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Abstract: Smart farming aims to improve farming using modern technologies and smart devices.
Smart devices help farmers to collect and analyze data regarding different aspects of their business.
These data are utilized by various stakeholders, including farmers, technology providers, supply
chain investigators, and agricultural service providers. These data sources can be considered big
data due to their volume, velocity, and variety. The wide use of data collection and communication
technologies has increased concerns about the privacy of farmers and their data. Although some
previous studies have reviewed the security aspects of smart farming, the privacy challenges and
solutions are not sufficiently explored in the literature. In this paper, we present a holistic review of
big data privacy in smart farming. The paper utilizes a data lifecycle schema and describes privacy
concerns and requirements in smart farming in each of the phases of this data lifecycle. Moreover, it
provides a comprehensive review of the existing solutions and the state-of-the-art technologies that
can enhance data privacy in smart farming.

Keywords: privacy; big data; security; smart farming; precision agriculture; Internet of Things;
machine learning

1. Introduction

Smart farming is an approach for farm management to optimize farming procedures
using modern information and communications technologies (ICTs). Increasing farming
productivity, enhanced food quality, cost reductions in farm management, and decreased
environmental footprint are only some objectives of smart farming. Depending on the
application, these objectives are given varying levels of priority. Some modern technolo-
gies, such as the Internet of Things (IoT), Artificial Intelligence (AI), and Cloud/Edge
Computing, are commonly used in smart agriculture. Through leveraging sensors and
smart devices, smart farming enables farmers to collect data regarding weather monitoring,
water management, soil health analysis, animal health indicators, and energy consumption.
These data can then be analyzed to provide predictions about upcoming situations and to
facilitate real-time operational decision-making [1,2].

In Figure 1, an overview of the smart farming ecosystem is demonstrated. In the
smart farms, the deployed sensors in the farms interact with the real-world environment
to collect data. These data describe different aspects of farming operations, including
temperature, humidity, soil nutrition, irrigation, and also livestock and poultry monitoring.
In the subsequent stages, these generated data will be utilized by data analytic processes to
extract knowledge about farming and facilitate decision making (data analysis component
in). Machine learning, data mining, and statistical inference are prevalent approaches in
data analytics for smart farming. Machine learning (ML) is a branch of computer science
and artificial intelligence that enables computers to learn from data, predict the future, and
make decisions with a minimum human of intervention [3]. Data mining and statistical in-
ference are processes of probing data to extract beneficial information and knowledge [4,5].
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In the last stage of smart farming procedures (users component in), the information ex-
tracted by the analytic techniques is used in value-added services that are provided to
the users. The users in the smart farming ecosystem can be farmers, researchers, food
companies, or the government. These value-added services can be utilized by decision
support systems to improve farming practices such as crop health monitoring, yield pre-
diction, water management, demand forecasting, pesticide and fertilizer management,
animal behavior monitoring, livestock health and welfare monitoring, and livestock feed
consumption monitoring.

Figure 1. An overview of the smart farming ecosystem showing how Wi-Fi connected drones,
livestock and poultry monitoring tools, and other smart farming sensors result in enhanced data
analytics that provid users with new insights into how to manage farm operations.

Notwithstanding all benefits raised from the modern smart and interconnected ecosys-
tem in agriculture, they have increased concerns regarding data privacy. Privacy is a
major concern for farmers regarding implementing smart farming, or participating in data-
sharing practices [6]. Although data security and data privacy are used interchangeably,
these are two different concepts. Data security protects data from adversary attacks, while
data privacy governs how data is collected, analyzed, stored, and accessed [7]. From this
perspective, data security is more about protecting data from attacks, and data privacy
is more focused on using data responsibly, according to the users’ desire, and protecting
data from unauthorized access [8]. This study aims to focus on privacy challenges and
solutions in smart farming. Privacy is defined variously under different jurisdictions and
applications making it a complicated issue to address. Although it is difficult to precisely
define data privacy, in this study, we adopt the definition presented by the Internet Security
Glossary (ISG) [9]: “The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.”

There have been some preliminary studies exploring the topic of security and privacy
concerns in smart farming. Ferrag et al. [10] presented a review on security and privacy
issues and challenges in IoT-based agriculture. Gupta et al. [11] discussed the security
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issues in the smart farming cyber-physical environment. Cybersecurity challenges of smart
farming have also been highlighted by Barreto et al. [12]. The primary focus of these studies
is security threats and solutions. In this paper, we review privacy requirements, concerns,
and solutions in different stages of the smart farming data lifecycle. We aim to make a
novel contribution to this literature by focusing this review specifically on big data privacy
in smart farming. To this end, we review the papers that explicitly focus on smart farming
applications, as well as some studies that consider general IoT applications that can also be
applied to smart farming.

The remainder of the paper is structured as follows. Section 2 describes the big data
lifecycle in smart farming. In Section 3, privacy concerns and requirements in smart farming
are introduced. In Section 4 the state-of-the-art privacy-preserving solutions in the lifecycle
stages of smart farming are reviewed. Section 5 reviews the modern technologies utilized
for privacy enhancement in smart agriculture. The legislation considerations related to big
data privacy in smart farming are discussed in Section 6, and finally, Section 7 provides
concluding remarks.

