lowest
modulus values. This limit is correlated to the percolation threshold, as highlighted in
Figure 4. This difference also depends on the testing sample dimensions, which may no
longer be representative for high WP volume fractions. It seems reasonable to question
the effect of specimen size on the elastic properties for proportions varying from 40% to
50%. Moreover, the chemical interactions in the composites in a fresh state (significant
inhibition of the cement and wood particles) could explain the poor model estimation for
large volume fractions, which does not consider this interaction.
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3.2. Numerical Simulations

This part is devoted to the prediction if the effective properties on the representative
volume element (RVE) using numerical methods. For that purpose, two-phase microstruc-
tures including a cementitious-matrix phase and a wood-particle phase with various
volume fractions were generated. These microstructures will be introduced into the finite
element model to compute the effective properties. Then, a comparison between numerical
data, analytical modelling and experimental results is proposed.

3.2.1. Mesh of Microstructures

The numerical techniques for composite-material modelling are based on the concep-
tion of a representative microstructure. For the virtual microstructure to approximate the
real one, the most common method consists of generating random microstructures taking
into account experimental parameters such as particle shape, particles size, and particle
distribution. Here, random microstructures were generated by the Poisson’s process, which
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has already been implemented in several works to represent composite microstructures (El
Moumen et al. [64] and El Moumen et al. [65] for the algorithm methodology).

Figure 8 presents some 3D representations of wood–cement-composite (WCC) mi-
crostructures derived by the Poisson process and then used for simulations. The image
of the microstructure is associated with a regular finite element mesh by superposition,
according to the multi-phase element method, developed by Lippmann et al. [66] and used
to estimate the elastic properties of biocomposites. A microstructure image is introduced to
attribute the phase properties of a regular mesh to each integration point, in accordance
with the underlying voxel color. A random distribution of wood particles (WP) is also
observed. A dense distribution of the WP is obtained from 40% of the volume fraction
(Figure 8b). Figure 8d shows a section of the random microstructure of the WCC40, a large
proportion of WP are observed in the sample.
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the volume fractions of 23%, 40%, 50% and the inside cut of 40% volume fractions.

Figure 9 exhibits an example of the meshed microstructure. Concerning numerical
simulations, the use of structured meshes was privileged since the free-mesh technique
typically leads to an increase in the number of elements, and a more expensive computation.
The considered elements are 20-node quadratic bricks with 27 integration points.
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3.2.2. Boundary Conditions and Mesh Density

For numerical simulations, the mechanical loading is applied to one face of the mi-
crostructure while the opposite face has no loading. Note that these loadings constitute the
compression test implemented during the experimental approaches. As an illustration, the
expression of these boundary conditions is given in Equation (13):{

u { f ace(x = 0, y, z) = 0}; u{ f ace (x = L, y, z) = d}
v { f ace(x = 0, y, z) = 0}; w{ f ace (x = 0, y, z) = 0} (13)

where u, v and w are the displacements applied in x, y and z directions, L is the length of
the microstructure, and d is the displacement imposed in x direction.

The number of elements used to mesh the elementary cement–wood volume is defined
as the mesh density. Therefore, a specific 3D microstructure composed of 200 random wood
particles was considered. The number of particles and the microstructure geometry is fixed,
even though various mesh resolutions were used. In Figure 10 is presented the variation
in the homogenized Young’s modulus for different numbers of elements. The number of
nodes increases from 756 (for a 125-element mesh) to 116,281 (for a 27,000-element mesh)
while maintaining the same volume composed of 200 particles occupying 23%.
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The Young’s modulus strongly decreases for the first meshes (with few elements);
then, a stabilization is observed for the highest mesh density. In Figure 10 the number
of finite elements where convergence begins can be observed, at approximately 8000 el-
ements/200 particles. Due to convergence, a mesh density of 40-quadratic elements per
particle seems to be necessary.

