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Abstract: Vehicle identification and classification are some of the major tasks in the areas of toll
management and traffic management, where these smart transportation systems are implemented
by integrating various information communication technologies and multiple types of hardware.
The currently shifting era toward artificial intelligence has also motivated the implementation of
vehicle identification and classification using AI-based techniques, such as machine learning, artificial
neural network and deep learning. In this research, we used the deep learning YOLOv3 algorithm
and trained it on a custom dataset of vehicles that included different vehicle classes as per the Indian
Government’s recommendation to implement the automatic vehicle identification and classification
for use in the toll management system deployed at toll plazas. For faster processing of the test
videos, the frames were saved at a certain interval and then the saved frames were passed through
the algorithm. Apart from toll plazas, we also tested the algorithm for vehicle identification and
classification on highways and urban areas. Implementing automatic vehicle identification and
classification using traditional techniques is a highly proprietary endeavor. Since YOLOv3 is an
open-standard-based algorithm, it paves the way to developing sustainable solutions in the area of
smart transportation.

Keywords: smart transportation; vehicle identification; vehicle classification; YOLOv3

1. Introduction

India is witnessing a massive growth in the automobile sector, as well as in the roads
and highway sector, which is in turn increasing the use of smart transportation systems,
such as toll management systems (TMSs) and advanced traffic management systems
(ATMSs) used on highways and expressways and integrated transit management systems
(ITMSs) used in the urban areas. These smart transportation systems intend to achieve a
particular goal(s) and are named as per their goal. The main function of a TMS is to collect
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the toll charges from road users and provide an audit of the number of vehicles and the
revenue collected [1], while the main function of an ATMS is to monitor the traffic; manage
incidents; and engage in traffic counting and classification, congestion management and
speeding detection on highways or expressways. An ITMS is a form of smart transportation
for urban transport, which is used to calculate the expected time of arrival (ETA) of city
buses and disseminate this information to the commuters waiting at the bus stops and
bus terminals [2]. The different systems in the area of smart transportation are built using
different hardware devices, information communication technologies (ICTs) and software,
which are proprietary in most cases. Therefore, there is a need to have sustainable solutions
in the area of smart transportation.

Automatic vehicle identification (AVI) refers to noticing the presence of a vehicle, and
in computer vision, it is about automatically finding a vehicle(s) in the image or frames of a
recorded or real-time video. Automatic vehicle classification (AVC) refers to the labeling of
vehicles according to the classes they belong to. The TMS and ATMS are the two application
areas of smart transportation where AVI and AVC form the basis for the function of these
systems. Since the toll fee varies as per the vehicle class, the vehicle classification is very
important for a TMS. The vehicle classification is important for ATMS too because the
vehicles are counted and segregated as per their class for the analysis related to the detours
and revenue losses, as well as penalizing the speeding vehicles since the maximum speed
limit is different for light, medium and heavy vehicles. Broadly, there are two categories of
vehicles: non-exempted and exempted. Table 1 presents the classes of vehicles that pay the
toll fee, and thus, represents the non-exempted category.

Table 1. Vehicle classes and vehicle types.

Vehicle Class Vehicle Types
Class-1 Car/Jeep/van
Class-2 Light commercial vehicle (LCV)

Class-3A 2-axle bus and truck (bus-truck_2A)
Class-3B 3-axle bus and truck (bus-truck_3A)
Class-4 Multi-axle vehicle (MAV)
Class-5 Over-sized vehicle (OSV)

In India, tolls are collected using manual toll collection (MTC) and electronic toll
collection (ETC). In the MTC method of collecting the toll fee, the toll collector collects
the toll fee in cash from the road users, through coin receptors or through smart cards,
and the receipt is issued to the road user, while in the ETC method of collecting the toll
fee, it is collected by deducting the toll fee from a prepaid RFID passive tag installed on
the windshield of the vehicle or from the bank account linked with the RFID tag. The
advantage of ETC over MTC is that the road user does not need to stop the vehicle at a
toll plaza. Both of these toll collection systems require the vehicles to be identified and
classified at a toll plaza for the audit of the revenue collected. The traditional method of
implementing AVI and AVC at toll plazas is using intrusive sensors, such as an inductive
loop detector (ILD), treadles, axle detectors and dual-tire detectors, while non-intrusive
sensors, such as a height detector, radar, vehicle separator, camera, infrared transmitters
and receivers, that create vehicle profiles are mounted on a road-side pole, canopy structure
or gantry. Sometimes, a combination of both is used to implement AVC. Figure 1 represents
a typical schematic of a toll lane with ILD, treadle and height sensor devices installed for
vehicle identification and classification.
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Figure 2. Vehicle identification and classification on highways. 

