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Abstract: The population of the world is predicted to reach nine billion by 2050, implying that ag-

ricultural output must continue to rise. To deal with population expansion, agricultural chores 

must be mechanized and automated. Over the last decade, ground robots have been developed for 

a variety of agricultural applications, with autonomous and safe navigation being one of the most 

difficult hurdles in this development. When a mobile platform moves autonomously, it must per-

form a variety of tasks, including localization, route planning, motion control, and mapping, which 

is a critical stage in autonomous operations. This research examines several agricultural applica-

tions as well as the path planning approach used. The purpose of this study is to investigate the 

current literature on path/trajectory planning aspects of ground robots in agriculture using a sys-

tematic literature review technique, to contribute to the goal of contributing new information in the 

field. Coverage route planning appears to be less advanced in agriculture than point-to-point path 

routing, according to the finding, which is due to the fact that covering activities are usually re-

quired for agricultural applications, but precision agriculture necessitates point-to-point naviga-

tion. In the recent era, precision agriculture is getting more attention. The conclusion presented 

here demonstrates that both field coverage and point-to-point navigation have been applied suc-

cessfully in path planning for agricultural robots. 
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1. Introduction 

Every day, roughly 240,000 individuals join the global population, which is antici-

pated to reach 8.18 billion by 2025 and 9.7 billion by 2050. Even though cultivated land is 

nearing its limit, estimations suggest that food production would need to expand by 70% 

by 2050 if global peace is to be maintained [1]. Producing enough food to fulfill the ev-

er-increasing need of this growing population is thus a tremendous issue for civilization. 

We must construct more efficient—yet sustainable—food production technologies, 

farms, and infrastructures to achieve this critical goal. Precision agriculture (PA)—a col-

lection of strategies and techniques for precisely managing field fluctuations to boost 

crop yield, company profitability, and ecosystem sustainability—has provided some 

astonishing solutions to achieve that goal. Precision agriculture has already been recog-

nized as a critical strategy for optimizing crop management methods and improving 

field product quality while also guaranteeing environmental safety [2]. Cropland moni-
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toring and management may be a difficult process in particularly large fields and/or in 

fields located in mountainous terrain, necessitating the use of automated devices [3]. As 

the number of agricultural laborers continues to diminish throughout the world, the use 

of multi-robots for agricultural activities is becoming increasingly widespread on 

large-scale farms with fewer personnel [4]. For successful and effective implementation 

of PA, unmanned ground vehicles (UGVs) play a vital role. Many agricultural products 

are perishable in nature and require special considerations throughout the supply chain 

operations to prevent their decay. Truck scheduling for cross-docking of fresh products 

[5], intermodal freight network design for transport of perishable products [6], optimized 

truck scheduling at a cold-chain cross-docking terminals [7–9], and vessel scheduling in 

liner shipping [10] are some important research areas of supply chain operations to pre-

vent the decay of agricultural products. Through the application of UGV in the agricul-

tural field, the decay of agricultural products at the farm field can be avoided to some 

extent. The path planning of UGV for the agricultural field is the one of the most im-

portant areas in development of agricultural UGVs. 

UGVs serve a critical role in boosting agricultural efficiency, such as optimizing fer-

tilizer usage or performing precise weed control [11,12]. The productivity of farming 

families and the yield per unit area are improving as a result of job division and cooper-

ation among multi-robot systems (MRS). A growth in related research has boosted the 

possibility for utilization, as tasks can be done more efficiently [13]. UGVs are now being 

used in agriculture for mapping [14,15], seeding, sensing [16], and pesticide spraying, 

among other things. To uninterruptedly execute the aforementioned tasks in the agri-

cultural field, UGVs should have a high level of automation with the least amount of 

human intervention [17]. Navigation, detection, action, and mapping are the four most 

significant automation characteristics of autonomous agricultural robots [18]. Navigation 

is critical, and detection and mapping are frequently used [19]. Path planning is the most 

important and integral part for navigating UGVs. The vehicle/robot must construct a 

path between preset target locations without colliding with obstacles in order to navigate 

autonomously [20]. The robot then follows the course calculated by the path planning 

algorithm. Furthermore, the robot must cope with unknowns and unanticipated scenar-

ios that may occur in real-time, such as unexpected impediments, unplanned tasks, and 

so on. Despite their widespread usage, GPS systems have limits and downsides in situa-

tions where high precision navigation is required or when the satellite signal is low, such 

as in covered areas, greenhouses, or unusual mountainous locations [21]. Due to wheel 

slippage on sloping terrains, which is common in various crops such as vineyards, UGV 

motion prediction via wheel odometry has severe limits in agricultural applications [22]. 

Robotic platforms will increase farm efficiency, according to the strategic European 

research agenda for robotics [23]. Even though this field is becoming more popular in 

research [24], only a few commercial solutions are available [25]. Planting, harvesting, 

monitoring, spraying, and trimming are just a few of the agricultural chores that have 

been automated. Autonomous robot navigation is required for all of these procedures. 

This stage, which is a crucial aspect of autonomous robot navigation: localization, map-

ping, motion control, and path planning are the four prerequisites. Path planning for a 

robot requires a series of calculations for the translation and rotational motions of the 

robot to avoid obstacles from the initial point to the end point in the operating environ-

ment [26]. Agricultural areas provide a number of difficulties for robotic navigation. 

