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Abstract: When studying the stability of a slope, the first issue that needs to be clarified is the slip
surface, which determines the minimum safety factor. The slopes investigated here are homogenous
with three distinct gradients (1:1.5; 1:1; 2:1), two defined heights (H-3 m; H-8 m), and four different soil
characteristics (S1—clayey silt, S2—sandy clayey silt, S3—sandy silty clay, S4—clay). The purpose of
this paper is to develop a new methodology capable of estimating the safety factor and the shape and
centre of the critical slip surface, delivering an improved estimate of slope probability of failure, which
can represent a significant component in a more precise risk assessment. This paper compares distinct
methods used in the slope stability analysis, examining their hypotheses and effects on the estimated
safety factor and the centre and shape of the critical slip surface. The study compares the limit
equilibrium results with those determined by the shear strength reduction method using an approach
based on the upper-bound limit analysis to compare the predictions extracted from these methods
with those from the finite element method (FEM) analysis. The finite element method discretizes the
soil mass into finite elements. Hence, it establishes a kinematically admissible velocity field searching
for the failure mechanism of the slope. Results for FEM show the influence of the slope geometry
and the mesh size and density on the safety factor. In the study, plots of the regression curves of
five different critical slip surface shapes, including a circular slip surface (benchmark), show that the
shape of the failure surface depends on the shape and material of the slope. Furthermore, they show
that the critical slip surface layout can approach a logarithmic spiral, damped sinusoid, parabola, etc.;
the slip surface is not always circular. The analysis reveals that none of the approaches can consider
all uncertainties concerning the factor of safety and the interpretations of critical slip surfaces.

Keywords: slope stability; finite element method; upper-bound analysis; factor of safety; slip surface;
optimization

1. Introduction
1.1. Information on Slope Stability Analysis

Natural and artificial slopes can become unstable [1]. Slope stability indicates the
condition of slopes that either withstand or undergo movement [2]. Slope stability analysis
is a static or dynamic, analytical [3] or numerical method for assessing slope stability and
understanding the causes of a slope failure or the factors that trigger a slope movement.
Stability analysis answers a problem demanding force and/or moment equilibrium. The
ratio between the shear strength and the shear stress expressed as a safety factor defines
the slope stability.

The input data for performing a slope stability analysis are determined by: (1) The elevation
of the ground on a section perpendicular to the slope. (2) Drilling to identify the stratigraphy
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and obtain undisturbed soil samples. (3) Laboratory shear tests of undisturbed samples/each
layer. (4) Piezometers inserted in the slope for pore-water pressure measurement.

The slip/failure surface position is revealed once the slope has already failed. Other-
wise, the location and shape of the most critical slip surface are unknown [4]. The shape
of the undetermined surface is assumed while determining the location. If the shape of
the slip surface is either a circular arc (the slope is not homogeneous) or partly circular
and partly linear, a grid of centres is selected, with the radius varying at each centre and
covering all possible conditions [1]. The shape of the slip surface of layered soil can be
shallow, elongated, deep with sharp breaks, or convex.

1.2. Historical Context, Understanding Primary Methods

The idea of discretizing a potential sliding mass into vertical slices was born in the
early 20th century. At the beginning and until about 50 years ago, the stability of a slope
was mainly analysed by limit equilibrium methods (LEM) based on force and moment
equilibrium, while realistic analyses of the slope deformation were not possible. Since
then, various approaches have developed as versions of the vertical slice method [5,6].
Alternatively, the horizontal slice method (HSM) routine served for layered soils evaluation
and internal stability analyses of reinforced walls [7].

With the development and adaptation of the finite-element methods (FEM) based on
the widespread availability of powerful computers, numerical modelling for analysing the
stability of earth structures, which is the oldest type of numerical analysis in geoengineering,
recently became a popular tool [1].

The limit equilibrium methods most often used for practical problems are (Table 1):
(1) methods only for circular slip surfaces, such as (a) the ordinary or Swedish method of
slices (Fellenius 1927, 1936), which satisfies the moment equilibrium but does not satisfy
horizontal or vertical force equilibrium [5], and (b) Bishop’s modified method (Bishop 1955),
which satisfies moment equilibrium and vertical force equilibrium but does not satisfy
horizontal force equilibrium under both drained and undrained loading conditions [8];
(2) methods for any shape of slip surface, such as (a) Janbu’s generalized procedure of slices
(Janbu 1968), which satisfies all conditions of equilibrium and allows a variety of numerical
problems [9], (b) Morgenstern and Price’s method (Morgenstern and Price 1965), which
satisfies all conditions of equilibrium and allows varied side force orientations [10], and (c)
Spencer’s method (Spencer 1967), which satisfies all conditions of equilibrium and assumes
side force to be parallel [11]. The iterative procedures underlying methods (2b) and (2c)
lead to mathematically more rigorous formulations.

Table 1. Summary of assumptions of LE methods used in the paper.

Method Circular Non-Circ. ΣM = 0 ΣF = 0

Ordinary (also known as Swedish, Fellenius) X - X -
Bishop simplified X - X vertical only
Jambu corrected X X X X
Morgenstern–Price X X X X
Spencer X X X X

The limit equilibrium methods used in the paper are as follows:

a. The Swedish circle approach (Ordinary or Fellenius method, 1936) applies to homoge-
neous soils, stratified soils, fully or partially submerged soils, non-uniform soils, and
cases where seepage and pore pressure exist within the soil slope. Fellenius is used to
analyse the stability of a slope assuming a circular failure surface. Shear strength along
the slip surface contributes by the frictional component, which depends on normal
stress. Normal stress changes horizontally at any point on the slip surface. Therefore,
the analysis divides the wedge into many vertical slices. The distance between the
centroid of the potential moving wedge and the centre of rotation “O” is calculated by
dividing the algebraic sum of the weight moment for each slice about centre “O” by
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the wedge weight. The safety factor is generated from the momentum equilibrium
equation concerning the centre of the potential slip surface (O). Investigations are
repeated on different slip surfaces to define the factor of safety.

FoS =
∑i[ci·li + (Ni − ui·li)tanφi]

∑i(Wi·sinαi)
(1)

where: ui—the pore-water pressure, ci, φi—the effective shear strength parameters,
Wi—strip weight, Ni—the normal force at the bottom of the strip, αi—the inclination
of the bottom of the strip, and li—the length of the base of the strip.

b. Bishop’s simplified method (1955) considers the normal interslice forces but ignores
the interslice shear forces. That satisfies the overall equilibrium of moments but not
the general equilibrium of horizontal forces, assuming a circular slip surface. The
value of the factor of safety is determined by successive iterations.

The methods that consider side forces between slices (e.g., the Janbu method) submit
themselves to numerical instability problems under certain conditions [12], and the solution
may fail to converge, or the calculated values may be unreasonable [13]. The method using
the sums of the forces for all slices makes the hand-calculation of the factor of safety a
repetitive and laborious process [14].

The last three methods develop some particularities. Janbu’s (1954), Morgenstern
and Price’s (1965, 1967), and Spencer’s (1964) methods are rigorous, because they satisfy
all three equations of equilibrium—the balance of horizontal and vertical forces and the
balance of moments. The position and direction of interslice forces constitute the distinction
between methods.