Figure 1. Vehicle identification and classification at a toll plaza.

To count the entry and exit of different classes of vehicles at the different junctions on
the highways, AVI and AVC are used again, but this identification and classification differ
from toll plazas, as the vehicles are moving at speed on a highway. Here, a system that
implements AVI and AVC using inductive loops and piezo sensors is shown in Figure 2.
These sensors provide the data related to vehicles that hit the loop/exit the loop or the
speed detected by a sensor. Depending upon the configuration and data provided by
the loops/sensors, the vehicle length is calculated and compared with the threshold value
to declare the vehicle class. Some systems use cameras to collect vehicle images. The
virtual loops that are analogous to the ILD are configured to create the data collection
point. Based on the pixel data, the vehicle length is calculated and compared with a
threshold value to declare the vehicle class. Shadow removal is also done to increase the
classification accuracy [3].
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For the automatic vehicle classification system composed of treadles and an overhead
vehicle separator, Michael C. Pietrzyk [4] recommended replacing the overhead vehicle
separator with an infrared optical curtain. The combination of treadles and optical curtain
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had a classification accuracy of 98–99%. Saowaluck Kaewkamnerd et al. [5] used a wireless
magnetic sensor embedded in the pavement, sensor board and computer to identify
and classify the vehicles into four classes (motorcycle, car, pickup and van), and testing
with 130 vehicles resulted in an overall accuracy of 77.69%. Ildar Urazghildiiev et al. [6]
proposed vehicle classification using the parameters of vehicle length and height, which
were measured with the help of a spread spectrum microwave radar sensor, as most of the
vehicles can be distinguished by their geometric shapes. The classification of 2945 vehicles
into six classes (car, car with trailer, mini-van, SUV, single-unit truck, multi-trailer truck) was
achieved with a classification accuracy of 87%. Hemanshu et al. [7] presented an infrared-
sensor-based system with a transmitter and receiver installed vertically and horizontally
on paired sides of the toll lane. The vertically mounted pair generates a side profile of
the vehicle, while the horizontally installed pair generates a pattern from which the axles
are counted and the direction of movement is determined. To classify the vehicles, the
extracted side profile of each vehicle is compared with the stacked profiles in the database.
Antônio Carlos Buriti da Costa Filho et al. [8] presented an infrared-sensor-based vehicle
classification system installed above the road that generates vehicle profiles from above.
The classification is achieved by comparing the top profile with the profiles stacked in
the database.

The advanced method of implementing AVI and AVC uses machine learning, neural
networks and deep learning. These algorithms need pictures or videos of the vehicles, which
are captured using the camera in the lanes at toll plazas and on highways. These pictures
or videos are processed using deep learning algorithms and the vehicles are identified and
classified. The deep learning algorithms [9–23] changed the method of object identification
and classification from the images, recorded videos and real-time videos. The single-stage
object detectors were found to be very useful in terms of speed and accuracy. This paper
presents the implementation of AVI and AVC using version 3 of the You Only Look Once
algorithm, i.e., YOLOv3, and the vehicle dataset was trained for the identification and
classification of vehicles as per the classes defined by the Indian Government. Further, we
merged the two-axle bus-truck and three-axle bus-truck into a single class of bus-truck, and
thus, a total of five vehicle classes were considered from the non-exempted vehicles. This
study also focused on the identification and classification of exempted vehicles. Vehicles
such as motorcycles, ambulances, funeral vehicles, fire trucks, army vehicles, three-wheelers
and tractors are exempted from the toll fee and are called exempted vehicles. From the
exempted vehicle category, we considered three vehicle classes, which were motorcycles,
three-wheelers and tractors.