Agrarian fields, unlike interior surroundings, are complex, unstructured, and unpre-

dictable. Path planning tactics that are well suited for indoor areas may not be suitable for 

agricultural needs, necessitating the development of sophisticated agricultural path 

planning strategies. Path planning for UGVs is drawing a lot of attention owing to the 

Industry 4.0 revolution and exponential growth in machine learning. There are various 

publications on this topic in the literature, with the first originating in 1989 when Palmer 

et al. [27] proposed a problem with efficient field paths around an obstruction prompted 

by agricultural sector concerns. Bochtis et al. [28] presented research on agricultural 
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machinery improvements, with path planning algorithms for farm area coverage being 

one of the topics covered. A smart farm should rely on autonomous decision-making to 

ensure (i) system efficiency, (ii) better product quality, (iii) lower costs, (iv) improved 

product safety and environmental sustainability, (v) reduced consumer delivery time, 

and (vi) increased market share and profitability while stabilizing the labor force. When 

the robot detects an unexpected obstacle, it is forced to change course. To safely avoid the 

barrier, the robot must either design a short-term time-dependent trajectory and subse-

quently return to the original path or compute a new path and follow it autonomously. In 

UGV navigation, route planning is critical for finding the best path between destination 

sites while avoiding obstacles. Based on the environmental data utilized to calculate an 

optimum path, this issue may be divided into global route planning and local trajectory 

planning. The purpose of global path planning is to find the most efficient route using a 

global geographical map. Local trajectory planning, on the other hand, uses sensor data 

from the surrounding environment to create a real-time, collision-free trajectory. As a 

result, to correctly complete various activities and minimize obstructions, both global 

route planning and online local trajectory planning are required [29]. 

To the best of our knowledge, path planning applications in agriculture do not re-

ceive a systematic and detailed assessment. As a result, this research examines the many 

techniques of path planning that have been used over time in various agricultural areas. 

The methodology for this review is detailed in Section 2. The notion of path plan-

ning and its many approaches are briefly explained in Section 3. In Section 4, we look at 

the works that have been recognized as being related to agricultural path planning and 

Section 5 summarizes the revision’s findings. 

2. Methodology 

This study used a ‘systematic literature review’ method to examine the existing lit-

erature on the path/trajectory planning features of ground robots in agriculture, with the 

goal of providing new information in the area [30]. To organize and assess the available 

literature in an area, a systematic literature review necessitates a more rigorous and 

well-defined technique [31]. Using the scientific search engine Google Scholar, a list of 

more relevant literature was compiled. Number of publications and percent of review 

papers found in Google Scholar for the last five years is presented in Figure 1, when 

searched with “path planning for agricultural ground robots”. 

 

Figure 1. No of publications and % of review paper in a broad search. 

Figure 1 shows that in the last five years the interest on the topic is increasing ex-

ponentially. While investigating in-depth about those literatures it was observed that 

most of them focused on aerial vehicles instead of ground vehicles. It can also be seen 

that the percentage of review papers on the field is increasing with time. A number of 

important publications from peer-reviewed scientific journals were chosen, which as-
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sisted in the identification of key authors and additional research pertinent to the issue of 

path planning agricultural robots. In this paper, we use the word “locomotion planning” 

to refer to the phrases “motion planning,” “route planning,” and “path planning,” which 

are commonly used interchangeably in the literature when it comes to robotics-assisted 

automated activities. The level of abstraction of the solution domain can be used to make 

a broad distinction between these words. The phrase “motion planning” refers to the 

process of developing efficient trajectories for mobile robot systems, especially when 

kinematic restrictions, dynamic constraints, object coordination, and other factors are 

present. Furthermore, from a topological perspective, the term “route planning” refers to 

calculating the optimal sequence (permutation) for visiting the nodes in a graph and is 

equivalent to the problem of the complete traversal of a graph [32,33]. 

In contrast, “path planning” refers to the challenge of identifying a collision-free 

path linking a predetermined start and a target point [34], whether in a topological, ge-

ometrical, or a trajectory sense. Any route planning approach for ground robots in the 

agricultural field was studied, and papers from a variety of agricultural fields were 

picked. The purpose of this review of relevant work is to address the following questions: 

1. What agricultural task is it performing? 

2. Which path planning technique is used? 

3. On-line capabilities? 

4. Dynamic or static? 

5. Path optimality? 

6. Geometry characteristics? 

7. Optimization criteria? 

8. Constraints of the robot? 

9. Limitations? 

10. Computational complexity and processing time? 

11. Field testing conditions? 

3. Path Planning 

Automatic ground vehicle guiding is now implemented using either local position-

ing systems (vision or laser-based sensors) or global positioning systems (GPSs) as shown 

in Figure 2. 

 

Figure 2. Guiding system of automatic ground vehicle. 

Since the 1970s, local positioning systems have been employed in autonomous ap-

plications [35,36]. Although they are inexpensive to adopt, their primary downside has 

been observed to be susceptibility to light conditions in outdoor locations [37]. Recent 
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advancements in satellite technology have resulted in a rise in the latter’s use, which has 

progressively displaced the former, which was dominant in the 1990s [38,39]. The use of 

real-time kinematic (RTK)-GPS with centimeter precision [40] has allowed for extensive 

agricultural vehicle research. Agricultural vehicles with GPSs provide several ad-

vantages, including relieving the driver of the arduous duty of precisely directing the 

vehicle, improving trajectory tracking accuracy, and the ability to operate at night or in 

foggy conditions. 