Janbu’s and Spencer’s techniques of slope stability analysis use the leapfrog algo-
rithm method (velocity Verlet method) for integrating differential equations of the form
..
x = d2x/dt2 = A(x) or equivalently of the form

.
v = dv/dt = A(x),

.
x = dx/dt = v [13].

c. For a minimal-width slice, the assumption of Janbu’s method is that the vertical
component of the interslice forces depends on the numerical approximation of the
differential equation of the moment equilibrium [15]. The method considers normal
interslice forces but ignores interslice shear forces. It satisfies the overall horizontal
force equilibrium, not the general moment equilibrium.

d. In the Spencer method (1967), the interslice forces are parallel, and the normal force (N)
acts on the centre of the base of each slice [16]. Spencer has developed two equations
for the factor of safety; the first one of moment equilibrium and the other one of
horizontal force equilibrium. This method adopts a constant relationship between the
interslice forces (shear and normal forces). By iterative procedures, the interslice shear
alters to a normal ratio until the two safety factors are equal. Finding a shear-normal
portion equalizing the two safety factors means that the balance between moment
and force is met [17].

e. Morgenstern and Price calculus is similar to Spencer’s method but allows various
specified interslice force functions.

In the limit equilibrium methods, the soil mass slides along an assumed slip surface
without considering deformations or strains [1].

The limit equilibrium methods use the Mohr–Coulomb failure criterion to determine
the shear strength along the slip surface. Failure occurs when the shear stress is mobilized
along a critical slip surface (CSS). Factor of safety (FoS) is the ratio of the available shear
strength to the mobilized shear strength [18]. The available shear strength depends on the
soil type and the effective normal stress. Mobilized shear strength depends on external
forces acting on the soil mass, such as pore-water pressure, slope cracks, swelling, slick-
enside formation, clay rock deterioration, creep under permanent load, leaching, strain
softening, weathering, and cyclic loading. The sliding mass is divided into slices, the
shear and normal inter-slice forces are determined, and force and/or moment equilibrium
equations satisfy the static equilibrium conditions [12].
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Apart from the fact that statically admissible stress is not guaranteed, the limit equilib-
rium methods eliminate the need for soil plastic flow rules (constitutive relation). At failure,
the soil is expected to be a rigid perfectly plastic medium showing a correspondent flow
rule, so that the breakdown techniques adopted by the LEM are commonly dynamically
unacceptable. Theoretically, the finite element method, which relies on the stress–strain
relationships, provides a comprehensive answer to the slope stability problem.

Modern limit equilibrium software based on these techniques solves problems with
complex stratigraphy, uncommon pore-water pressure conditions, any shape of the slip
surface, various linear and nonlinear shear strength models, concentrated loads, and
structural reinforcement.

The advantage of limit analysis is that it uses the associated plastic flow, neglected by
the limit equilibrium methods. Based on the plasticity upper-bound theory, the kinematic
approach of limit analysis can identify the shape of the slip surface that depends on the
plastic criterion of the soil mass and its plastic flow [19–21]. The finite element method
(FEM), constructed by Zienkiewicz (1975), uses the shear strength reduction procedure
(SSR), also known as the strength reduction factor (SRF), to estimate the safety factor by an
elastic–plastic finite element analysis by decreasing the soil strength variables gradually
until failure. For simple geometrically definable surfaces (Lighthall, 1979; Prater, 1979)
such as sinusoidal slip surfaces, the slip surfaces are distinguished by some patterns. The
analysis of each slip surface is completed, and the critical one is chosen [22].

Advantages of the FEM over LEM include the following: (1) There are no initial
assumptions associated with the shape or position of the failure surface. (2) There are no
assumptions regarding slice side forces. (3) FEM predicts progressive failure up to shear
failure. (4) FEM outcomes provide information on predictable deformations.

The experience gained over the last 50 years provides the advantages and limitations
of the finite-element method in practical engineering problems [12]. Studies involving
other methods may improve the understanding of slope stability problems.

Apart from FEM, some other numerical methods have been recently developed [19,23]:
the continuum modelling approach available for the analysis of soil slopes of massive
intact rocks, discontinuous modelling for rock slopes controlled by discontinuity behaviour,
the perturbation method using the Taylor series expansion of random functions for the
mean values [15,24], or the mesh-free Lagrangian method, which is more advantageous
when large deformations occur, e.g., the post-failure behaviour of slope, without mesh
distortion [25]. Unlike these methods, the semi-analytic modelling technique [26], which
allows the modelling of multi-body regions such as the FEM while concurrently sustaining
high fidelity and efficiency of analytical solutions, also applies in slope stability analysis.

1.3. Objectives of the Current Research

The present paper determines the factor of safety and coordinates of the centre of
the slip surface for five limit equilibrium methods (Fellenius, Bishop simplified, Janbu
corrected, Spencer, and Morgenstern–Price) to be compared with the results of the finite
element method.

In a comparative study of slope stability analysis, this paper examines the hypotheses
of various methods for slope stability analysis and their effects on the estimated FoS. The
paper analyses at length two sets of methods used for slope stability: (1) methods based on
limit equilibrium (LEM) and (2) an approach based on upper-bound limit analysis, com-
paring the predictions extracted from these methods to those of FEM analysis performed
with PLAXIS® software [27]. This study compares the limit equilibrium results with those
determined by the shear strength reduction method. In particular, the slip surface assumes
a circular shape in the case of the limit equilibrium method and a logarithmic spiral in the
upper-bound limit analysis. However, in this paper, some limitations of those shapes in
comparison to the other shapes of slip surfaces such as damped sinusoid (damped sine
wave) and parabola are presented. Some case studies have identified the position of the
slipping centre, sampling it according to the initial hypothesis of each method.
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The examples of slope stability presented in the paper occur in homogenous slopes
with various material properties.

2. Materials and Methods

The paper studies the keystone of slope-stability-analysing techniques and the method-
ology for identifying the centre and shape of the slip surface.

2.1. Limit Equilibrium Methods

When studying the stability of a slope, the first issue that needs to be clarified is that of
the slip surface, also known as the critical slip surface in the deterministic method (LEM),
which determines the minimum safety factor [28].

The analysis of this surface could have two distinct aspects regarding the method of
determination of the FoS:

1. Determination of the geometry of the sliding surface through various hypotheses.
The current paper analyses the cylindrical-circular shape (Petterson [29–31] and Felle-
nius [5,32]) and the logarithmic spiral shape (Rendulic, 1935 [33]).

2. Determining the coordinates of the centre of the slip surface.

Each potential slope failure surface, Yf(x), has a different factor of safety that can be
evaluated by the safety function, F[Yf(x)]. The factor of safety can be found by searching
for the critical slope failure surface, Yc(x), associated with the lowest factor of safety.

FoS = min
Yf(x)
{F[Yf(x)]} = F[YC(x)] (2)

The conventional limit equilibrium analysis of slopes involves two steps: (1) Develop-
ment of response rules between the potential slip surfaces and the factor of safety (FoS).
(2) Finding the smallest FoS on all possible slip surfaces. The region representing this
minimum value is the critical slip surface [34]. Finding a critical slip surface involves
finding the minimum factor of safety, so it makes sense to use an optimization method.

The limit equilibrium is a static indeterminate analysis that shares some typical features
and limitations, presuming that the factor of safety is constant along the slip surface,
rendering a slope stability problem determinate. This formulation satisfies statics by
assuming that forces in the soil mass are such that it stays stationary. The sums of moments,
horizontal forces, and vertical forces equal zero (i.e., the factor of safety must reduce the
soil strength until the potential sliding mass is a point of limiting equilibrium).

The following assumptions were made: (1) there is a plane stress state, and stresses
perpendicular to the section of the soil mass are zero; (2) shear strength parameters c and
ϕ are known; (3) pore-water pressure can be estimated from the known water level and
seepage conditions.