We chose the YOLO family of algorithms over the Faster R-CNN algorithm since the
YOLO algorithms belong to a category of single-stage object detectors and are much faster
than Faster R-CNN. For the application areas of TMS and ATMS wherein the vehicles are to
be identified and classified instantaneously for tasks such as the collection of toll charges
or the collection of penalties in the case of speeding, YOLO was found to be the best, as
the objects are vehicles and quite large in size, and hence, accuracy should not be an issue.
Upesh et al. [24] compared version 3, version 4 and version 5 of the YOLO algorithms for
emergency landing spot detection for unmanned aerial vehicles using the DOTA dataset.
The performance was monitored for the same input parameters and output parameters
of accuracy and speed. Their comparison found that YOLOv3 was faster than YOLOv4
and YOLOv5; however, YOLOv4 and YOLOv5 performed better than YOLOv3 in terms
of accuracy. Therefore, we started our research on vehicle identification and classification
using the YOLOv3 algorithm.

The architecture of YOLOv3 [20] consists of a base network or backbone, which is
Darknet-53, as well as a neck and head. The backbone extracts the features, the neck
collects the features extracted, and the head does the job of drawing bounding boxes and
classification. In brief, YOLOv3 divides the input image into an N ×N-sized collection of
cells, giving a total of N2 cells. This cell size varies as per the size of the input image and
each cell is responsible for predicting the ‘’B” number of bounding boxes in the image. For
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the input image of size 416 × 416, the cell size is 32 × 32 and the number of cells is 169. Every
predicted box has a confidence score and the probability of correctness of identifying the
class. The bounding boxes with a confidence score lower than the threshold are eliminated
and the process is called non-maximum suppression [20]. YOLO-LITE [21] is the lighter
version that was made for running on CPUs. YOLOv4 [22] and scaled-YOLOv4 [23] are other
versions of the YOLO family, which were made by the researchers Alexey Bochkovskiy et al.
As mentioned above, we used version 3 for our research and we will try version 4 in future
works. The YOLO algorithm also gives the flexibility to modify the loss function, as well as
the addition or deletion of layer(s), which have been explored by many researchers.

Yolo loss function = Coordinate Loss + Classification Loss + Confidence Loss (1)

The coordinate loss is calculated as the difference between the coordinates of the
ground truth anchor box and the predicted bounding box. This loss is calculated only if
there is an object inside the bounding box.

The classification loss is calculated as the difference between the actual class of object
and the predicted class of object.

The confidence loss is calculated as the probability of the object being present inside
the bounding box.

The formulas [21] for these losses are expressed as follows:
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λ is a constant, S represents the number of grids and B represents the number of
bounding boxes.
xi and yi represent the coordinates, wi and hi represent the width and height of the ground
truth bounding box, and ci represents the class of the object.
x̂i and ŷi represent the predicted coordinates, ŵi and ĥi represent the predicted width and
height of the bounding box, and ĉi represents the predicted class of the object.
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ĉi = Pr(obj)*IoUtruth

pred .
In our study, we trained the YOLOv3 algorithm for a toll management system as per

the vehicle classes framed by the Indian Government agency and tested the algorithm for
the vehicle identification and classification of vehicles driving on the highway and urban
roads. The next section of this paper presents the related work done in the area of vehicle
identification and classification and subsequent sections are about the methodology adopted
for conducting our research, results and discussion, and conclusions and future work.

2. Related Work

To understand the work done by different researchers on the topic of vehicle identifica-
tion and classification using deep learning algorithms, in particular YOLO algorithms, we
reviewed different papers for the current contribution. The idea of the past research papers
with their contributing aspects is summarized below.

Bharavai Joshi et al. [25] presented a comparison study between manual toll collection,
RFID-based electronic toll collection and an automated toll collection system based on
image processing, where the toll fee is paid online by the user using a mobile phone before
reaching the toll plaza. However, the accuracy details of the image processing technique
used for verifying the vehicle at the toll plaza were not mentioned in the paper.

Initially, algorithms from deep learning were from the R-CNN family in which two-
stage detection was performed, and then single-stage detection algorithms, such as YOLO
and SSD, evolved from them. A survey paper on deep-learning-based object detection