The configuration space (C-space) technique is an important method for articulating 

and finding a solution to the hindrance in path planning. It is a crucial notion to represent 

the robot as a single point. The complications are expanded in proportion to the robot’s 

size to compensate for the robot’s smaller size [41]. Potential fields, sampling-based 

techniques, cell decomposition, and nature-inspired algorithms like the genetic algorithm 

(GA), particle swarm optimization (PSO), and ant colony optimization (ACO) are all 

examples of path planning approaches. It’s possible to divide path routing into two cat-

egories: path routing based on point-to-point and coverage path routing. 

3.1. Point-to-Point Routing 

The goal of mobile robot point-to-point path planning is to discover a collision-free 

path from a starting point to a destination point while minimizing time, distance, and 

energy consumption. In this approach the robot behaves like a single particle in a poten-

tial field, with the destination point representing an attraction point and the impediments 

representing a repulsion point. The agricultural open space is divided into tiny areas 

known as a cell by cell breakdown method [42] in this path planning approach. An ap-

proach for calculating the restrictions on an object’s position caused by the existence of 

other objects is provided in [42]. Their strategy is based on creating an object’s position 

and orientation as a single point in a configuration space, where each coordinate denotes 

a degree of flexibility in the object’s position or orientation. Local minima arises when the 

algebraic sum of all the potentials is null, which is a common occurrence in this approach. 

This situation may make it difficult for the robot to achieve its goal which has been ad-

dressed in [43]. Results from the experiment conducted in [43], with research prototype 

rovers show that the planner enables real-time performance while allowing exploitation 

of the complete vehicle mobility envelope in difficult terrain. 

When the outer perimeter of the obstacle zone is not utilized, the overall travel time 

of a mobile robot is shortened. To reduce processing time, Goto et al. [44] suggested an A* 

algorithm-based solution. The trip distance of the path and difficulty is used as the ob-

jective functions by Castillo et al. [45] in the multi-objective genetic algorithm method. 

RRT stands for “rapidly exploring random tree” and is a well-known sampling-oriented 

method for randomly exploring pathways. RRT favors unexplored territory. The RRT’s 

vertices have a uniform distribution. Even though there are few edges, the procedure is 

rather straightforward, and RRTs always remain interconnected. These planners are 

simple, but they are inefficient, and they prefer to create courses with sharp bends [46]. 

RRT-Connect, also known as bi-directional RRTs, uses a heuristic to connect two 

RRTs—one at the beginning point and the other at the target position. This method works 

well for issues without differential constraints. One tree is enlarged during each iteration, 

and the new vertex is linked to the nearby vertex of the other tree. The roles are then 

switched, with both trees now exploring the open configuration space. For planning 

movements of a robotic arm with several degrees of freedom, this approach is appropri-

ate [47]. A road map of the investigated region and an associated Safe Region (SR) are 

constructed in Sensor-based Random Trees (SRTs) [48,49]. The sensors are able to iden-

tify the Local Safe Region (LSR). Each node of the SRT is made up of a Local Safe Region 

and a free configuration. All Local Safe Regions make up the Safe Region. It is a projec-

tion of the open area around the robot in a certain configuration. The LSR’s form is de-

termined by the robot’s sensor properties, such as its angular resolution. A ball or a star 

are two possible LSR shapes. Experimental evidence shows that the star shaped LSR ex-
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ploration approach is more accurate [48]. Karaman et al. [50] introduced RRT*, a tech-

nique that converges to a near-optimal solution. Masehian and Sedighizadeh [51] used 

PSO with a probability road map to achieve shortness and smoothness as goals. Mul-

ti-objective PSO (MOPSO) algorithms, on the other hand, have been developed for over 

two decades and have made significant progress in solving multi-objective optimization 

problems [52]. MOPSO’s suitability varies greatly depending on the complexity and di-

mensionality of the issues under consideration. In path planning, several of the re-

searchers used the multi-objective decision-making (MODM) technique. The analytic hi-

erarchy process (AHP) was used by Kim and Langari [53] to create an ideal path for a 

mobile robot. Buniyamin et al. developed the Point Bug method to reduce the usage of an 

obstacle’s outside perimeter (obstacle border) by searching for a few key spots on the 

obstacle’s outer perimeter that may be used as a turning point to the target, and then 

generating a full path from source to target [54]. 

Masehian and Sedighizadeh [55] used particle swarm optimization with a probabil-

ity road map to achieve brevity and smoothness as goals. Ahmed and Deb [56] modified 

the non-dominated sorting genetic algorithm to account for travel distance, safety, and 

path smoothness all at the same time. Ahmed and Deb [56] improved the non-dominated 

sorting genetic algorithm to account for travel distance, safety, and path smoothness at 

the same time. MOPSO was used in [57] to design robot routes and create Pareto opti-

mum pathways. To limit the robot to its maximum turning rate, Fernandes et al. [58] 

employ cell decomposition using A*. In the subject of path planning, nature-inspired 

algorithms have gotten a lot of attention. In the literature, GA, PSO, and ACO are fre-

quent study areas with promising findings for robot path planning. These na-

ture-inspired path planning algorithms are described in detail and reviewed by Mac et al. 