All limit equilibrium methods consider the soil mass above the potential slip surface
divided into strips (the planes between strips are always vertical). Figure 1a,b shows the
forces acting on each strip for the Fellenius method [5].
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Figure 1. General slope stability problem for the Fellenius method: (a) geometry of the problem,
(b) convention of vector orientations for equilibrium state analysis.

All methods use an identical definition of the factor of safety (FoS).
If the FoS is large enough, the slope is considered stable (safe). If FoS is 1.0 or less, the

slope is not safe. The main assumption of the safety factor in limit equilibrium is that it is
the same at all points along the slip surface [35].

There are some significant assumptions of the limit equilibrium method of slices
regarding the factor of safety: (1) Factor of safety appears as the factor by which the soil
strength must lower so that the potential sliding mass is a point of limiting equilibrium.
This means that the sum of moments, as well as the sum of forces, must be zero. (2) The
factor of safety is constant along the slip surface. (3) Each slice has the same factor of safety.

2.2. The Upper-Bound Limit Method

Chen (1975), Michalowski (1995) [20], and Donald and Chen (1997) elaborated limit
analysis methods based on rigid-body plasticity theory to lower the influence of presump-
tions made in limit equilibrium methods (LEM) on the factor of safety. These methods,
giving an upper-bound solution to the value of the safety factor, rely on the upper-bound
theorem of limit analysis and are referred to as upper-bound methods [36].

When a given particular structure is under the action of a set of external loads, the
upper-bound theorem (UBT) states that structural collapse occurs if the system permits a
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compatible displacement field, for which the work of the external loads equals that of the
internal stresses [37].

The finite element upper-bound method is a combination of the upper-bound method
and the finite element method. The upper-bound theorem considers compatibility condi-
tions and material properties (which govern the work of internal stress) but disregards
equilibrium conditions [37]. In the upper-bound limit analysis, the principle of the plastic
flow fully defines the shape of the slip surface. Since the soil on a slip surface is assumed to
flow plastically, the plastic flow rule and the principle of maximum plastic work constrain
the trajectory of any point on that surface. When applying the upper-bound theory to slope
stability problems, it is assumed that a slip surface divides the slope into a plastic failure
zone during failure. The stress state at any point is on or within the yield plane, and the dis-
placement at any point in the elastic zone is virtually negligible. Shear failure is dominant
only within the plastic region along the slip surface. The finite element method is mainly
used to discretize the soil mass into finite elements, constructing a kinematically acceptable
failure mechanism that can express external and internal work rates [21]. Accordingly,
the soil above the slip surface performs a rigid-body rotation with respect to the centre of
the slip surface when the sliding occurs. Upper-bound limit analysis provides a suitable
solution for homogeneous slope stability. The upper-bound formulation arises from the
virtual working velocity equation in the form of factor of safety and the limit load of the
slope acting on the top of the slope [38]. The problem of finding the optimal upper-bound
solution is transformed to solve a programming problem using the Excel Solver. The FoS
solution is calculated and then compared with the outcomes of Slope2 Rocscience.

The slope failure mechanism provides a continuous stress and velocity field except
along a slip surface, where the plastic velocity in the elastic zone changes rapidly to zero
through a very narrow shear band (Figure 2).
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Various optimization methods support the determination of the critical failure mode
that determines the minimum safety factor. A slip surface divides by some nodal points
with coordinates given by (i = 1, 2, . . . , m), as Figure 3 shows. Evaluating the slope stability
becomes a numerical problem of finding a set of variables that yield the minimum FoS with
the associated slip surface connected by the nodal points.
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The pink points in Figure 3 are included in the schematic diagram of the steps for the
identification of the critical slip surface for a 2D homogeneous slope: (a) clustering of the
nodal displacements, (b) obtaining the boundary points of the clustering sets, (c) extracting
the scatters near the critical slip surface identified in FEM, and (d) fitting the critical slip
surface in 2D. The pink points are the scatters near the separation surface (the critical slip
surface), i.e., step c.

The technique for finding the minimum safety factor is similar to the one that the con-
ventional methods apply. Of all possible slip surfaces, the one with the highest probability
of slip has the minimum value of the FoS, being the critical slip surface.

On the other hand, with LEM, it is necessary to identify the shape of the critical slip
surface (circular or non-circular) before starting the search procedure or analysing both
variants. With FEM, this is an automated procedure of searching the critical limit load
and associated upper-bound analysis [39]. This is considered a real benefit over LEM,
which uses either a grid method or a random slip surface generator procedure. In this
paper, the objective function, which determines the minimum value of the safety factor
and constrains equations, derived from a plastic energy–work balance equation of the
movement of any point on the slip surface, the Mohr–Coulomb failure (yield) criterion, and
boundary conditions.

For a homogenous soil, the potential failure surface is fully identified once the centre
of the slip surface is known. For a given slope and potential sliding surface, it is possible
to calculate the ratio between resistance moments due to friction and cohesion and active
moment (due to gravity). The minimum of these ratios represents the FoS of the slope.

The objective function with constraints leads to a standard nonlinear programming
problem solved by a sequential algorithm [40]. Seeking the optimal upper-bound solution
transforms into solving a problem within numerous kinematically admissible velocity
fields. This issue occurs due to using the point algorithm implemented in the Excel Solver.
However, applying the upper-bound theorem to slope stability provides uncertain solutions,
i.e., upper-bound solutions or approximate solutions, leading to a very narrow spacing
around the true (unknown) FoS and the corresponding slip surface [37].

2.3. Methodology for the Centre and Slipping Surface Identification in FEM Analysis

Usually, when numerical methods supported by geotechnical software apply, the
shear strength reduction (SSR) technique (Matsui and San, 1992) for homogeneous and
non-homogeneous slope stability problems employed by researchers (e.g., Griffiths and
Lane, 1999) can be used to obtain the FoS [22].

Following this strategy, the strength parameters of the constitutive model used to de-
scribe the soil behaviour are simultaneously diminished by the same factor up to the failure
of the slope. The slope failure is revealed by some numerical indicators; more frequently,
the norm of the displacement vector is chosen as such and compared to some limited big
numbers. The factor to which the strength parameters are reduced at the moment of failure
also represents the FoS. Since the analysis is performed with no hypothesis about the slip
surface or/and slipping centre, to obtain information about them, the following four-step
procedure establishes displacement boundaries of slope stability problem:

1. Based on the slope stability problem results, identify a set of points on the slip surface.
These points can be identified as the ones separating the slip block (large displacement)
from the unmovable soil masses (Figure 4).
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2. Using the coordinates of the set points in 1, find the best fit using the least-squares
method and the slip surface equations. Construct a system of two equations: the
general equation of the second-order surface and a spiral logarithmic one using a
non-linear least-squares procedure.

3. Using the coefficients of surfaces identified in 2, find the nature of the slip surface and
its parameters.

4. For the slip surface identified in step 3, estimate the centre of the slip surface.

After applying the least-squares method, the slip centre in step 4 is the point that fits
best the condition of rigid-body rotation of the slip block.

3. Results
3.1. Case Studies for the Comparative Study

This paper proposes a calculus for the safety factor and the slip centre for three
slopes with particular geometry (Figure 5) and four types of homogeneous soils with
specific properties (Table 1) using, on the one hand, various limit equilibrium methods
and the upper-bound limit method and, on the other hand, numerical calculations using
FEM software. The selected cohesive soils provide varied strength characteristics ranging
from almost non-plastic clayey sands to cohesive clays. The cohesion parameter for the
cohesionless sand is considered to be as small as near zero to avoid numerical errors [16].
In all cases, there is no external load other than the gravitational force, i.e., body force.
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Motivation for choosing the four types of soils: The four types of soils are clayey
silt, sandy-clayey silt, sandy-silty clay, and clay, as given in Table 2. These types of soils
are considered to model different types of soil shear strengths. Table 2 summarises the
geotechnical parameters of various soil types. The slip surface of slopes for homogeneous
soils can approach a circular cylinder.