3.2.3. Estimation of the Effective Elastic Properties

A simple uniaxial compression test, adopting the defined boundary conditions, was
applied to the WCC microstructure. The homogenized effective Young’s modulus can then
be determined. The numerical results obtained for the different particle volume fractions
are shown in Figure 11, and compared with experimental results. As expected, the Young’s
modulus decreases when the WP volume content increase, which is in good agreement with
the results obtained experimentally. However, a notable difference between the numerical
and experimental results is observed in the case of a WP content greater than 35%. From this
rate, the homogenization models and numerical modeling used do not make it possible to
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correctly estimate the composite mechanical properties. In this study, low impact provides
a good estimate of the elastic properties.
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experimental and numerical results.

The numerical methods used in this work for estimating the effective properties
are based on the micromechanics interaction between the composite constituents. In the
present study, the composites are partially composed of wood particles (WP). It was noted
previously that there was a chemical interaction between these particles and the cement, and
even more for high WP content. Furthermore, a percolation effect of the wood particles, due
to their high water absorption, was also highlighted. Thus, for low levels of incorporation
of wood particles, these two phenomena, related to the particles, are not too significant
on the elastic mechanical properties. Thus, in the case of our study, the models used
make it possible to correctly estimate the mechanical properties of the composites, for WP
rates below 40%.

For high wood-particle content, the effect of chemical interactions is more significant,
which could explain the incorrect estimation of the effective properties with the numerical
modelling. The mechanical characteristics of the matrix are different from those the refer-
ence matrix (with 0% WP). Homogenization models and numerical simulation does not
take into account the change in the properties of the matrix due to chemical interactions
between cement and wood. Otherwise, the percolation phenomenon observed in Figure 4
could also be responsible for poor estimation of the effective elastic properties. Homoge-
nization theory assumes that the inclusion is perfectly coated with the matrix (as mineral
aggregates). Due to WP percolation, this assumption cannot be respected, which could
affect the bounds of homogenization.

The estimation of the effective properties is also strongly influenced by the representa-
tive volume element that allows consideration of each phase of the composite. The size of
the experimental samples seems to not be sufficiently representative in the case of a large
volume content.

As a means of illustration, the compression test was performed in linear elasticity, and
the local Young’s modulus at each point was plotted in a chart distribution (Figure 12).
It seems that the local Young’s modulus distribution between the two phases of the mi-
crostructure was altered after loading. It can also be deduced that the volume fraction
and particle distribution are the geometric parameters most heavily influencing local
WCC properties.
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4. Conclusions

In this study, compressive tests were performed to highlight the influence of wood
particles (WP) on behavior in the compression of extruded wood–cement composites
(WCC). The mechanical properties were experimentally determined. A predictive modeling
of the mechanical properties of these composites was performed by using a numerical
homogenization method. From this study, the following conclusions can be drawn:

• The Young’s modulus of wood–cement composites decreases with the increase in
WP content. Two behavioral phases can be observed. An almost linear drop in the
normalized modulus of elasticity as a function of the WP rate, up to a rate of 35%. This
volume corresponds to the percolation threshold of the wood particles in the mixture.
From this level and extending to a volume of 46%, the loss of mechanical properties in
compression is considerable. Above a 40% WP volume, the higher WP in WCC exerts
a very low influence on the mechanical properties of composites.

• The estimation of the Young’s modulus by homogenization analytical method shows
that the Mori–Tanaka model (MT) and upper Hashin and Shtrikman bounds (HS)
allow a good approximation of mechanical properties in the case of a low proportion of
wood particles in the mixture. Beyond 35% WP volume, conventional homogenization
models are not appropriate to approximate the mechanical properties. Indeed, the
percolation of wood particles and cement hydration disturbances result in a poor
assessment of the modulus of elasticity.

• The numerical homogenization procedure was performed using the finite elements
method based on a representative volume element (RVE). The contrast between the
numerical results and experimental approach allow a good approximation of mechan-
ical properties up to a 35% threshold volume. Beyond the percolation threshold, the
numerical microstructure does not match the actual microstructure. In addition, the
inhibition of the cement hydration may be greater. However, this poor estimation can
also depend on the experimental sample size, which is no longer representative for
large volume fractions. It seems legitimate to question the effect of specimen size on
the elastic properties for proportions varying from 40% to 50%.

The next phase of this work will take into account the actual microstructure of com-
posites by performing a tomographic study. The effect of inhibition will also be taken into
account by performing a post-treatment of the wood particles. In addition, a study of the
representative volume element will be performed.
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