[59]. GA is a natural genetics-based optimization method that makes use of procedures 

including natural selection of samples, crossover among them, and mutation [59]. For 

mobile robot motion planning, a method combining the Voronoi diagram (VD) and the 

modified Ant Colony Optimization (M-ACO) algorithm is proposed [60]. In the obsta-

cle-filled space, the Voronoi diagram generates edges and vertices, and M-ACO chooses 

the nodes to safely build the shortest path using point to point motion planning. 

Elhoseny et al. [61] applied a modified GA in a dynamic field, for a path planning ap-

proach. Ma et al. [62] proposed a dynamic augmented multi-objective particle swarm 

optimization algorithm for the path planning problem of an unmanned surface vehicle 

(USV), in which the goal was to find the shortest, smoothest, most economical, and safest 

path in the presence of obstacles and currents, while keeping collision avoidance, motion 

boundaries, and velocity constraints in mind. 

Xiong et al. [63] recently employed an ACO algorithm to design numerous auton-

omous maritime vehicles’ paths. By integrating the benefits of the A* algorithm and the 

fuzzy analytic hierarchy process (FAHP), Kim et al. [64] proposed an optimum path 

planning module. Numerical simulations were used to test the performance of the sug-

gested motion control approach and path planning algorithm. By performing a 

point-to-point movement task, circular route tracking job, and randomly moving target 

tracking task, it was proven that the suggested motion controller outperforms current 

controllers such as PID. Furthermore, A*–FAHP was used to assess the performance of 

the suggested route planning algorithm on the omni-wheel mobile robot, and it was 

simulated utilizing static, dynamic, and autonomous ballet parking circumstances. The 

results of the simulation showed that the suggested method produces the best path in a 

short amount of time. Although the suggested method contains qualities that make it 

acceptable for a dynamic working environment, it must be verified and improved 

through tests on difficulties that may arise in a real robot’s driving environment. Refer-

ence [65] also presented multi-objective consideration path planning algorithms more 

recently. The purpose is to use the vacant spaces in the cell graph to find a collision-free 

route. The availability of each cell is indicated in each cell. The cell decomposition ap-

proach is frequently used with search algorithms such as A* or Dijkstra to find a path 
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[65]. When utilizing A*, the procedure always creates the best path based on the criteria. 

This method, however, has increased the computing difficulty. 

3.2. Coverage Routing 

The job of establishing a path that travels through all points of an area or volume 

while avoiding obstacles is known as coverage path planning (CPP). The following con-

ditions for a coverage operation were specified by Cao et al. [66]: 

(1) The robot must be able to cover the entire region. 

(2) The robot must completely occupy the area without any overlap. 

(3) The processes must be continuous and sequential, with no pathways being repeated. 

(4) All impediments must be avoided by the robot. 

(5) Make use of basic motion trajectories. 

(6) In the given circumstances, an “optimal” approach is sought. 

In complicated situations, however, it is not always possible to meet all of these 

needs. As a result, prioritization is essential. Depending on the assurance, these algo-

rithms can be characterized as heuristic or comprehensive, regardless of whether they are 

classified on-line or off-line. Many coverage strategies, whether implicitly or explicitly, 

use cellular breakdown to assure coverage. Approximate, semi-approximate, and accu-

rate approaches are all available [67]. 

Cell grid-based approaches, which split the map into a regular grid of cells and 

draws a route across all of them, are another sort of coverage algorithm. To identify a 

coverage path, Zelinsky et al. [68] used the standard wavefront approach. The wavefront 

algorithm creates a wavefront from the goal to the start by defining a beginning and a 

goal cell. Before approaching the target further, cells in equidistant level groups of these 

wave fronts are visited. Although not ideal, randomization is a low-cost solution for tiny 

robots functioning in constrained environments. The primary benefit of a random tech-

nique, according to Choset et al. [69], is that no localization sensors or sophisticated path 

planning algorithms are required. This is impossible in the case of agricultural field 

needs, as specific agricultural activities involve specialized methods that cannot be pro-

vided by random operations. Furthermore, the platform’s operating costs would be sig-

nificantly higher. Huang [70] recommended rotating the sweep line or cells for ideal 

boustrophedon patterns. Methods of precise cellular breakdown split free space into dis-

tinct sections (cells). To cover the free cells, simple movements are utilized. As specimen, 

all the vacant cells may be covered by a pattern like zigzag. The widely used boustro-

phedon cell decomposition [71] is a cell breakdown approach that uses a simple 

back-and-forth motion within the created cells. Acar et al. [72] demonstrated path gen-

eration with flawless cellular breakdown. 