Table 2. Geotechnical characteristics of soil.

Type of Soil γ
[kN/m3]

c’

[kPA]
φ′

[◦]

S1¯clayey silt (IP = 12, IC = 0.50, e = 0.90 ) 18.0 10 18

S2¯sandy− clayey silt (IP = 14, IC = 0.70, e = 0.80) 19.0 15 20

S3¯sandy− silty clay (IP = 16, IC = 0.90, e = 0.60) 19.5 20 24

S4¯clay (IP = 28, IC = 0.80, e = 0.55 ) 20.0 40 20

Motivation for choosing the three slope angles (gradients): To reveal that, when Vary-
ing the slope angle gradually and keeping the height of the slope and the soil parameters
constant, the factor of safety increases as the slope angle decreases. The decrease in slope
increases the factor of safety almost linearly. There is a strong and opposite relation between
slope angle and factor of safety for the four types of soils considered.

Motivation for choosing the two heights (8 m and 3 m, respectively): Results presented
in the paper show that the FoS (stability, implicitly) is not independent of the slope height,
even in the case of homogeneous slopes. The factor of safety increases as the slope height
decreases, as the pair of Tables 3–8 show for the same type of soil and gradient. Results are
similar for all the four types of soils investigated and using any method. This indicates a
strong relationship between the slope height and the factor of safety.

Additionally, at a lower height, i.e., 3 m height, the failure mode in clays (S4) tends to
be base slide for all three gradients, while at 8 m height, the failure mode tends to be toe
slide. On sandy soils, the failure mode tends to be toe slide for either 3 m height or 8 m.

The reason why the study presents the stability results at 3 m height derives from the
paper carried out by [41], which indicates a lower rate of decrease in the factor of safety for
slopes higher than 3 m. For slope heights less than 3 m, the factor of safety increases at a
higher rate.

Slope height and slope angle can be optimized to maximize the slope factor of safety.
The above tables show that the influence of decreasing slope height and angle simultane-
ously can also be studied.

For the limit equilibrium method (LEM), the Slide2 Rocscience Program performed
the analysis, while the PLAXIS software performed the FEM analysis.

The Slide2 Rocscience Program simplifies the process of finding the safety factor
and the critical slip surface on the strength of limit equilibrium methods. The software
enables the study of the uncertainties regarding the slope geometry and properties of
various soils, the potential failure surfaces, and the use of accurate static methods. It allows
for narrowing the range of acceptable solutions and assesses the errors involved in slice
methods [8]. The LE methods used in this paper using the Slide2 Rocscience Program
are the Fellenius/Petterson method, Bishop method, Janbu method, Morgenstern–Price
method, and Spencer method, considering circular slip surfaces. The geometric model was
nested into the Slide2 Rocscience Program software, assigning the soil properties for the
specified interface [42,43]. In the analysis stage, a circular slip surface was in use. The limit
equilibrium method of slices required iterative techniques to solve the nonlinear factor of
safety equations and find the coordinates of the slip surface. In Slide2 Rocscience Program,
the Grid Search Method was used for locating the Global Minimum safety factor for circular
slip surfaces (Figure 6a–e). The slip centre grid specifies the number of grid intervals in
the X (80) and Y (100) directions, creating a regular grid of slip centres. Each centre in the
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slip centre grid represents the centre of rotation of a series of slip circles. Slide2 uses Slope
Limits and Radius Increment to generate the circle’s radii at each point.
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Figure 6. (a–e). The circular slip surface for the minimum factor of safety achieved through an
optimization algorithm of the Slide2 Rocscience Program for a slope with the geometry 1:1.5, H = 3 m,
S4, using five distinct limit methods.

The numerical analysis used PLAXIS (2D), which is a FEM-based software. The slope
divides into small elements, and a stress–strain relationship defines each case. The mesh
refinement and the number of elements strongly affect the computed FoS.

The selection of the numerical model imposes large enough horizontal and vertical
dimensions to not impact the results of the slope stability analysis. In the example illustrated
in Figure 7, the lateral dimensions are large, and the model maintains a similar principle
regarding the depth to ensure that there is no boundary perturbation. The study considers
50 × 30 m dimensions for the model, foreseeing a slight decrease in the FoS.
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A very dense mesh around the sloping area is an important matter. The finer the 

mesh, the closer the results will be to each other. However, if the “classical” mesh is main-

tained, FoS will not decrease dramatically. The analyses used the Mohr–Coulomb failure 
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Figure 7. Construction of the model for the slope 1:1, H = 3 m, S1.

All cases analysed operate with plane strains and 15-node triangular elements.
To limit the number of elements, although four polygons were constructed, only the

central one had a particularly dense mesh around the slip surface (Figure 8), ten times
thicker than the other three polygons, which had moderately dense meshes. The purpose
of using a fine mesh is to achieve good accuracy concerning the picked-up points according
to the procedure specified in Section 2.3.
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Figure 8. Mesh construction: plane strain and 15-node triangular elements with a fine mesh around
the slip surface for the slope 1:1, H = 3 m, S1.

A very dense mesh around the sloping area is an important matter. The finer the mesh,
the closer the results will be to each other. However, if the “classical” mesh is maintained,
FoS will not decrease dramatically. The analyses used the Mohr–Coulomb failure criterion
and a perfect plastic flow with no plastic dilatancy.

3.2. Results

In most of the cases examined, the predicted failure surface passes through the toe of
the slope and does not extend below this point. However, in the cases of the 1:1.5, H = 3 m,
S2 slope and 1:1, H = 8 m, S1 slope, a base failure occurs, i.e., the failure surface passes
below the toe.

The mesh refinement and the number of picked-up elements strongly affect the com-
puted FoS. Furthermore, the adaptive mesh refinement influences the error margin between
the upper and lower bounds.

For the cases where the safety factor is greater than 1, the slope yields through the phi-c
reduction procedure. In this case, there is no difference between the diagram for total deformation
(Phase 1) and that for incremental deformation (Initial Phase) (Figures Figures 9–11 and 12a–h).



Sustainability 2022, 14, 8847 13 of 30

Sustainability 2022, 14, 8847 13 of 29 
 

3.2. Results 

In most of the cases examined, the predicted failure surface passes through the toe of 

the slope and does not extend below this point. However, in the cases of the 1:1.5, H = 3 

m, S2 slope and 1:1, H = 8 m, S1 slope, a base failure occurs, i.e., the failure surface passes 

below the toe. 

The mesh refinement and the number of picked-up elements strongly affect the com-

puted FoS. Furthermore, the adaptive mesh refinement influences the error margin be-

tween the upper and lower bounds. 

For the cases where the safety factor is greater than 1, the slope yields through the 

phi-c reduction procedure. In this case, there is no difference between the diagram for 

total deformation (Phase 1) and that for incremental deformation (Initial Phase) (Figure 9, 

Figures 10–12a–h). 

 

Figure 9. Total displacements for the slope 1:1, H = 3 m, S1. 

  

(a) 1:1.5, H = 3 m, S1 (b) 1:1.5, H = 3m, S2 

  

(c) 1:1.5, H = 3 m, S3 (d) 1:1.5, H = 3 m, S4 

Figure 9. Total displacements for the slope 1:1, H = 3 m, S1.