2. Big Data Lifecycle in Smart Farming

A framework of the big data lifecycle is necessary to understand the processes in
different stages of data life. Such a framework provides better insight into the processes
and actions that are required for data, such as aggregation, encryption, and retention. Arass
and N. Souissi [13] detailed a data lifecycle that follows raw data until it is utilized in the big
data context. Xu et al. [14] described a big data life cycle framework to investigate security
threats. Abouelmehdi et al. [15] presented a big data security lifecycle for healthcare. In this
study, we present a big data lifecycle schema from the privacy perspective. This lifecycle
provides a better intuition about privacy threats, requirements, and their correlation in
different stages of smart farming. Figure 2 demonstrates the main stages of the big data
privacy lifecycle.

Figure 2. The big data privacy lifecycle in smart farming.

- Data Collection: In this step, raw data are collected from devices such as sensors.
These sensors can gather data from different aspects of farming, including weather,
soil quality, animal movement, and harvest monitoring. Sensors deployed in smart
farming applications are commonly limited in energy and computation resources;
therefore, these devices are only capable of performing very simple data refinement
and processing tasks [16].

- Data Transfer: In this stage of the data lifecycle, the collected and aggregated data are
transferred to the servers. These servers could be a local computer on the farm or
a cloud service used by the technology provider [17]. To this end, a combination of
different technologies is utilized including Wi-Fi, cellular, Local Area Network (LAN),
and Bluetooth [18].
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- Data Storage: Data can be stored locally, before transmission, or on the cloud storage
servers. In both cases, the privacy of the stored data should be ensured [19]. To reach
this goal, an effective access control mechanism is necessary to prevent unauthorized
data inquiries [20].

- Data Analytics: In this stage, data are analyzed and exploited to extract knowledge.
This knowledge improves the farming decision-making processes through the use of
analytics methods. Machine learning, statistical inference, and data mining are some
of the common approaches for data analytics [21].

- Data-Driven Services: These services can provide a wide range of recommendations
to farmers regarding aspects such as selecting the most profitable product for the
field, designing an optimized procedure from planting to harvesting, forecasting the
affecting environmental events, and assessing the market for price negotiation. It is a
major motivation for farmers to improve the profitability of their business using data-
driven services [22]. Given that these services are usually publicly accessible to various
clients, providing privacy protection in these services is a serious requirement [11].

- Data Destruction: When the data are no longer useful or when it should be erased based
on the preliminary agreements, data destruction needs to occur. For example, these
preliminary agreements might set a retention time after which data should be deleted
permanently, or at which time, the data owner may request a return of the data [23].

3. Privacy-Preserving Solutions in Big Data Lifecycle
3.1. Data Collection

In smart farming, a large amount of data is generated by the deployed sensors. To
decrease the privacy risk in the data collection stage of the data lifecycle, a desirable
approach is to aggregate the collected data before transferring it through the network.
Using this approach, a preliminary analysis should be performed on the generated data,
and then a representative value is sent to the network [24].

Previously, some studies have been conducted on privacy-preserving data collection.
Koh et al. [25] suggested using the Gaussian process regression model [26] for sampling
and compressing gathered data. In this study, the authors introduced a metric to determine
more important data that can be used from the whole collection of data generated by the
sensors. Masiero et al. [27] leveraged the principal component analysis (PCA) technique [28]
to collect a limited number of signal samples from a central data gathering point and utilize
these data to reconstruct the original signals. This method can be used to decrease the
transmitted signals from connected digital devices and decrease the privacy risk. In another
study, these same authors suggested a combination of PCA and Bayesian estimation [29] for
the same goal. Although PCA can be effective in data aggregation, there are some concerns
about using this technique in smart farming. PCA requires a great deal of computation to
be processed, but the digital devices that are commonly used in smart farming have limited
energy and computation resources; thus, some researchers recommend using distribution
methods to distribute the computation tasks among diverse available devices. Such a
distributed approach is presented in [30] for PCA deployment in wireless sensor networks.
This approach can be utilized in wireless sensor deployment in agricultural applications,
such as mixed crop farming [31].

Another approach for privacy-preserving in smart farming is anonymization. Data
anonymization is a process in which any information that can enable personal identification,
including name, address, and geographic identifiers, are removed from data. In [32], an
anonymization protection model was used in IoT to obscure the specific location informa-
tion of the data, while still assuring data openness. In this paper, the authors described
that some traditional data anonymization algorithms work just for data streams generated
by a single entity, while in some IoT applications (such as smart farming), a single entity
can use multiple devices at the same time. To tackle this issue, the authors presented a
partitioning approach that extends the k-anonymous privacy model [33] to the IoT data
streams. Martin et al. [34] proposed a method for anonymizing point location data in ana-
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lyzing the spread of avian influenza. This method allows the farmers to share data with
experts without disclosing individual farm identities.