The spanning tree approach [73] divides open space into mega cells and builds a 

spanning tree that encompasses all of them. There are four smaller cells inside the mega 

cells that may be reached by travelling the spanning tree. Both approaches ensure cov-

erage, although the movement patterns are rather unpredictable. Acar et al. [74] explore 

coverage route design in demining applications. Two coverage methods are used in this 

study’s omnidirectional vehicle: accurate cellular breakdown with back-and-forth mo-

bility and a probabilistic methodology. Yang et al. [75] proposed a neural network 

method for dealing with path routing challenges in dynamic conditions, which might be 

useful in cleaning robots. The neural network-based coverage route planner [75], which 

treats all cells as neurons and determines which cell to visit next depending on the acti-

vation status of surrounding cells in the network, is a biologically inspired approach for 

covering a cell grid. Wong and MacDonald [76] extended the discovery of important cell 

breakdown sites to any type of topological landmark. Chibin et al. [77] used the ACO 

method to tackle a comprehensive coverage path planning problem. Galceran and Car-

reras [78] have summarized and discussed the majority of the significant work in the 

topic of coverage path planning. 
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Schafle et al. [79] developed an energy-optimized coverage path design utilizing 

GA. Kouzehgar et al. [80] proposed a simple additive weighting (SAW)-based path 

planning technique for a cleaning robot, with area coverage and energy consumption as 

considerations. Zoto et al. [81] proposed a process that uses high-resolution pictures 

taken from UAV to automatically develop a coverage path plan for a UGV. The experi-

mental findings demonstrate that the work as a whole makes a substantial contribution 

to UGV coverage path planning in difficult environments such as mountainous vine-

yards, which can help farmers manage agricultural activities. However, when dealing 

with environments that vary considerably from one vineyard area to another, there are 

certain flaws. 

The traditional accurate cellular decomposition techniques [67,82,83], the 

Morse-based cellular decomposition methods [72], and the landmark-based cell decom-

position algorithms [76] are among the ways that split the original map into smaller units 

that may be covered by a simple motion pattern. Unlike traditional precise cellular de-

compositions, which rely on polygonal structures and impediments, Morse-based de-

compositions do not have this constraint. 

4. Application of Routing in Agriculture 

Applications of path planning in agriculture cover a wide range of topics and ap-

plications, as evidenced by the fact that we found a good number of publications for this 

study. Some articles in this collection discuss point-to-point path planning techniques, 

while some discuss coverage path planning issues. Agricultural applications include 

navigation in vineyards, orchards, greenhouses, and wheat farms, among others. Moni-

toring, targeted spraying, and harvesting are only some of the uses for navigation. Some 

authors, on the other hand, propose a path planning algorithm that is tailored for agri-

cultural areas and/or machinery but does not apply to a specific purpose. For agriculture 

applications, there is no widely used path planning algorithm, with different methods for 

each job, whether in 2D/3D surroundings. The works reviewed in this section are tabu-

lated in Tables 1 and 2, which includes a list of all the articles chosen and brief replies to 

the questions of Section 2. 

The first paper listed in point-to-point route planning is from 1997 [84], and it pro-

vides a GA for building a path for robots used in the agricultural field, while taking into 

account the limits of the location. Linker et al. [85] released a paper in 2008 with a modi-

fied cell decomposition utilizing the A* method for orchard navigation. They took into 

account the limits that are unique to the vehicle and environment, such as a limited 

steering angle, a restricted range of pitch and roll degrees, a preference for forward mo-

tion, and reluctance for frequent turning. Although the claim by authors indicates that 

the path they have devised is the best, some of the limitations may lead to a 

less-than-ideal path. Santos et al. [86] employed a similar technique considering the cen-

ter of mass of the robot, for safe navigation in a steep slope vineyard, in which the algo-

rithm limits roll, pitch, and yaw angles. They took into account the limits that are unique 

to the vehicle and environment in question, such as a limited steering angle, a restricted 

range of pitch and roll degrees, a preference for forward motion, and reluctance for fre-

quent turning. Other characteristics, such as soil compaction and automated recharge 

systems, are taken into account in certain variants of this technique. Another work uses 

D* cell decomposition, that is built based on A* but incorporates robot dynamics. The 

goal of this work is to navigate around an unknown oil palm plantation [87]. In an un-

structured 3D terrain, an artificial potential field planner is used for energy optimization 

[88], and Mai et al. [89] employs multi-point measurement in potato cultivation using 

ACO. The authors differ on which approach to employ for point-to-point path routing, 

despite the fact that cell decomposition is marginally preferred. Point-to-point routing 

approach in agricultural field is tabulated in Table 1. 
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Table 1. Agricultural applications of point-to-point routing. 

Ref. No. Year 
Application in  

Agricultural Field 

Path Planning 

Approach 

Dynamic or 

Static  

Environment 

On-Line or  

Off-Line 

Geometry  

Features Optimization 

Criteria 

Robot  

Restrictions 
Limitations 

Tested in 

Real 

Scenario 

Computational  

Complexity/Processing 

Time 2D/3D 
Terrain  

Configuration 

[84] 1997 

Create a suboptimal 

path for a mobile 

agricultural robot 

and use it to solve 

various nonlinear 

agricultural control 

issues. 

GA 

Static Off-line 

2D NA data 

− Car-like 

vehicle 

-maximum 

steer angle 

of 40 de-

grees 

− maximum 

steer rating 

of 7 degrees 

per second 

− velocity 

range: 0.4–

1.2 m per 

second 

NA 

No 

Complex/100 s 

[85] 2008 

For choosing the best 

routes for car-like 

vehicles that operate 

in orchards  

Modified  

Cell Decomposi-

tion with A* 

3D 

Parallel rows 

and random 

generated 

obstacles 

Shortest path 

that  

− Avoids 

excessive 

roll and 

pitch an-

gles; 

− Prevents 

soil com-

paction. 