Sustainability 2022, 14, 8847 13 of 29 
 

3.2. Results 

In most of the cases examined, the predicted failure surface passes through the toe of 

the slope and does not extend below this point. However, in the cases of the 1:1.5, H = 3 

m, S2 slope and 1:1, H = 8 m, S1 slope, a base failure occurs, i.e., the failure surface passes 

below the toe. 

The mesh refinement and the number of picked-up elements strongly affect the com-

puted FoS. Furthermore, the adaptive mesh refinement influences the error margin be-

tween the upper and lower bounds. 

For the cases where the safety factor is greater than 1, the slope yields through the 

phi-c reduction procedure. In this case, there is no difference between the diagram for 

total deformation (Phase 1) and that for incremental deformation (Initial Phase) (Figure 9, 

Figures 10–12a–h). 

 

Figure 9. Total displacements for the slope 1:1, H = 3 m, S1. 

  

(a) 1:1.5, H = 3 m, S1 (b) 1:1.5, H = 3m, S2 

  

(c) 1:1.5, H = 3 m, S3 (d) 1:1.5, H = 3 m, S4 

Figure 10. Cont.



Sustainability 2022, 14, 8847 14 of 30Sustainability 2022, 14, 8847 14 of 29 
 

  

(e) 1:1.5, H = 8 m, S1 (f) 1:1.5, H = 8 m, S2 

  

(g) 1:1.5, H = 8 m, S3 (h) 1:1.5, H = 8 m, S4 

Figure 10. (a–h) Soil mass areas prone to move and the slip surfaces for the slope 1:1.5 (8 cases). 

  

(a) 1:1, H = 3 m, S1 (b) 1:1, H = 3 m, S2 

  

(c) 1:1, H = 3 m, S3 (d) 1:1, H = 3 m, S4 

Figure 10. (a–h) Soil mass areas prone to move and the slip surfaces for the slope 1:1.5 (8 cases).

Sustainability 2022, 14, 8847 14 of 29 
 

  

(e) 1:1.5, H = 8 m, S1 (f) 1:1.5, H = 8 m, S2 

  

(g) 1:1.5, H = 8 m, S3 (h) 1:1.5, H = 8 m, S4 

Figure 10. (a–h) Soil mass areas prone to move and the slip surfaces for the slope 1:1.5 (8 cases). 

  

(a) 1:1, H = 3 m, S1 (b) 1:1, H = 3 m, S2 

  

(c) 1:1, H = 3 m, S3 (d) 1:1, H = 3 m, S4 

Figure 11. Cont.



Sustainability 2022, 14, 8847 15 of 30Sustainability 2022, 14, 8847 15 of 29 
 

  

(e) 1:1, H = 8 m, S1 (f) 1:1, H = 8 m, S2 

  

(g) 1:1, H = 8 m, S3 (h) 1:1, H = 8 m, S4 
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Figure 12. (a–h) Soil mass areas prone to move and the slip surfaces for the slope 2:1 (8 cases). 
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Figure 12. (a–h) Soil mass areas prone to move and the slip surfaces for the slope 2:1 (8 cases).

If the stability factor is less than 1.00 (Slope 1:1, H = 8.00 m, S1; Slope 2:1, H = 8.00 m,
S1; Slope 2:1, H = 8.00 m, S2), the slope yields from gravitational loading (Initial Phase).

Figure 13 shows the plastic points for the Slope 1:1, H = 8.00 m, S1, and Figure 14 shows
the result for the total deformation, a representation that cannot be useful for determining
the slip surface.
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Figure 14. Total deformation 1:1, H = 8 m, S1 (Phase 1).

In these cases, the problem reduces to extracting from the diagram of incremental
deformations that follow the slip surface (yielding surface) those points on the band of “0”
(Figure 15).
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Since the block slips, the boundaries slip. Therefore, the slip surface consists of the
sum points that (1) develop very slight displacements compared to the slip block and (2) are
near the points with large displacements.

Picking up some of the points with a displacement very close to zero from all those
points along the line separating the slip block from the unmoving soil mass, reading their
coordinates, and then writing their coordinates to an Excel file required creating a table
consisting of enough points supposed to define the slip surface. However, the coordinates of
the centre of the circular slip surface (if it is a circle) were not yet obtained. The programme
found (Xc, Yc).

Three points are enough to define a circle if all three are eligible for selection, and
the surface is a circle. However, since there were errors in picking up the points (because
of both the mesh and the subjective interpretation of the so-called “close to zero points”),
an adjustment of the perfect circle was needed, which was achieved by applying the
least-squares method.

The objective consisted of adjusting the parameters of the chosen model function
to best fit data sets. The data set used in this study consists of “n” picked-up points for
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each case (data pairs) (xi, yi), i = 1, . . . , n, where ”x” is an independent variable, and
”y” is a dependent variable, with the values found by observation. The fitting of the
model distribution to a data point was measured by its residual, which is defined as the
difference between the observed value of the dependent variable and the fitting value
predicted by the model used on the result of each equation. The least-squares method
approximated the solutions, finding the optimal parameter values by minimizing the sum
of squared residuals.

Tables 3–8 and Figures 16–21 present the safety factors resulting from five LE methods
(Slope2 Rocscience) [3] and FEM (PLAXIS 2D). All regarded LE methods consider the slip
surface to be circular. The comparative results between FEM, also considering circular slip
surfaces (the benchmark), and LEM found that, commonly, the FoS are similar.

Table 3. Results for Slope 1:1.5, H = 3.0 m, S1–S4.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.994 1.600 4.296 4.711 2.602 1.646 4.357 4.741

Bishop simplified 2.081 1.508 5.210 5.432 2.698 1.600 4.966 5.216

Janbu corrected 2.102 1.554 4.783 5.094 2.743 1.646 4.783 5.062

Spencer 2.079 1.508 5.210 5.432 2.696 1.600 4.905 5.170

Morgenstern–Price 2.077 1.508 5.210 5.432 2.695 1.600 4.905 5.170

FEM (Plaxis)—circular 2.063 1.374 5.626 5.919 2.689 1.558 5.598 6.048

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 3.314 1.692 4.357 4.726 5.203 1.866 4.513 6.110

Bishop simplified 3.431 1.646 4.783 5.062 5.329 1.720 4.513 4.834

Janbu corrected 3.495 1.646 4.783 5.062 5.521 1.866 5.123 6.539

Spencer 3.429 1.646 4.783 5.062 5.330 1.720 4.513 4.834

Morgenstern–Price 3.427 1.646 4.783 5.062 5.328 1.720 4.513 4.834

FEM (Plaxis)—circular 3.423 1.564 5.366 5.908 5.282 1.986 5.417 6.793
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Figure 16. FoS for Slope 1:1.5, H = 3.00 m, S1–S4.
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Table 4. Results for slope 1:1.5, H = 8.0 m, S1 = S4.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.170 2.270 13.973 14.159 1.464 2.710 13.364 13.638

Bishop simplified 1.224 1.390 15.040 15.104 1.532 1.976 14.354 14.490

Janbu corrected 1.223 1.976 14.354 14.490 1.532 2.563 13.592 13.830

Spencer 1.222 1.390 15.040 15.104 1.528 1.976 14.354 14.490

Morgenstern–Price 1.221 1.390 15.040 15.104 1.528 1.976 14.354 14.490

FEM (Plaxis) 1.195 1.161 17.484 17.706 1.509 1.859 16.742 17.024

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.844 2.930 13.059 13.381 2.513 3.957 11.230 11.912

Bishop simplified 1.930 2.050 14.278 14.422 2.601 3.737 11.687 12.270

Janbu corrected 1.931 2.563 13.592 13.830 2.655 3.664 11.840 12.390

Spencer 1.925 2.050 14.278 14.422 2.599 3.590 11.992 12.510

Morgenstern–Price 1.925 2.050 14.278 14.422 2.597 3.737 11.687 12.270

FEM (Plaxis) 1.844 2.930 13.059 13.381 2.604 3.915 14.845 15.915
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Figure 17. FoS for Slope 1:1.5, H = 8.00 m, S1–S4.