Access control, which handles the requests and permissions based on set policies, is
an important component of data privacy in smart farming. Additionally, access control
determines how smart devices and resources are accessible in the system. One prevailing
approach that is used for access control in smart devices is capability-based access control
(CBAC). In this approach, each object has a list, called a ‘token,’ that has a directory of
its rights to access other objects, enabling multilevel control. Anggorojati et al. [35,36]
presented CBAC mechanisms that use the delegate method to control requests in the IoT.
They introduced a module, called ‘IoT federation manager,’ as a part of a system to keep and
manage rules and policies in distributed IoT environments. Mahalle et al. [37] combined
CBAC and an elliptic-curve Diffie–Hellman algorithm for a secret-key generation. Because
this method is lightweight and distributed, it is suitable for IoT devices in smart farming.
Hernández-Ramos et al. [38] optimized the elliptical curve cryptography for real-world
applications and used it to design a CBAC mechanism for smart things. This mechanism
consists of two parts: firstly, the session key is generated, and in the second step, a capability
token is used to access an object. This study is extended [39] by developing a trust evaluator
component. In addition to reputation and feedback, this evaluator considered security
features and social relationships among devices.

The other access control mechanism is the role-based access control (RBAC) model, in
which the permissions are issued based on the role of the nodes in the system. Zhang and
Tian [40] leveraged this approach to create an access control model for the IoT. They used
contextual data, such as the time and location of IoT users, to improve the access decisions
regarding the requests in the system. Jindou et al. [41] presented another role-based
mechanism for access control in the IoT. In this study, instead of contextual data, such as
time and location, the authors used social networks and enabled the system to leverage data
from profiles and social connections to generate access policies. Arka et al. [42] utilized the
RBAC approach to enhance the security of the IoT. To reach this goal, they mapped entities
of RBAC to WoT components and then used cryptographic keys to implement the access
policies. To extend the ideas that were presented in [38,43], Hernandez-Ramos et al. [44]
proposed a distributed approach to access control in the IoT. They used public keys and an
optimized version of the elliptic curve digital signature algorithm inside the IoT devices to
confirm end-to-end authorizing.

Recently, Chukkapalli et al. [20] presented an attribute-based access control (ABAC)
solution for smart farm applications. This solution can be utilized for different smart farm-
ing applications, including plant agriculture, poultry, or dairy farming. ABAC manages
access requests based on the attributes of the actors in the system and provides dynamic
permission handling, depending on time and situation. These attributes can be extracted
from diverse sources, such as devices, data, users, and the environment. In this study, the
authors built a smart farm model with sensors to monitor, weather, soil, tractors, trucks, and
labor. The introduced solutions can grant access permissions at different levels, considering
the inquirer, requested source, and the time access request. Among the available access
control mechanisms, the ABAC approach can be more beneficial in smart farming due to
the flexibility and the fine-grained multilevel access control that this approach provides in
a system.

3.2. Data Transfer

To address privacy issues in this stage, a potential solution is to add more powerful
servers to the farms. These servers are responsible for anonymization and generating sum-
maries from the raw collected data. Although these servers can facilitate many operations
in smart farming, cost, space, and energy consumption are the concerns that might lead to
small farm owners’ hesitation regarding this solution.

Encryption is a classic approach to protecting privacy in communication. It locks the
data with a key and turns it into an unreadable format, called ‘ciphertext,’ so that only
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individuals with a proper key can decode it. Using this mechanism, even if an adversary
agent accesses the sent data in the network, it cannot read the content. Jiang et al. [45]
proposed a method that utilizes identity-based encryption to assure privacy and anonymity
in big data. In this study, a unique virtual identity, that works as both the identity and
the public key, was assigned to each entity in the system. The recovery of the message
relies only on the decryption in the destination; thus, using this mechanism, farmers can
continue working, even if the data sender is not currently online. In [46], a comprehensive
performance evaluation of attribute-based encryption was presented from different aspects,
including execution time, energy consumption, data overhead, processing resources, and
storage. In [47], the authors described that one drawback of attribute-based encryption
is publicly available access policies that put information privacy at risk. This can be a
concern for farmers and technology providers because it can allow adversaries to use
these public policies to get unauthorized access to smart farms’ data. To tackle this issue,
the authors proposed a policy-hidden encryption scheme that makes the access policies
invisible to third parties and decreases privacy concerns. Davoli et al. [48] presented
an anonymity protocol for smart connected objects. They suggest using an anonymity
network that enforces privacy on secure end-to-end connections. The presented protocol
uses limited cryptographic overhead to provide diverse anonymity path modes and ensures
privacy-preserving data transfer for different IoT applications, including agriculture.

3.3. Data Storage

Collected data in smart farming applications can be stored in on-site storage devices
or remotely, in cloud servers. Like other stages of the big data lifecycle, here we need
mechanisms to provide privacy protection. Lain et al. [49] presented a privacy-preserving
ciphertext multi-sharing mechanism to accomplish confidentiality and anonymity in big
data storage. This mechanism leverages a conditional re-encryption technique in which
the encrypted message can be shared with others if some specified conditions are sat-
isfied. Li et al. [50] proposed a scheme for big data protection in data storage that is
searchable—meaning that these data are stored in a cloud and encrypted in a way that
users are still able to send queries to search data. This scheme increases usability while
preserving privacy. In [51], an attribute-based encryption scheme was presented for big
IoT data stored in the cloud. This scheme provides an access control mechanism, ensur-
ing accountability for using the user key and authorization center key. In [52], another
privacy-preserving auditing scheme was proposed to ensure privacy in the data storage
stage of the big data lifecycle. In this study, a novel cryptographic algorithm was utilized
to encrypt data and split them up into different files. In this scheme, the entire data file
is encrypted and divided into separate files using a cryptographic algorithm. After up-
loading data to the cloud server, a third party verifies the data integrity using a method
with limited computation and communication overheads. Yang et al. [53] proposed a
privacy-preserving big data storage system for smart healthcare, which can be utilized for
smart farming as well. This system provides secure anonymized data storage and supports
smart deduplication to use the big data storage capacity more effectively. The two-fold
access control mechanism utilized in this study provides an opportunity for farmers to set
different privacy expectation levels for data based on the data content.