Car-like vehicle: 

− limited steer 

angle; 

− limited 

pitch and 

roll; 

− forward 

motion 

preferable; 

Preference of 

forward mo-

tion may gen-

erate a subop-

timal path. 

(Longer path 

and pro-

cessing time) 

Medium 

High/-average: 8.0 s; 

-best case: 1.39 s; -worst 

case: 24.84 s 

[87] 2017 
Navigation through 

oil palm plantation 

Cell Decomposi-

tion with D* Lite 

Partially dynam-

ic 
On-line 2D 

Unstructured 

tree plantation 
Shortest path Differential robot 

Robot can’t 

exactly follow 

the path 

Yes Medium High/NA 

[90] 2018 

A multilevel system 

is suggested to keep 

track of a vineyard 

robot’s autonomy, 

Modified 

Cell Decomposi-

tion with A* 

Static Off-line 3D 

Irregular 

curved vine 

rows with 

high slopes at 

Shortest path 

with minimum 

energetic cost 

Differential robot 

Algorithm 

may need to 

run for hours 

in the first 

No 

Medium High/90 min. 

to generate all the pos-

sible paths 
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plan the robot’s 

off-line journey to 

the closest charging 

station, and dock the 

robot there while 

taking into account 

visual tags.  

the edges time execu-

tion  

[88,91] 2018 

An optimized path 

over straight-line 

path has been pro-

posed for a field 

operated agricultural 

rover to save energy 

and prolong the bat-

tery life. 

Artificial Poten-

tial Field 

Unstructured 

3D simulated 

terrain with-

out obstacles  

Optimize energy 

consumption 

avoiding uphill  

NA NA No Simple/NA 

[92] 2018 

Navigation in steep 

slope vineyards 

aware of soil com-

paction 

Modified 

Cell Decomposi-

tion with A* 

Irregular  

curved vine 

rows with 

high slopes at 

the edges 

Shortest path 

while avoiding 

soil compaction 

Differential ro-

bot; 

Tricycle robot; 

Tracks robot; 

Processing 

time increases 

to avoid the 

compaction 

when many 

paths are 

produced at 

the same loca-

tion  

No 

Medium 

High/Differential: [0.05, 

0.6] s 

Tricycle: [0.05, 0.4] s 

Tracks: [0.1, 0.2] s  

[93] 2019 

Navigation in steep 

slope vineyards 

aware of vegetation 

wall distance 

Irregular  

curved vine 

rows with 

high slopes at 

the edges 

Shortest path 

maintaining the 

distance to the 

vegetation 

data 

It is impossi-

ble to ensure 

an accurate 

distance over 

the entire trip 

No Medium High/NA 

[86] 2019 

Navigation in steep 

slope vineyards 

aware 

robot’s center of 

mass 

Partially dynam-

ic 
On-line 

Irregular 

curved vine 

rows with 

high slopes at 

the edges 

Shortest safe 

path 

− avoiding 

excessive 

roll and 

pitch an-

gles; 

− Controlling 

Differential Ro-

bot:  

− limited 

pitch and 

roll accord-

ing center of 

mass; 

− limited 

Heavy in 

terms of 

computational   

memory for 

big dimension 

terrains  

Yes 

Medium High 

/ 

0.06 s to 0.26 s 
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orientation 

and limit-

ing maxi-

mum robot 

turn rate; 

maximum 

turn rate;  

[89] 2019 

Multi-point meas-

urement in potato 

ridge cultivation 

ACO Static Off-line 

2D 

Parallel rows 

of potatoes 

Shortest dis-

tance  
NA 

No direct ap-

plication to 

any real robot 

No Complex/NA 

[94] 2020 

For automated trac-

tor steering control 

in greenfield farm-

ing, an online path 

planning algorithm 

is suggested. 

Model proposed 

by the authors 
N/A On-line NA NA 

Tractor with 

trailer:  

− limited steer 

angle; 

− limited steer 

rating; 

The swath 

distance from 

the pickup 

center ap-

proaches 1 m 

Yes NA 
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An analysis of Table 1 shows that point-to-point path routing approach is mainly 

tested in a static environment rather than the practical field condition of agricultural land 

as shown in Figure 3. 

 

Figure 3. Testing environment of point-to-point path routing approach. 

The methods used in coverage path planning issues differ throughout the literature. 

The total covering of irregularly shaped terrains is a typical objective in this field. In 2006, 

the earliest selected study presented a Hamiltonian Graph exploration to cover irregu-

lar-shaped areas with the least amount of overlaps and maneuvers [95]. In 2009, Oksanen 

et al. [67] presented a greedy technique for covering curve-shaped fields that included a 

heuristic algorithm. Hameed et al. [96] presented a GA-based technique for predicting 

the best driving route for agricultural equipment to minimize fuel consumption five 

years later. 