Sustainability 2022, 14, 9163 6 of 15

algorithms from Zhong-Qiu Zhao et al. [26] stated that algorithms such as Fast R-CNN,
Faster R-CNN and YOLO provide better detection performance relative to R-CNN. Jorge
E. Espinosa et al. [27] presented a comparison between the Faster R-CNN algorithm and
the AlexNet classifier with GMM background subtraction for vehicle identification, where
the classification revealed that the Faster R-CNN algorithm worked best with an NMS
threshold value of 0.6 and a combination of AlexNet and GMM works best with a history
of 500 frames. To assist the driver of a vehicle by detecting, identifying and tracking objects
while driving, Chaya N Aishwarya et al. [28] proposed a functional and architectural model
of a system named the Intelligent Driver Assistant System, which is based on YOLO and
tiny YOLO for the detection of vehicles and pedestrians. The sharp change in vehicle
scale is a challenge in vehicle detection, as stated by Huansheng Song et al. [29], and to
overcome this, they proposed vision-based vehicle detection in which the road surface was
first extracted using a Gaussian mixture model of image segmentation process and then the
YOLOv3 algorithm was applied to detect the vehicles.

Due to various issues in YOLOv1, Tanvir Ahmad et al. [30] modified the loss function
of YOLOv1 by replacing the margin style with a proportion style and added a spatial
pyramid pooling layer and inception model with a convolution kernel of 1 × 1 to reduce the
number of weight parameters of the layers to perform the object detection. The modified
loss function is more flexible at optimizing the network error and the modification increased
the average detection rate by approximately 2% on a Pascal VOC dataset. YOLOv2 is the
improved version of YOLOv1 and the pre-trained YOLOv2 model with a GPU was used by
Sakshi Gupta [31] for the live detection of objects using a webcam; they observed that the
model using a GPU improved the computational time, speed and efficiency of identifying
the objects in images and videos. Zhongyuan Wu et al. [32] mentioned that YOLOv2
does not work efficiently to detect some uncommon types of vehicles, which is why they
proposed two changes to detect multi-scale vehicles. The first change was developing a new
anchor box generation method using Rk-means++ to enhance the adaptation of varying
sizes of vehicles, thus achieving multi-scale detection. The second change was introducing
a focal loss to minimize the negative impact on training caused by the imbalance between
vehicles and the background. However, the proposed modified method was not tested for
a variety of vehicles due to the unavailability of data.

For object detection in real time, YOLOv3 is the incremental version over the previous
version. YOLOv3 is able to achieve the highest precision, as mentioned by Dr. S.V.
Viraktamath et al. [33] in their paper explaining the architecture and functioning of the
YOLOv3 algorithm. In [34], Xuanyu Yin et al. used YOLOv3 and k-means to detect objects
in 3D images captured using a LIDAR camera in an autonomous driving system. The
research work of Ignacio et al. [35] came up with an improved version of YOLOv3 that
increases the speed but maintains the accuracy. The improvement in speed was achieved
with the help of a discarding technique using YOLOv3 and tiny YOLOv3 with an extra
output layer. This also eliminated the need to train the model at different scales or output
layers and the requirement of loading different configurations of algorithms and different
weights. With this change in YOLOv3, an improvement of 22% in speed without losing
accuracy and an improvement of 48% in speed with a loss of accuracy were noticed. In
our research, we used YOLOv3 for the identification and classification of vehicles at toll
plazas, on highways and in urban areas. To achieve the results, the dataset was prepared to
cover the non-exempted and exempted vehicles as per the objective and then the algorithm
was trained and the results were compared with the paper of Deepaloke et al. [36], who
presented vehicle identification and classification using YOLOv3 and tiny-YOLOv3 by
taking images from a perpendicular camera installed at gantries. Their study considered
passenger vehicles and trucks/buses for identification and classification and observed a
recall of 100% but did not consider all non-exempted classes of vehicles required for the
function of a toll management system. In our study, we considered all the vehicle classes
required at the toll plazas and we compared the classification accuracy of our research with
the vehicle classification accuracy obtained using traditional techniques.
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3. Materials and Methods

A total of five classes (car-Jeep-van, LCV, bus-truck, MAV and OSV) from the non-
exempted category and three classes (motorcycle, three-wheeler and tractor) from the
exempted category were selected for our research. In this study, motorcycle, three-wheeler
and tractor vehicle classes were selected from the exempted category as the other vehicle
classes’ features match with the non-exempted class of vehicles. For example, the ambulance
class matches with the LCV class from non-exempted category, while the army vehicle
could be from any class out of 1, 2, 3 or 4, and at the same time, the vehicle also has a
specific color. This section describes in detail the methodology adopted for implementing
automatic vehicle identification and classification using the YOLOv3 algorithm. The
methodology involved the steps of dataset preparation and data pre-processing, preparing
the Darknet framework and YOLOv3 configuration, and training and testing, which are
explained below.