The data storage provider cannot disclose data to unauthorized parties and is account-
able for all data breaches. On the other hand, the data owner must be able to obtain access
to data for farm management purposes at any time.

3.4. Data Analytics

In the data analytics stage of the big data lifecycle, the collected and stored data are
processed for knowledge extraction using different analysis techniques. The results from
these techniques can be utilized by farmers to inform their farming decisions. Privacy-
preserving data analysis encourages data owners to participate in value-added services
and increase the performance of different practices by cooperating with other parties.
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An example is an architecture proposed by Huning et al. [54] for leaf area index (LAI)
calculation in smart farming. LAI is defined as leaf area per horizontal ground surface
area and can be utilized for analyzing vegetative processes such as photosynthesis and
evapotranspiration. The authors in this study proposed a privacy-preserving architecture
that enables an increased spatiotemporal estimation in the LAI calculation.

In many farming applications, achieving complete end-to-end privacy is unreachable
because adding auxiliary data to anonymous available data can lead to extra knowledge
that reveals private information. In smart farming applications, these auxiliary data can
be regional, weather, soil, or production data that help adversaries to infer information
from agricultural data. This issue has been discussed by Dwork in [55] and to address this
problem, the author defined differential privacy as a metric to measure the privacy degree.
This metric quantitatively describes the risk degree of data disclosure. Moreover, in this
study, it has been proven that adding noise with different variations provides different
levels of differential privacy. In [56], a privacy-preserving deep learning model for disease
detection in apple trees was presented. In this study, differential privacy certifies the privacy
of the users in the data sharing process. Xu et al. [57] presented a local differential privacy
obfuscation (LDPO) framework for data analysis in the IoT. This framework aggregates
data before protecting the users’ sensitive data. Yan et al. [58] utilized differential privacy
for privacy-preserving geographic-based service provision in farming applications. For
this purpose, the authors utilized 1500 location points in Nebraska, a typical agricultural-
producing state in the U.S. Niemitalo et al. [59] suggested using differential privacy for
protecting the privacy of original data points of the drone images acquired from agricultural
and forestry research sites.

Zhang et al. [60] proposed an algorithm for quality of service (QoS) prediction in the
IoT. In this algorithm, first, some noises are employed on the original data for privacy
preservation, then the algorithm predicts the QoS based on the users’ preferences and
mobility. To achieve better performance, the algorithm leverages the QoS prediction for
the same user on other servers, as well as the prediction for similar users on the same
server. Xiong et al. [61] designed differentially private machine learning-based algorithms
to preserve privacy in IoT applications. In this study, the authors modified the differential
privacy k-means algorithm [62] for use in the intelligent electrical service of the IoT.

3.5. Data-Driven Services

In data-driven agriculture, diverse on-farm and off-farm data sources, including field
sensors, drones, satellite data, and supply chain data, can be combined and analyzed to
provide superior knowledge for different sectors in agriculture. This knowledge is utilized
for planning, forecasting, and automatic actions in smart farming. In this stage of the
big data lifecycle, it is important to provide data-driven services in a privacy-preserving
manner. One of the basic services available in agricultural applications is data sharing.
Several platforms are available that enable farmers to share and exchange their data, while
ensuring privacy protection. Nordic Cattle Data Exchange (NCDX) [63] is a platform
for sharing cattle data that is developed for northern European countries. This platform
provides a standard method for data exchange and supports different farm management
software. Barto [64] and JoinData [65] provide similar services for data-driven smart
farming in Swiss and Netherland markets, respectively. HARA [66] is a blockchain-based
data-sharing framework in Indonesia that provides different types of data, including land
location and ownership data.

Anonymization is an approach to preserve the privacy of the users in a service pro-
vision platform. A system to protect the anonymity of the users interacting through the
internet is presented in [67]. The idea proposed in this study is to group the users into
a diverse set. The users are anonymized, and the group sends the requests on behalf
of the original users and retrieves the information using a randomized routing protocol.
Attackers are unable to find the real origin of the request because the probability for all
group members to be the source of the request is the same.
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One of the other mechanisms that can be used in privacy-preserving service providing
is trust evaluation. Using a trust management system, the service provider can assess
the trustworthiness of different parties in the system and restrict the activities of the non-
trustable users. In [68], a trust model based on software-defined networking (SDN) [69]
is presented for IoT systems. In this study, the authors used two reputation evaluation
schemes: a behavior-based scheme and an organization-based scheme. Combining these
two factors, the proposed model can evaluate the trust factor for each node in the IoT
system. Social features of connected digital devices can also be used to enhance trust
management in smart farming. From this perspective, Social IoT [70] is a useful concept.
It considers that smart devices can be socially connected, like humans in social networks.
Using this concept, in addition to the previous experience in the system, the social relations
among the IoT devices can be another valuable source of information to evaluate the
trustworthiness of devices. Nitti et al. [71] presented social trustworthiness management
from two different perspectives: subjective and objective. In the former model, each node
uses its own experience and the information from its friends to evaluate the trust factor of
other objects, while in the latter approach, the information from nodes will be published in
the network and any other objects can utilize it. Another trust management system that
leverages social connection among IoT devices is presented in [72]. The proposed system
uses blockchain technology to provide a fast and secure trust evaluation mechanism using
collaboration among the devices in the system.