The authors say that their method is optimal or near-optimal or provides a 

sub-optimal alternative. Only two point-to-point [86,87] and two coverage path planning 

[97,98] studies offer an online solution in dynamic situations, showing that the majority 

of the approaches are static off-line path planners. Only a few point-to-point techniques 

are included in this category, hence fewer than half of the authors claim to have con-

ducted experiments in a genuine setting. Furthermore, some works do not even identify 

the qualities of the robot. Coverage routing application in agricultural field is tabulated in 

Table 2. 

 

82%

18%

Testing Environment of Point  to point path 

planning approach

Static Environment

Partially dynamic

Environment
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Table 2. Agricultural applications of Coverage routing. 

Ref. No. Year 

Application in 

Agricultural 

Field 

Path Planning 

Approach 

Dynamic or 

Static  

Environment 

On-Line or  

Off-Line 

Geometry 

Features Optimization  

Criteria 
Robot Restrictions Limitations 

Tested in 

Real  

Scenario 

Computational  

Complexity/Processing 

Time 2D/3D 
Terrain  

Configuration 

[95] 2006 

Coverage field 

farm with agri-

cultural ma-

chines 

Hamiltonian Graph 

exploration based 

approach  

Static Off-line 2D 
Irregular shaped 

polygons 

Minimize overlap-

ping and number of 

maneuvers 

Farm Tractor:  

− limited steer 

angle;  

− limited steer 

rate;  

NA No NP-complete/NA 

[67] 2009 

Coverage fields 

with autono-

mous or hu-

man-driven ag-

ricultural ma-

chine  

Greedy algorithms 

for division of area 

into sub-areas and 

Heuristic algorithm 

for  

selection driving 

direction 

Static Off-line 2D 
Complex shaped 

fields 

− Fuel refilling 

path consid-

eration; -Cost 

function 

weighted 

with: the rel-

ative effi-

ciency (oper-

ated area di-

vided by total 

time); the 

normalized 

distance 

(travelled 

distance in a 

sub-area ex-

cluding the 

travelled dis-

tance in the 

headland ar-

ea) and the 

normalized 

area (the area 

of a created 

sub-area di-

vided by the 

remaining 

area)  

NA 

It is possible 

to find cases 

in where this 

method fails 

to offer a 

solution 

No NP-hard/4 min 

[96] 2014 

Intelligent cov-

erage for agri-

cultural robots 

2D/3D GA-based 

approach 
Static Off-line both 

Complex and 

irregular shaped 

fields 

Optimal driving 

direction which 

minimizes energy 

NA 

Can result in 

coverage 

plans that 

No Complex/NA 
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and autonomous 

machines 

consumption (fuel); require in-

creased oper-

ational time 

[99] 2016 

Rural Postman 

Coverage in 

steep slope 

vineyard 

A* and Dijkstra 

search in graphs  
Static Off-line 3D 

Irregular curved 

vine rows in 

terraces with high 

slopes at the 

edges 

Find optimal per-

mutation of tracks 

to ensure coverage; 

Farm tractor is used 

for testing, where 

U-turn maneuvers 

not possible; 

No. of wicker 

may require 

for repetition 

of a specific 

path, and 

that’s against 

the principles 

of most CPP 

problems 

Yes NP-hard/NA 

[100] 2016 

Side-to-side cov-

erage for agri-

cultural robots 

Grid-based 2D 

coverage projection 

on 3D terrain with 

cylindrical ap-

proach for optimi-

zation to the to-

pography 

Static Off-line 3D 

Accepts all topo-

graphical types os 

terrain 

Minimize 

skip/overlap areas 

between swaths 

NA 

Cylindrical 

approach 

cannot dif-

ferentiate 

between 

skips and 

overlaps 

Yes NA 

[101] 2016 

Coverage for a 

fleet in an agri-

cultural envi-

ronment 

Mix-opt (developed 

by authors)—a mix 

of various permu-

tation operators 

Static Off-line 2D Parallel Rows 

A set of n tracks 

and m vehicles are 

predecided, deter-

mine a set of routes 

such that each track 

is covered exactly 

once by any of the 

involved vehicles 

while minimizing 

the total cost of 

covering all the 

tracks 

Farm Tractor: 

-limited steer angle; 

-limited steer rate; 

It is presented 

just as a route 

planning tool; 

the authors 

defend the 

implementa-

tion using a 

more concise 

language.; 

No NA 

[102] 2016 

UGV to measure 

ground p prop-

erties of green-

houses 

Back and forth 

strategy 
Static Off-line 2D 

Parallel rows of 

vegetation 

The path must 

travel through all of 

the points in the 

shortest feasible 

time and with the 

shortest possible 

longitude 

Differential Robot NA Yes NA 

[97] 2016 

Agricultural 

robot swarm for 

seeding task 

Developed by au-

thors (algorithm 

not specified) 

Dynamic On-line 2D 

Irregular poly-

gons on plain 

agricultural areas 

- Find a path that 

will allow you to 

cover the full sow-

Limited supply of 

energy and seeds; 

System tested 

with a small 

number of 

Yes NA 
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ing area;—Find 

uniform workload 

distribution be-

tween ro-

bots;—Find opti-

mized overall path 

length considering 

limited availability 

of energy and seed 

on-boar; 

robots; In the 

early demon-

strations, 

switching 

from large 

machines to 

swarm robots 

may not be 

well accept-

ed; 