Table 5. Results for slope 1:1, H = 3.0 m.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.752 0.565 4.864 4.897 2.298 0.703 4.620 4.674

Bishop simplified 1.785 0.382 5.169 5.183 2.338 0.382 5.169 5.183

Janbu corrected 1.851 0.382 5.169 5.183 2.440 0.382 5.169 5.183

Spencer 1.784 0.382 5.169 5.183 2.338 0.382 5.169 5.183

Morgenstern–Price 1.784 0.382 5.169 5.183 2.337 0.382 5.169 5.183

FEM (Plaxis) 1.678 0.113 5.237 5.260 2.210 0.283 5.183 5.225

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R
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Table 5. Cont.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 2.931 0.703 4.620 4.674 4.707 0.978 4.071 4.190

Bishop simplified 2.980 0.565 4.864 4.897 4.738 0.978 4.071 4.190

Janbu corrected 3.116 0.382 5.169 5.183 5.106 0.565 4.864 4.897

Spencer 2.980 0.565 4.864 4.897 4.878 0.290 5.291 5.306

Morgenstern–Price 2.978 0.565 4.864 4.897 4.794 0.428 5.108 5.121

FEM (Plaxis) 2.821 0.334 5.159 5.195 4.489 0.782 5.210 5.325
Sustainability 2022, 14, 8847 20 of 29 
 

 

Figure 18. FoS for Slope 1:1, H = 3.00 m, S1–S4. 

Table 6. Results for slope 1:1, H = 8.0 m. 

Soil Type S1 S2 

Method FoS XC YC R FoS XC YC R 

L
E

M
 (

S
li

d
e)

 Fellenius 0.962 −0.754 12.235 12.255 1.222 −0.020 11.778 11.771 

Bishop simplified 0.994 −1.047 12.388 12.431 1.258 −0.387 12.007 12.011 

Janbu corrected 1.011 −0.901 12.311 12.343 1.287 −0.387 12.007 12.011 

Spencer 0.992 −1.047 12.388 12.431 1.256 −0.387 12.007 12.011 

Morgenstern−Price 0.992 −0.974 12.388 12.413 1.255 −0.460 12.083 12.081 

FEM (Plaxis) 0.947 −2.204 15.199 15.376 1.190 −1.716 14.472 14.705 

Soil Type S3 S4 

Method FoS XC YC R FoS XC YC R 

L
E

M
 (

S
li

d
e)

 Fellenius 1.545 −0.020 11.778 11.771 2.193 1.464 10.518 11.016 

Bishop simplified 1.589 −0.387 12.007 12.011 2.227 0.950 10.975 11.016 

Janbu corrected 1.630 −0.387 12.007 12.011 2.353 0.143 14.785 14.786 

Spencer  1.588 −0.387 12.007 12.011 2.222 1.317 10.670 10.736 

Morgenstern−Price 1.586 −0.387 12.007 12.011 2.227 0.950 10.975 11.016 

FEM (Plaxis) 1.501 −1.315 13.789 13.944 2.130 0.032 14.438 14.537 

 

Figure 19. FoS for Slope 1:1, H = 8.00 m, S1–S4. 

  

1
.7

5

1
.7

9

1
.8

5

1
.7

8

1
.7

8

1
.6

82
.3

0

2
.3

4

2
.4

4

2
.3

4

2
.3

4

2
.2

1

2
.9

3

2
.9

8

3
.1

2

2
.9

8

2
.9

8

2
.8

2

4
.7

1

4
.7

4 5
.1

1

4
.8

8

4
.7

9

4
.4

9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

F E L B I S J A N S P E M O R F E M

F o S  f o r  S l o p e  1 : 1 ,  H  =  3 . 0  m

S1 S2 S3 S4

0
.9

6

0
.9

9

1
.0

1

0
.9

9

0
.9

9

0
.9

51
.2

2

1
.2

6

1
.2

9

1
.2

6

1
.2

6

1
.1

9

1
.5

4

1
.5

9

1
.6

3

1
.5

9

1
.5

9

1
.5

0

2
.1

9

2
.2

3

2
.3

5

2
.2

2

2
.2

3

2
.1

3

0.0

0.5

1.0

1.5

2.0

2.5

F E L B I S J A N S P E M O R F E M

F o S  f o r  s l o p e  1 : 1 ,  H  =  8 . 0  m

S1 S2 S3 S4

Figure 18. FoS for Slope 1:1, H = 3.00 m, S1–S4.

Table 6. Results for slope 1:1, H = 8.0 m.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 0.962 −0.754 12.235 12.255 1.222 −0.020 11.778 11.771

Bishop simplified 0.994 −1.047 12.388 12.431 1.258 −0.387 12.007 12.011

Janbu corrected 1.011 −0.901 12.311 12.343 1.287 −0.387 12.007 12.011

Spencer 0.992 −1.047 12.388 12.431 1.256 −0.387 12.007 12.011

Morgenstern−Price 0.992 −0.974 12.388 12.413 1.255 −0.460 12.083 12.081

FEM (Plaxis) 0.947 −2.204 15.199 15.376 1.190 −1.716 14.472 14.705

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.545 −0.020 11.778 11.771 2.193 1.464 10.518 11.016

Bishop simplified 1.589 −0.387 12.007 12.011 2.227 0.950 10.975 11.016

Janbu corrected 1.630 −0.387 12.007 12.011 2.353 0.143 14.785 14.786

Spencer 1.588 −0.387 12.007 12.011 2.222 1.317 10.670 10.736

Morgenstern−Price 1.586 −0.387 12.007 12.011 2.227 0.950 10.975 11.016

FEM (Plaxis) 1.501 −1.315 13.789 13.944 2.130 0.032 14.438 14.537
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Figure 19. FoS for Slope 1:1, H = 8.00 m, S1–S4.

Table 7. Results for slope 2:1, H = 3.0 m.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.405 −1.350 4.681 4.866 1.869 −1.029 4.437 4.554

Bishop simplified 1.396 −1.350 4.681 4.866 1.853 −1.029 4.437 4.554

Janbu corrected 1.512 −1.625 4.864 5.122 2.034 −1.533 4.803 5.036

Spencer 1.639 −2.166 7.790 7.873 2.203 −0.799 7.729 7.768

Morgenstern−Price 1.631 −1.212 7.790 7.881 2.186 0.576 2.365 2.672

FEM (Plaxis) 1.389 −1.473 5.429 5.666 1.860 −1.267 5.293 5.481

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 2.392 −1.029 4.437 4.554 3.985 −0.799 4.254 4.328

Bishop simplified 2.371 −1.029 4.437 4.554 3.941 −0.249 3.767 3.772

Janbu corrected 2.610 −1.441 4.742 4.951 4.421 −1.808 7.851 8.052

Spencer 2.812 0.668 2.243 2.565 4.752 −0.020 7.546 7.549

Morgenstern−Price 2.790 0.622 2.304 2.618 4.635 0.255 1.938 2.702

FEM (Plaxis) 2.379 −1.268 5.424 5.612 3.970 −0.535 4.955 5.106
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Figure 20. FoS for Slope 2:1, H = 3.00 m, S1–S4.
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Table 8. Results for slope 2:1, H = 8.0 m.