3.6. Data Destruction

At the final stage of the big data lifecycle, it is important to make sure that the data
are cleaned permanently from data storages to prevent possible data leakage in the future.
Fengzhe et al. [73] discussed the privacy concerns regarding data destruction and suggested
a time-constrained mechanism to remove data from storage servers. In this proposed
mechanism, all sensitive data are irreversibly removed at a specified time, with no user
intervention. In [73], the authors proposed a scheme for data destruction in multi-tenant
data storage. The focus of this study was to provide a way to track customers’ data and
ensure the destruction of the original data, as well as all copies. Farmers can leverage these
destruction mechanisms and set a retention time for their data in the agreements. Based on
this retention time, data holders are responsible to make sure the data are removed from
the servers permanently and irreversibly.

4. Privacy-Preserving Technologies in Smart Farming
4.1. Machine Learning

Machine learning is a method to enable machines to learn based on their experience.
Using machine learning, the farmers can analyze the collected data and discover patterns,
predict the future, and increase the performance of their businesses. In smart farming,
the deployed sensors are responsible to collect data from different aspects of the farm,
and then this data will be analyzed by machine learning models to provide an insightful
analysis regarding diverse applications, such as yield prediction, quality assessment, water
management, disease prediction, and livestock monitoring. Because machine learning
models utilize data for the learning process, it is essential to design the learning models
in a way that sensitive information remains protected [74]. Therefore, some studies have
provided privacy-preserving machine learning-based solutions for smart agriculture.

De Souza et al. [75] presented a machine learning model to detect sensors that are used
to monitor the forests and are suspicious to perform malicious activities. The presented
solution was tested on four forest areas of the Roosevelt National Forest (U.S). These
areas were selected since minimum disturbances caused by human activities are seen in
these areas. In this study, the authors describe that because the behavior of the sensors is
highly affected by environmental conditions, it is not easy to determine if the behavior of a
sensor is normal and trustable. To tackle this problem, the authors presented a machine
learning-based algorithm to identify suspicious sensors in a wireless sensor network based
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on the goals that are defined by the users, including accuracy, power saving, and thermal
efficiency. Udendhran and Balamurugan [56] proposed a secure deep learning system for
disease detection in apple orchards. The presented method analyzes the images of apple
tree leaves that suffer from multiple foliar diseases. The utilized dataset includes more than
3500 images captured with diverse angles and illuminations. This architecture connects
people who are not willing to share their data. These people can use the proposed local
classifier, without sharing the data with other parties. Chukkapalli et al. [76] designed
a framework for weed quality analysis that provides a privacy-preserving mechanism
for data sharing among the farmers. The presented framework used data perturbation
techniques to add noise to raw data and consequently, protect data privacy. In this study,
the authors suggested a noise-adding procedure that does not impact the data analysis
results. The framework gathers the perturbed data from various farmers and detects the
low-quality products using anomaly detection.

In the literature, some studies have been conducted on using privacy-preserving
machine learning approaches in general IoT applications. These studies can be utilized in
different smart farming applications. Da et al. [77] used neural networks for IoT device
authentication. In this study, channel state information (CSI) of connected digital devices
was utilized in a deep long short-term memory (LSTM) learning method for device authen-
tication. In [78], a privacy concern regarding the analysis of CSI in wireless sensor networks
was studied. In this study, the authors described how the channel state information can be
used to identify the behavior pattern of the users and any malicious actions. Canedo and
Skjellum [79] suggested using machine learning to detect anomalies in data transferred
by IoT devices. To achieve this goal, they utilized neural networks to identify invalid
data points.

Machine learning has also been used to develop intelligent access control mechanisms
in IoT environments [80]. The presented solution in this study used the support vector
machine (SVM) method that analyzes behavior data from the devices to detect adversarial
actions. Another machine learning-based access control was presented in [81]. In this
study, a neural network was designed for controlling access to media in wireless sensor
networks. To train this model, the features from the physical layer of the devices, in
addition to network data, were collected and analyzed. Outchakoucht et al. [82] proposed
a reinforcement learning model based on the blockchain platform that manages access
control decisions in IoT. This model collects behavior information from smart IoT devices
and dynamically adjusts the access policies.