3.1. Dataset and Data Pre-Processing

The images for motorcycles were downloaded from www.kaggle.com (accessed on
22 March 2022) [37] and the images for other classes of vehicles were downloaded from
www.google.com (accessed on 22 March 2022) [38]. A total of 160 images from each class
were collected. The class-5 vehicles are rare and hence their images are also rarely available.
To keep an equal number of images for each vehicle class, 160 images from each vehicle class
were considered. The sample images of the dataset are represented in the following Figure 3.
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The dataset pre-processing steps are mentioned in the following Figure 4 and consisted
of augmentation, annotation and division of the dataset for training and validation.
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Figure 4. Data preprocessing steps.

To have a large size dataset, the collected images were augmented using techniques
and the expected output, as mentioned in Figure 5.

With augmentation techniques applied to these images, the number of images for each
class became 1440. With a total of eight vehicle classes, the dataset with the original and
augmented images contained 11,520 images in total. Afterward, the images were annotated
using a labeling tool [39] that created a text file for each image. The text file contained the
class identifier, coordinates, and width and height for the bounding box created over the
vehicle as shown in the Table 2.

Table 2. Sample contents of a text file.

Class Coordinate (x) Coordinate (y) Width (w) Height (h)

0 0.504484 0.516556 0.919283 0.834437

Finally, the annotated images were divided into 80% for training and 20% for validation.
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3.2. Preparing the Darknet Framework and YOLO Configuration File

The pre-defined Darknet-53 framework was downloaded from the GitHub repository
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg. The pre-trained weight
file for YOLOv3 was downloaded from https://pjreddie.com/darknet/yolo. In the yolov3.cfg
file, the required changes (classes = 8, max_batches = 16,000, steps = 12,800 and 14,400, and
filters = 39) were carried out before training the dataset using the YOLOv3 algorithm.

3.3. Training and Testing

The required coding was done using the OpenCV library of Python. The training of
the algorithm was done on Google Colab using a GPU. The videos for testing were captured
at toll plazas, on highways and in urban areas. These videos were of varying duration and
saved in different formats. At certain intervals, the frames were saved from the test videos,
as shown in Figure 6.

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://pjreddie.com/darknet/yolo
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4. Results

We tested the trained algorithm using test videos that were recorded at the toll plazas,
on the highways and in urban areas. The results of the identification and classification are
shown in Figures 7–9.
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Figure 9. Identification and classification of vehicles in an urban area.

5. Discussion

Since the images at the toll plazas were captured from near distances, the front vehicles
in the images were detected easily. For the images on highways and urban areas, some
vehicles were not detected, as the camera captured the images available at both near and far
distances as compared with the toll plazas. Since the image captured from near distances
had a larger-sized vehicle in it, the class probability was higher when the image was passed
through the detector. It was also observed that the images with multiple vehicles had a
higher detection time than the images with one vehicle. Figure 10 represents the detection
time for different images passed through the detector.
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The parameters for the evaluation of this research were speed, precision and recall. The
parameter of speed is defined as the frames per second at which the video was processed by
the YOLOv3 algorithm, precision is defined as the ratio of the correctly identified positive
cases to all the cases correctly and the incorrectly predicted as positive, and recall is defined
as the ratio of the correctly identified positive cases to all the cases.

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

True positive (TP)—total number of correctly identified and classified specific class
of vehicles.
False positive (FP)—total number of incorrectly identified and classified specific class
of vehicles.
False negative (FP)—total number of a specific class of vehicles independent of whether
they were identified and classified or not.

In our research, we evaluated vehicle images at toll plazas and on highways separately
because the videos captured on highways contained a lot of background images and the
far vehicles were of smaller sizes. Further, the class-5 vehicles were not found at the toll
plazas and on highways as they are rare. For testing at the toll plazas, the downloaded
images of class-5 vehicles were passed. For the evaluation of vehicle images on highways,
the vehicles of class-5, class-7 and class-8 were not considered due to their unavailability.
The evaluation for images for urban areas was not done. The observed precision and recall
values are given in Tables 3 and 4.

Table 3. Average precision and average recall.