Soil Type S1 S2

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 0.745 −4.059 10.172 10.951 0.961 −3.619 10.324 10.934

Bishop simplified 0.741 −2.959 8.724 9.211 0.951 −2.812 8.724 9.160

Janbu corrected 0.792 −4.573 11.544 12.404 1.022 −4.426 11.620 12.433

Spencer 0.762 −4.206 11.848 12.544 1.007 −3.106 12.382 12.759

Morgenstern−Price 0.766 −3.986 11.925 12.565 1.009 −3.106 12.458 12.806

FEM (Plaxis) 0.598 −7.835 17.389 19.126 0.886 −7.202 16.031 17.663

Soil Type S3 S4

Method FoS XC YC R FoS XC YC R

LE
M

(S
lid

e)

Fellenius 1.219 −4.426 11.620 12.433 1.803 −1.749 10.461 10.605

Bishop simplified 1.206 −2.739 8.724 9.134 1.762 −1.162 8.327 8.407

Janbu corrected 1.299 −4.426 11.620 12.433 1.956 −2.996 12.442 12.788

Spencer 1.290 −2.812 12.534 12.833 2.038 0.085 13.509 13.504

Morgenstern−Price 1.285 −2.886 12.534 12.838 2.015 −0.135 13.509 13.487

FEM (Plaxis) 1.171 −7.384 15.778 17.502 1.786 −3.974 14.841 15.487
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Figure 21. FoS for Slope 2:1, H = 8.00 m, S1–S4.

Knowledge of the critical slip surface profile beneath the landslide is essential for
stability analysis and design of remedial works. Hence, the study selected different models
for the slip surface and utilized the measurements of displacements performed in FEM
to forecast the position and shape of the slip surface, accepting that this surface is not
necessarily circular.

By observation, the study selected three distinct models for the potential slip surface,
i.e., a damped sinusoid, a second-degree parabola, and a logarithmic spiral determined
by both polar and Cartesian coordinates, by using the same picked-up points as for the
circular slip surfaces already defined in each case investigated, which were considered
benchmarks for these models.

Figure 22 shows a log-spiral failure curve and the associated parameters used in
the current characterization. Functions Ys(x) and Yf(x) describe slope surface and failure
surface, respectively. Yf(x) corresponds to a log spiral, described by ‘r’ in polar coordinates.
Coordinates (Xc, Yc) represent the pole of the log spiral of the Cartesian system with the
origin at the toe of the slope. That is the reason why (Xs, Ys) and (Xe, Ye) are the coordinates
at which the failure surface intersects the slope surface, associated with angles θs and θe of
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polar coordinates [33]. The log-spiral failure surface predicts the critical failure surface of
different 2D slope geometries studied using an optimization process.
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Figure 22. The log-spiral failure surface (after [33]).

The equations corresponding to the three types of slip surface models are the following:

Damped sinusoid : y = A·e−γt· cos(ωt +φ)− B (3)

Second− degree parabola : y = A·x2 + B·x + C (4)

Logarithmic− spiral 1 : r = roeθtgϕ (polar coordinates) (5)

where r is the spiral radius (i.e., distance from the pole to the failure surface), ro is the radius
value for = 0◦, and φ is the friction angle of the material.

Logarithmic spiral 2 : y(t) = aebt sin(t) (Cartesian coordinates) (6)

The most efficient approach for finding coefficients that minimize the error for these
models was also to use least-squares optimization. Table 9 presents the fitting parameters
for the damped sinusoid and second-degree parabola for all cases considered, neces-
sary to plot a potential critical slip surface as close as possible to that determined by the
picked-up points.

Table 9. Fitting parameters for the damped sinusoid and second-degree parabola for all the consid-
ered cases.

Slope Hight Soil Type
Damped Sinusoid

y = A·e−γt·cos(ωt+φ)−B
Second−Degree Parabola

y = A·x2+B·x+C

A ω φ γ B A B C

1:1.5

3.0 m

S1 50.024 0.052 3.849 −0.052 −37.952 0.124 −0.402 −0.044

S2 57.596 0.054 3.633 −0.036 −50.601 0.121 −0.426 −0.162

S3 60.563 0.056 3.535 −0.030 −55.660 0.123 −0.427 −0.280

S4 74.381 0.054 2.939 0.005 −71.736 0.104 −0.422 −1.108

8.0 m
S1 77.753 0.032 3.220 −0.005 −77.576 0.043 −0.219 0.062

S2 63.134 0.029 3.683 −0.021 −54.063 0.044 −0.268 0.067
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Table 9. Cont.

Slope Hight Soil Type
Damped Sinusoid

y = A·e−γt·cos(ωt+φ)−B
Second−Degree Parabola

y = A·x2+B·x+C

A ω φ γ B A B C

S3 62.264 −0.038 3.769 0.020 −49.316 0.036 −0.275 −1.140

S4 32.854 −0.044 2.866 −0.023 −31.173 0.047 −0.434 −0.342

1:1

3.0 m

S1 3.572 0.000 4.765 −0.583 0.260 0.161 −0.219 0.062

S2 8.327 0.016 4.689 −0.360 −0.126 0.157 −0.243 0.044

S3 1.699 0.000 4.798 −0.613 0.229 0.159 −0.262 0.063

S4 11.259 0.033 4.557 −0.238 −1.664 0.145 −0.322 0.018

8.0 m

S1 65.402 0.037 3.673 −0.021 −56.557 0.063 −0.057 0.213

S2 65.545 0.037 3.665 −0.021 −56.799 0.063 −0.066 0.052

S3 66.168 0.039 3.637 −0.022 −58.359 0.070 −0.142 0.190

S4 4.203 0.000 4.852 −0.207 0.825 0.059 −0.201 0.170

2:1

3.0 m

S1 3.016 −0.019 4.894 −0.648 0.603 0.195 0.075 0.014

S2 2.378 −0.023 4.877 −0.772 0.433 0.201 0.016 0.038

S3 3.110 −0.017 4.873 −0.650 0.568 0.193 0.030 0.020

S4 0.993 −0.021 4.826 −1.134 0.212 0.193 −0.120 −0.039

8.0 m

S1 7.766 −0.012 4.876 −0.337 1.182 0.067 0.291 0.081

S2 9.021 −0.009 4.833 −0.368 1.026 0.077 0.250 0.075

S3 8.493 −0.010 4.840 −0.381 0.080 0.267 0.073 0.080

S4 9.082 −0.005 4.783 −0.378 0.639 0.072 0.052 0.090

Then, the study found the fitting parameters for the log spiral using the same optimiza-
tion method, with slight differences in the results achieved in polar coordinates compared
to those obtained in the Cartesian system in all cases. Then, the study compared the values
of the fitting errors for each type of slip surface investigated with the fitting errors of the
classical circular benchmark slip surface calculated above (Table 10).

Table 10. Fitting errors of regression curves for five distinct shapes of the potential slip surface (the
circular benchmark slip surface included) and three distinct slope gradients for the discussed cases.