Recently, federated learning as a distributed learning approach that assures a high
level of data privacy has gained a lot of attention [83]. This technique distributes the
learning model among different smart devices and eliminates the need for a central unit to
perform all processes. Using this approach, the users can keep their data private on the local
servers, while these data are utilized by the learning model. This approach reduces privacy
concerns and motivates farmers to participate in the data analysis programs. One of the
studies that uses this approach was proposed in [84]. In this paper, the authors combined
federated learning with reinforcement learning on mobile devices in edge-enhanced IoT.
Wang et al. [85] utilized federated learning on IoT resource-constrained devices. To this end,
the authors designed a control algorithm to maximize the accuracy of the learning model
by building a balance between local updates and global aggregation of the parameters in
gradient descendent-based machine learning models.

4.2. Edge Computing

In many smart farming structures, there are two main types of communication among
devices. One is device-to-device communication, in which the digital devices communicate
directly, with no intermediate. In this communication mechanism, two devices create
a peer-to-peer connection to exchange data between each other. The second class of
communication is device-to-server, in which IoT devices make independent connections
to data and computation servers (usually cloud servers) to transfer data. Recently, some
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researchers introduced another communication class. In this class, digital devices use
middleware, called the edge nodes, to transfer data through the network. This middleware
collects data from end-users (e.g., sensors) and performs some pre-processing tasks, such
as data or protocol change algorithms to reduce the volume of transferred data. Edge
nodes usually have more computational power than the sensors and can process larger
tasks on data before transforming through the network. This enhances data privacy by
reducing the volume of transmitted data in the network. By performing pre-processing
tasks at the edge of the network, it is not necessary to transfer all the raw data to the
cloud servers, and most of these data will stay in private storage, which enhances data
protection. The other advantage of making use of edge-enhanced architecture is having
more computing resources, which enables using more sophisticated algorithms for data
aggregate encryption before transmission through the network.

Guardo et al. [86] highlighted how edge computing technology can significantly
reduce the amount of transmitted data via the network. To this end, they presented a
two-tier edge computing framework and utilized it for farm management. In [87], another
edge-based platform was proposed that decreases the amount of transformed data to the
cloud server while leveraging automated pest management, agricultural monitoring, and
image processing. Malik et al. [88] designed a simulator to examine edge-based farming
scenarios. This simulator considers different factors influencing edge-based smart farming,
such as device placement, sensor coverage area, mobility models for moving elements,
and energy consumption. Rezk et al. [89] proposed a decision support system to predict
crop productivity and drought in smart farming. For this purpose, the authors designed
an intelligent AI-based method that leverages classification and wrapper feature selection.
Using edge computing, the transformed data to the main server is lessened, helping to
reduce the privacy risks for personal information. In [90], it was described that due to a
limited budget, many farmers are only willing to use a few digital devices on their property.
Thus, the authors present a service offloading-oriented edge server placement method for
smart farming. This method decreases the data transmission delay and also balances the
workload among different edge servers.

Caria et al. [91] introduced a privacy-preserving system for animal welfare monitoring.
They suggest using low-cost devices, such as Raspberry Pi, as edge servers to work with the
sensors deployed for monitoring livestock and farm environments. They demonstrate that
their low-cost solution can effectively control multiple factors of animal welfare monitoring,
such as room temperature, body temperature, humidity, and motion. Taneja et al. [92]
proposed an edge-assisted system for the analysis of animal behavior and health monitoring
in dairy farming. This system brings a major portion of data analysis from cloud servers to
the local edge servers that are placed at the farm. This analysis system provides notices
regarding livestock health to detect diseases in the early stages. They extended their work
using real data from dairy cows in [93]. In [94], a platform is presented that leverages
different technologies, including edge computing, machine learning, and blockchains, to
improve the quality of service and privacy. The designed platform monitors dairy cattle
and feed grain. In this study, it has been shown that the edge nodes can lessen the data
traffic transferred between edge nodes and cloud servers. These examples show that edge
computing is widely recommended for smart farming, and it can be an effective solution to
protect privacy.

4.3. Blockchain

Blockchain is a state-of-the-art technology that has recently been widely used in
diverse applications [95]. This technology is a distributed ledger that records all previous
transactions on the public ledgers and utilizes mathematical algorithms to prevent data
manipulations and certify the validation of data. It was originally introduced as Bitcoin [96],
a cryptocurrency for financial applications, but it is also utilized in other applications, such
as data management and smart contract-based automation. Smart contracts are computer
programs that can be deployed and executed on a blockchain network [97].
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Blockchain reduces privacy concerns by eliminating the central point of vulnerability
in the system. All clients can have a copy of the ledgers, and nobody has full control to store,
use, and delete the whole data. Data on the blockchain is transparent and immutable; there-
fore, all previous records are traceable. Blockchain platforms also deploy a cryptographic
private key, in addition to the ring signature, ensuring privacy and confidentiality for the
users [96]. Different blockchain-based mechanisms have been introduced in recent years.
Some technical features that can describe the difference among these architectures are:

(1) The permission mechanism which indicates the method that is utilized for authentication.
(2) The consensus algorithm that is the mathematical algorithm to decide how to add a

new block to the blockchain.
(3) The smart contract/cryptocurrency which points out if the blockchain is used for

smart contract deployment, financial payment, or both [98].