Vehicle Class Number of Vehicles at
Toll Plazas True Positives False Positives False Negatives Precision Recall

Class-1 55 52 2 3 0.963 0.945
Class-2 9 7 1 2 0.875 0.778
Class-3 60 56 1 4 0.982 0.933
Class-4 35 32 2 3 0.941 0.914
Class-5 5 4 0 1 1.000 0.800
Class-6 20 19 0 1 1.000 0.950
Class-7 12 10 1 2 0.909 0.833
Class-8 8 6 1 2 0.857 0.750

Averages of precision and recall 0.941 0.863



Sustainability 2022, 14, 9163 13 of 15

Table 4. Average precision and average recall.

Vehicle Class Number of Vehicles on
Highways True Positives False Positives False Negatives Precision Recall

Class-1 80 71 4 9 0.947 0.888
Class-2 5 5 2 0 0.714 1.000
Class-3 92 81 3 11 0.964 0.880
Class-4 87 79 3 8 0.963 0.908
Class-6 36 34 1 2 0.971 0.944

Averages of precision and recall 0.912 0.924

The values of the average precision and average recall for the toll plazas and highways
were looked at separately and not compared because the latter was calculated for five classes
only. The values of precision and recall using the YOLOv3 algorithm were impressive
and this gave us the confidence to step forward toward implementing automatic vehicle
identification and classification at toll plazas with less hardware.

In comparison with the research from [36], we considered all the non-exempted vehicle
classes and used test videos of different lengths and in different formats. Before passing
to the YOLOv3 algorithm, the frames from the test videos were saved at certain intervals,
which increased the speed of vehicle identification and classification, resulting in a reduction
in the detection time. Due to a lack of accuracy results in [36], we compared the accuracy
of our model with the traditional techniques. The automatic vehicle identification and
classification measured by the traditional techniques provided accuracies in the ranges
shown in Table 5. The results of the work in this study provided the precision of 94.1% at
the toll plazas, which is a good result, and 91.2% on the highways, which is an average
result as compared with the traditional techniques.

Table 5. Comparison of vehicle accuracy of different traditional and YOLOv3-based techniques.

Algorithm Technique Number of Vehicle
Classes

Number of
Vehicles

Classification
Accuracy (%)

Treadles + optic sensors Traditional All - 98–99
Wireless magnetic sensors Traditional Four 130 77.69

Axle counters + height sensors Traditional Six 2945 87.00
Vehicle profile based on

infrared sensors Traditional All - -

YOLOv3 AI-based Eight 204 94.10

6. Comparison with SOTA

The table shows the SOTA comparison in terms of the parameters of latency, number
of classes, number of vehicles and vehicle classification accuracy. The parameter of latency
depends upon factors such as the type of hardware and interfacing of the hardware with
software. Therefore, we did not consider the latency in our comparison for SOTA. The
studies that considered the same vehicle classes as us were not available. However, all
the papers for SOTA comparison tested their classification accuracy with small data sets,
which made the comparison fair. The table shows that there were some high-performance
traditional techniques for vehicle identification and classification, while the YOLOv3-based
vehicle identification and classification model trained by us produced an accuracy of
94.1%. Bringing this accuracy level up to par with the traditional technique and also the
classification of vehicles from the exempted category, such as army vehicles and ambulances,
is within our scope of future work.

7. Conclusions

We tested a custom-trained YOLOv3 algorithm at toll plazas, on highways and in
urban areas. The results showed an average precision of 94.1% and an average recall of
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86.3% at the toll plazas. With good precision and recall at the toll plazas, the algorithm can
be used for AVI and AVC in a toll management system at the toll plazas, while for use in
applications related to an ATMS and an urban area, the algorithm requires more research.
The other benefit was that we could also eliminate the installation of multiple types of
hardware/devices to implement automatic vehicle identification and classification at the toll
plazas in contrast with the traditional methods of vehicle identification and classification,
which require multiple hardware/devices, such as inductive loops, axle detector/treadles
and height sensors, while the AI-based method requires a camera with a mounting structure.

Regarding future work, the identification and classification of a merged category of
two- and three-axle buses and trucks into two-axle and three-axle vehicle classes from
the non-exempted category and the identification and classification of vehicles such as
ambulances, fire trucks and army vehicles from the exempted category will be taken up.
The research of AVI and AVC on highways and in urban areas will also be continued. The
other sub-task will be the counting of vehicles at toll plazas and on highways.
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