Slope Hight Soil Type
Fitting Shape

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

1:1.5

3.0 m

S1 0.438 0.057 0.104 0.069 0.162
S2 0.860 0.109 0.147 0.092 0.307

S3 1.273 0.132 0.149 0.108 0.296
S4 7.541 0.460 0.465 0.471 1.014

8.0 m

S1 0.573 0.480 0.527 0.082 0.263
S2 0.792 0.272 0.682 0.136 0.445
S3 9.166 0.808 1.752 1.238 1.828
S4 4.831 0.745 1.140 0.544 1.638

1:1

3.0 m

S1 0.143 0.182 0.358 0.128 0.117
S2 0.106 0.161 0.331 0.093 0.088
S3 0.097 0.136 0.362 0.077 0.085
S4 0.087 0.172 0.340 0.077 0.068

8.0 m

S1 0.389 0.230 0.379 1.504 0.345
S2 0.895 1.489 1.704 0.662 0.926
S3 0.696 1.276 1.354 0.363 0.538
S4 1.750 2.132 3.572 1.438 1.781
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Table 10. Cont.

Slope Hight Soil Type
Fitting Shape

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

2:1

3.0 m

S1 0.139 0.054 0.028 0.135 0.057
S2 0.057 0.016 0.020 0.041 0.029
S3 0.208 0.095 0.041 0.130 0.101
S4 0.536 0.042 0.053 0.081 0.152

8.0 m

S1 0.673 0.069 0.187 0.594 2.232
S2 1.036 0.061 0.207 0.234 0.626
S3 1.237 0.037 0.183 0.206 0.764
S4 1.537 0.114 0.341 0.887 0.779

Shape 1—circle, Shape 2—damped sinusoid, Shape 3—second-degree parabola, Shape 4—log-spiral 1 (polar
coordinates), Shape 5—log-spiral 2 (Cartesian coordinates).

Figure 23a–c shows the graphs of the regression curves for five distinct shapes of the
potential slip surface, including the benchmark (the circular slip surface) for three different
slope gradients and H = 3, S1.
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Figure 23. Graphs of regression curves for five distinct shapes of the potential slip surface and three
distinct slope gradients, H = 3, S1.

The results in Figure 23 show that, as expected, the logarithmic spiral seems to fit
best for 1:1.5 and 1:1 slopes, while, unexpectedly, the optimal shape for 2:1 steep slopes
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is a damped sinusoid. However, the parabola seems to verify some cases quite well. The
circular surface does not seem to confirm any case taken into account.

4. Discussion and Conclusions

This study proposes a sustainable slope stability analysis by comparing distinct meth-
ods. The goal of the study was to obtain valuable information on the factor of safety
and render evidence on failure mechanisms through critical slip surface determination.
Examples of slope stability analysis were performed on homogenous slopes with three
distinct slope gradients (1:1.5; 1:1; 2:1), two definite slope heights (H-3 m; H-8 m), and
four different soil characteristics (S1–S4) from non-plastic clayey sands to cohesive clays.
In terms of types of soils, i.e., S1—clayey silt, S2—sandy-clayey silt, S3—sandy-silty clay,
and S4—clay, they were selected due to their distinct mechanical characteristics to model
different types of soil shear strengths. Based on the findings, the following statements
are conclusive:

• The stability analysis compared the safety factor values obtained by the limit equilib-
rium method with those resulting from the upper-bound analysis by connecting the
advantages provided by the upper-bound theorem with the finite element method
through a strength reduction method with displacement-based finite element method
(strength reduction finite element analysis).

• Numerical models run in PLAXIS 2D using these data led to accurate results regarding
the factor of safety compared to those obtained in Slope2 Rocscience using five LE meth-
ods (Fellenius, Bishop simplified, Janbu corrected, Spencer, and Morgenstein–Price).
The comparison has significant importance for verifying slope stability requirements.

• The results being in good agreement in the cases taken into account show the influence
of the slope geometry on the safety factor. Varying the slope angle gradually while
keeping the height of the slope constant, the factor of safety increases as the slope
angle decreases for the same type of soil, as Tables 3–8 show. The decrease in slope
increases the factor of safety almost linearly. There is a strong and opposite relation
between slope angle and factor of safety for the four types of soils. Results also show
that the FoS (stability, implicitly) is dependent of the slope height, even in the case of
homogeneous slopes. The factor of safety increases as the slope height decreases, as
the pair of Tables 3–8 show for the same type of soil and gradient. Additionally, at
a lower height, i.e., 3 m, the failure mode in clays (S4) tends to be base slide for all
the three gradients, while at 8 m height, the failure mode tends to be toe slide. All
these results indicate a strong relationship between the slope height and the factor of
safety. In this regard, the geometry of the slope (height and angle) may and should be
optimized to maximize the slope factor of safety.

• The mesh shape has a limited influence on the slope stability in FEM. However, both
mesh size and density significantly influence the shape of the slip surface. Hence, the
study adopted a local mesh refinement in the critical area and sparse mesh in the other
areas. Furthermore, the adaptive mesh refinement influences the error margins.

• Even though the comparison of the factor of safety resulting from the analysed meth-
ods shows a slight difference, this approach indicates a fundamental difference in
their basic principles. While the LE method relies on the formulations of the limit
equilibrium dependent on a static force or moment equilibrium, the other formulation
depends on the stress–strain relationship. It finds a critical slip surface where the
excessive strains are localised and computes the FoS by a c-phi reduction procedure for
the Mohr–Coulomb model. This analysis calculates the safety factor for each element
along with the CSS. That makes the FoS more reliable than in the LE methods.

• Compared to LEM, numerical analysis does not require any a priori definition of the
failure mechanism and provides accurate upper bounds of the (FoS) but is limited by
the associated flow rules.

• Even though both methods provide tight values for safety factor estimation, potential
slip surface, and the presumed centre of the slip surface, they have their advantages
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and limitations. The values achieved indicate that the frequency of using the upper-
bound limit method may be similar to using LEM in routine analysis and design,
considering the limitations of each method in evaluating the results.

• Graphs of the regression curves for five distinct shapes of the critical slip surface,
including the benchmark (the circular slip surface), show that the shape of the slip
surface is not necessarily the same in the case of the same slope example. Depending on
the slope geometry and material, a critical slip surface may develop layouts closer to a
logarithmic spiral, damped sinusoid, parabola, or circle. Presented results could serve
as a starting point for further research on the shape of the CSS. They should further
progress to provide relevant interpretations summarized in the form of regression
curves for some other shapes, defining the most probable shape of the CSS using
various equations.

• The conclusion from the above discussion states that reliable methods are available
for searching for critical slip surfaces and calculating the safety factor for a slope.
However, no approach can involve all the uncertainties that emerged in the safety
factor and CSS calculus, on the one hand, and the shape of the CSS still needs to
be attentively studied, on the other hand. Thus, slope stability analysis requires an
increasingly accurate strategy.

For non-homogeneous slopes, because of the material interruption at the interface,
the discontinuity of the slope material parameters inevitably leads to discontinuities of the
stress field occurring along the interfaces of each layer. That brings difficulties to the direct
use of a classical optimization algorithm for CSS search. For this reason, the sliding surface
search can rely on the global procedure of slope stability, which takes the whole slip mass
and does not introduce inter-slice forces, leading to a much smaller scale of computations
compared to the method of slices. The non-linearity can be reduced by treating the safety
factor as an independent variable like other variables. The material interruption in c and
ϕ of a non-homogeneous slope should be expressed by a function to achieve continuous
and smoothing internal material parameters. A series of discrete points in the potential
slip surface can be set up, reaching convergence after a consistent iteration process and
determining the FoS and the shape of the CSS. This study envisages a continuation of the
research that takes into account the non-homogeneity of the slope.
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