Blockchain has gained a lot of attention in smart farming applications, such as water
management [99,100], food traceability [101], and supply chain [102,103]. Geethanjali and
Muralidhara [104] suggested using a blockchain that monitors the growth and supply
chain of the fruit in banana production. In this study, the authors indicated that blockchain
technology enables farmers to securely save data and attract more investments in their
businesses. In [104], a blockchain was used for fish farms to ensure data integrity. The
authors developed smart contracts to run fish farm processes automatically. Using this
approach, there is no need for a third party to store data and execute the process, which
reduces privacy risks. Yadav and Singh [104] reviewed the issues of Indian farmers and
suggested that a mobile app that utilizes blockchains can address these issues. This mobile
app handles traceability, monitoring, and informative systems and utilizes smart contracts.
A three-layer concept for decentralized trust management in IoT was proposed in [104].
This architecture is scalable and secure, as it deploys trust management on distributed
ledgers and automates the process using smart contracts. Another blockchain-based trust
management system is presented in [105]. In this paper, social information about the IoT
devices, in addition to information entropy, evaluated the trustworthiness of the nodes in
IoT environments and described the trust using three metrics: reputation, cooperativeness,
and community-interest. Tahar et al. [106] presented a distributed blockchain-based au-
thentication mechanism for IoT on the public Ethereum. It was shown that the proposed
mechanism can provide robust identification and authentication to ensure data integrity
and availability.

An intelligent system for agriculture that protects data security and privacy was pro-
posed in [107]. This system applies dark web technology to cover the IDs of the servers and
also leverages a fast authentication mechanism for blockchain information. Moreover, the
presented system enhanced privacy and integrity by applying encryption and using hash
technology. Sahid et al. [108] proposed a blockchain-based solution for the agri-food supply
chain. In the presented system, all transactions are first written to the blockchain, then a
summary of data is uploaded to other external storage systems. This procedure decreases
the saved data on the distributed ledgers and accelerates data access. Furthermore, an
access control strategy monitors authenticated access to data and ensures data privacy and
confidentiality. Salah et al. [109] suggested a system that leverages blockchains to ensure
soybean traceability. In the introduced framework, business transactions regarding the
soybean supply chain are stored on a blockchain platform, and smart contracts automate
procedures related to monitoring the transactions. In this paper, it has been described how
this solution can eliminate the centralized authority in the system.

In addition to these papers, some studies have suggested using blockchains for dis-
tributed access control. Ouaddah et al. [110,111] used blockchains to design a distributed
framework for access control in IoT. The presented framework leverages smart contracts
to automate complying with access permissions and managing access requests. Similarly,
Zhang et al. [112] utilized smart contracts to control access requests in IoT environments.
The proposed framework can not only manage static access permissions, but it can also
dynamically change the permissions based on the objects’ behavior. Novo [113] presented
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another access control mechanism for arbitrating roles and permissions in IoT. The pre-
sented solution is scalable, and the IoT devices are not directly connected to the blockchain.
This design addresses the concerns related to the limited energy and computation resources
of IoT devices and makes it easier to adopt current IoT devices for the proposed architecture.

5. Legal Considerations

The promising goals of smart farming are achievable when farmers trust other parties
to share data and participate in value-added services. However, studies have shown that
the farmers are not always willing to share data [6,114,115]. Some of the concerns that
reduce farmers’ motivation to share data come from their attitude that laws do not support
their rights concerning data privacy and business benefits [116]. Recently some privacy
and security principles and data codes of conduct have been proposed in an attempt to
address the farmers’ concerns.

In 2014, the American Farm Bureau Federation established Privacy and Security
Principles for Farm Data (PSPFD) in the U.S. [117]. These principles touch on different
privacy concerns, especially on data sharing practices. Here are some core principles of
PSPFD [117]:

1. Ownership: Farmers own the information collected in the farming operations, but it
is also their responsibility to negotiate and agree on data sharing with other parties.
It is also the farmers’ responsibility to make sure only the data they own have been
included in an agreement.

2. Collection, Access, and Control: Any access and use of farm data should be explicitly
permitted by the farmer in the signed contracts or other types of legal agreements.

3. Notice: Not only should farmers be clearly informed that their data are being collected,
but they must also be aware of how their data are going to be used and disclosed by
the technology provider or any other third party. These notices should be provided in
an easily located and readily accessible format.

4. Choice: Technology providers must provide choices for farmers to opt in, opt out, or
cancel the services.

5. Portability: The farmers should be able to transfer their data to other systems, except
for the data that have been aggregated or anonymized.

6. Disclosure, Use, and Sale Limitation: The technology provider should notify the farmer
if they decide to sell or disclose the collected data, and they should also provide the
chance for the farmer to cancel the service or remove the data. Working with a new
third party should be based on the agreements consistent with the primary agreement
between the parties.

7. Data Retention and Availability: Technology and service providers should provide mech-
anisms to erase or return farm data based on the farmer’s request, either immediately
or after an agreed-upon timespan.

AFBF has developed a tool called the Ag Data Transparency Evaluator to ensure the
compliance of policies and agreements with the PSPFD principles in all designed smart
farming services. This tool evaluates the agreements among smart farming actors against
the principles provided in the PSPFD. If this procedure is successful, the contract receives
an Ag Data Transparency seal that certifies the service has passed the required evaluation.