[98] 2018 

Precision polli-

nation in green-

house 

Voronoi Graphs 

with Dijkstra search 

and Dynamic win-

dows approach for 

local obstacles 

Dynamic On-line 2D 

Parallel rows of 

plants in green-

house 

Cover all polliniza-

tion points mini-

mizing 

Differential Robot 

with arm manipu-

lator 

The problem 

has to be 

reformulated 

to generate 

paths which 

ensure flow-

ers near the 

end of their 

pollinization 

are reached 

sooner 

Yes Medium-Low/N/A 

[92] 2018 

Coverage Path 

Planning for 

ground robot 

with aerial im-

agery 

A* algorithm search 

in graphs with 

gradient Descent 

optimization for 

smoothing the 

trajectory 

Static Off-line 2D 

Hilly Vineyards 

with parallel vine 

rows 

Cover all of vine-

yards’ rows while 

minimizing dis-

tance 

NA 

In UAV im-

agery, there 

are 

non-continuo

us rows of 

path la-

bels.;—Weak

ness as envi-

ronments 

deviate sig-

nificantly 

from one 

parcel to 

another 

Yes Medium/N/A 

[103] 2019 

Optimize har-

vesting area of a 

robot combine 

harvester of 

wheat or paddy 

N-polygon algo-

rithm to determine 

optimum harvest-

ing area (Devel-

oped by authors) 

Static Off-line 2D 

Convex and con-

cave polygon 

fields 

Cover area without 

overlaps or skips in 

the 

Big dimension 

agricultural tracks 

machine 

NA No N/A/5 min 

[104] 2020 Intelligent irriga- ant colony algo- Static Off-line 3D rugged and nar- capability of ex- In the steering gear The control Yes Complex/40 s 
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tion robot is 

designed for 

multipurpose 

rithm based on 

Bayesian theory 

row environment panding the work-

ing area and reduc-

tion in the water 

waste 

- opts for the short-

er path under the 

premise where 

more information 

can be obtained. 

control system, the 

turning radius of 

the mobile robot is 

0.5 m and the 

maximum for-

ward/backward 

speed is 0.7 m/s. 

between 

software and 

robots as well 

as the irriga-

tion device 

has not been 

fully auto-

mated 
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An analysis of Table 2 indicates that in 83% of cases the coverage path planning 

approach is tested in a static environment whereas in 17% of cases it has been tested in a 

dynamic environment as shown in Figure 4. 

 

Figure 4. Testing environment of coverage path planning approach. 

The computational complexity was studied without any formal measurements be-

cause most authors are unable to provide appropriate facts on this topic, including 

computational requirements and temporal demands in some cases. Some articles char-

acterize their coverage route planning approach as nondeterministic polynomial-time 

complexity, known as a level of complexity used to classify decision-making challenges 

[105]. 

This review study concludes that route planning is commonly used in industry and 

the interior environment, but it is rarely used in ground robotics in agricultural contexts. 

Coverage route planning is substantially more sophisticated in farming since it is a 

common problem. Point-to-point planners, on the other hand, are perfect for precision 

agricultural tasks requiring an autonomous job to be performed on a certain number of 

plants. When cutting plants, for example, the robot must just visit those that have been 

chosen, rather than the entire field. To summarize, agricultural path routing research is 

essential for implementing agricultural automation on the right “track”. Further research 

should focus on validating and optimizing the suggested methodologies through exten-

sive testing in real-world agricultural settings 

5. Conclusions 

The current study provided a detailed analysis of a path routing approach in agri-

cultural for ground robots. It studied the application in the agricultural field and dis-

cussed the constraints enforced by the robot setup or the terrain type in the agricultural 

field. This work describes the path routing methodology, the kind of outdoor environ-

ment, the terrain geometry characteristics, the optimization criteria, the method’s re-

striction, the computation complexity, and the implementation of testing in an actual 

scenario. 

• The study categorized path routing approaches into two classes: point-to-point and 

coverage path routing. 

• The analysis suggests that in agriculture, coverage path routing is less progressed 

than point-to-point path routing. This is owed to the fact that coverage path routing 

Static 

Environment

Dynamic 

Environment

TESSTING ENVIRONMENT OF COVERAGE PATH 

PLANNING APPROACH
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is commonly required for agricultural applications in broader view, while 

point-to-point path routing is required for recently advancing precision agriculture. 

• In 83% of cases the coverage path planning approach is tested in a static environ-

ment whereas in 17% of cases it has been tested in a dynamic environment. 

• Point-to-point path routing approach is tested in a static environment in 82% of 

cases and has only been tested in a partially dynamic condition in 18% of cases. 

The authors used a variety of path planning approaches in the review, therefore, it 

can be concluded that the best path planning approach depends on the particular task of 

the agricultural field. Only around half of the writers claimed to have used real-world 

scenarios in their research. As a result, future research should focus on optimization and 

validation through thorough testing in real-world agricultural settings, as well as making 

new agricultural field data sets available to the research community, for effective inte-

gration in the automation of agricultural activities. In this literature review only the path 

planning approach required for UGVs used particularly for in field task at agricultural 

land is focused. Application of UGVs for other farming tasks such as egg collection at 

farm, phenotyping, sorting and packing at utility platforms can be considered as our 

future work. 
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