All stakeholders in the smart farming ecosystem must continuously adapt their prod-
ucts, agreements, and services to the available privacy policies and regulations. However,
it is costly and time-consuming for the smart farming actors to manually ensure compli-
ance, considering the extensive amount of data and complexity of legal documents. A
promising approach in this field that has recently gained a lot of attention is to manage the
compliance processes automatically. Data Capsule [118] is a paradigm designed for the
automatic compliance checking of data privacy. This paradigm uses a formal language that
is designed specifically to describe the privacy policies in an abstract format. This abstract
format formulizes the privacy policies and their requirements.
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Finally, although the available codes of conduct provide useful initial attempts in
defining privacy in a standard way and automizing compliance using digital platforms for
smart farming, current practices are not enough to protect farm data. These best practices
do not set out requirements and standards for data privacy to be followed by smart farming
actors. Therefore, standardized best practices that are applicable in different regions are
important for the smart farming ecosystem.

6. Discussion and Future Directions

In this paper, we investigated different aspects of data privacy in smart farming.
Privacy-preserving smart farming requires data protection in different stages of data
lifecycles. Security is a major requirement to safeguard agricultural applications against
potential attacks, but it is not sufficient for data protection. Privacy is also a crucial
requirement in smart farming applications to ensure data confidentiality and integrity
in collecting, analyzing, and storing procedures. Data privacy should be considered a
core value for the different stakeholders in the smart farming ecosystem. In the literature,
several solutions have been provided for preserving farming data privacy throughout the
data lifecycle stages. In spite of all these efforts, a unified approach that provides a clear
and concrete mechanism for data protection in all stages of smart farming applications is
still a gap. In the following, we review some challenges and future research directions in
the privacy-preservation of agricultural data which we believe require the most attention.

Standardization: Numerous IoT devices are connected through the IoT. These devices
utilize various technologies, configurations, and protocols. The heterogeneity of these
devices is an issue in developing privacy-preserving solutions to work in different farming
practices. Without standardization, the interconnection mechanisms in agriculture are
highly complex because different technology providers use different formats for their
system operations such as sensing, transmission, storage, routing, and service management.
Standardization addresses this issue by providing unified approaches to be followed by
technology providers and farming actors, consequently improving the privacy-preserving
solutions for smart farming.

Trust: Previous studies show that trust is a bottleneck in data sharing and collaborative
service production in smart farming [6]. Trust evaluation is a complimentary act to the data
protection mechanisms provided in farming applications. Trust evaluation reduces the
concerns of agricultural sectors regarding data sharing procedures and encourages these
actors to participate in collaborative value-adding services. To this end, the trustworthiness
of an actor in the agricultural ecosystem can be evaluated based on investigating the
background of the actor and analyzing recommendations from other businesses that have
previous experience in working with the actor. Automatic tools and services that manage
this process accelerate the trust evaluation process and reduce the threats to the privacy of
data in smart farming.

Legal Frameworks: Smart farming requires legal frameworks that clearly discuss
different aspects of data privacy, including responsibilities and accountability. These
frameworks can indicate the requirements for different agricultural sectors to access, utilize,
and make profits from available data. Such best practices should also determine the
responsibilities of farming actors in each stage of the data lifecycle and set requirements
to ensure data privacy. Moreover, the legal frameworks should clearly elaborate on the
accountability of each actor and the potential consequences in the case of data leakage.

Blockchain: Blockchain is a promising technology that has gained considerable at-
tention in smart farming. Despite the advantages of this technology, some concerns and
issues have affected the development of blockchain-based solutions in real-world agricul-
tural applications. A major concern in this regard is scalability. Since numerous smart
devices are working in farming applications, the blockchain-based method must be able
to provide solutions that manage all the transactions transmitted through the system in
a reasonable time. The other concern in leveraging the blockchain in farming is that the
mining procedures commonly require a great amount of computation and energy resources,
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which is a constraint in many farming smart devices. A potential research direction can be
investigating the solutions that reduce these concerns.

7. Conclusions

Digital technologies have reshaped agriculture by collecting and analyzing data from
different aspects of farming. These massive amounts of data that are continuously generated
in digital agriculture have been considered as a widespread application of big data in the
real world. These data have improved farming practices from different aspects, such as
crop health monitoring, yield prediction, water management, and demand forecasting.
However, utilizing digital tools that are interconnected and remotely accessible raises
concerns related to the privacy of available big data. The privacy issues in agriculture
reduce the farmers’ willingness to engage in data collection activities and affect the progress
of smart farming. To address these concerns, privacy assurance mechanisms should be used
in different stages of the data lifecycle. In this paper, we provided a scheme of the big data
lifecycle, from a privacy perspective, and classified the privacy concerns and requirements
in this area. In addition, we reviewed the state-of-the-art existing technologies which
impact big data privacy in smart farming. Additionally, we provided a consideration on the
legislation that affects farmers’ enthusiasm for sharing data and their contribution to smart
farming practices. Smart farming has a great potential to improve agriculture globally,
and through this review, it has become clear that there are many solutions for addressing
privacy concerns that do not limit the adoption of big data and modern technologies in
this ecosystem.
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