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Abstract: To improve the response speed and quality of Internet of Things (IoT) services and reduce
system operating costs, this paper refines the edge layer according to the different data transmission
capabilities of different edge devices, constructs a four-layer heterogeneous IoT framework under
cloud–edge–end (CEE) collaboration, and gives the corresponding data hierarchical transmission
strategy, so as to effectively process sensitive data such as real-time, near-real-time, and non-real-time
data. Meanwhile, the link based high-performance adaptive load balancing scheme is developed to
achieve the dynamic optimal allocation of system resources. Simulation results demonstrate that the
data hierarchical transmission strategy based on a CEE collaboration framework can not only make
full use of resources and improve the successful delivery rate of packets but can also greatly reduce
the end-to-end transmission delay of data. Especially, compared with the cloud-mist framework
without refining the edge layer, the data transmission rate based on CEE collaboration architecture is
increased by about 27.3%, 12.7%, and 8%, respectively, in three network environments of light-weight,
medium, and heavy load.

Keywords: internet of things; edge computing; cloud–edge–end collaboration; data layered transmission;
load balancing; resource allocation

1. Introduction

The IoT mainly relies on perception layer technology (radio frequency identification,
short-range wireless communication, sensors, etc.), network layer technology (wired or
wireless access), and business and application layer technology (information discovery,
intelligent processing, middleware, distributed computing, etc.) to connect all things in the
world into information systems according to the agreement, so as to reduce the distance
between information systems and the physical world [1,2]. Countries or regions such as
the United States, the European Union, Japan, and South Korea have launched national IoT
strategies, and China officially wrote the IoT into the “government work report” as early
as 2009. With the vigorous promotion of key technologies such as perception technology,
transmission technology, information processing technology, and common technology,
the layout of the ecosystem of the IoT industry will continue to be promoted, and data
circulation will become an important factor to accelerate the further development of the IoT
market. Therefore, with the enthusiastic pursuit of a high quality of service (QoS) in the
IoT and the further promotion and integration of IoT platform construction, the research
on data transmission strategies as an organic part of the IoT is bound to become a hot
spot [3,4].

However, the complex characteristics of the IoT environment, such as its dynamics,
coordination, diversity, mobility, and openness, seriously affect the efficiency of data trans-
mission and bring a series of challenges to the continuity of the IoT service supply. Among
them, the primary factor affecting data transmission is the selection and construction of
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IoT system architecture. A correct and effective IoT architecture can ensure that data can
be transmitted to the right location at the right time. As for the current IoT service based
on cloud computing [5–14], because the cloud server is far away from the terminals and
the rate of data transmission over ultra-long distance is low, it will not only occupy a lot
of network bandwidth but will also increase the transmission delay [15], so that the IoT
system cannot respond to emergencies in real-time. As a result, the efficiency of service
decision making is reduced, the waiting time of users is long, and the quality of the user
experience is rapidly declined.

As the core technology of 5G, edge computing [16] can delegate data processing and
other functions from the network center to edge nodes and supplement cloud technology
by providing a large amount of storage, communication control, configuration, measure-
ment, and management on edge devices [17–21]. Compared with cloud computing, it
provides more advantages for traditional IoT applications in terms of service delay, energy
consumption, network congestion, and user privacy [22]. For example, it can provide
emergency responses, longer-lasting services, and higher QoS for sensitive requests such
as emergency public opinion analysis or hypertension and diabetes diagnosis that need
real-time feedback information. The literature [22–28] shows that applying edge computing
can not only effectively avoid overloading the cloud center and reduce network congestion
and service delay but can also provide short-range, decentralized, highly reliable, and fast
computing services for IoT applications with real-time and non-real-time data processing
requirements, forming a complementary mode with long-distance cloud computing that
provides centralized big data processing functionality. The research on data transmission
strategies in the IoT under CEE collaboration has more practical value.

Some of the literature [29–34] made use of the advantages of edge computing to carry
out corresponding scheme design or performance improvement for data transmission in
different IoT applications. Although these studies have achieved some achievements in
delay, energy consumption, or load balancing, their practicability is not high because of the
singleness of the problems they solve. For example, Mubarakali et al. [29] and Li et al. [30]
only considered data transmission delay or delivery rate and ignored the problem of load
balancing. Wang et al. [33] mainly focused on the efficiency of system resource allocation.
Although Xia et al. [34] emphasized load balancing and energy consumption of the system,
it ignored the importance of transmission delay. In addition, the devices involved in
edge computing usually include mobile intelligent devices and basic network devices.
The communication technologies and capabilities between different types of devices are
different, and their effects on transmission are naturally different. However, almost all
previous studies ignored this difference, resulting in over idealized experimental results.
Moreover, although an IoT service scheme based on cloud or edge computing can alleviate
or improve the problems such as data transmission delay and system power consumption
to a certain extent, there are still some QoS problems in the transmission of sensitive data.
For example, the delay or loss of sensitive data does not need to be processed at each layer
of the IoT service architecture. Thus, this requires an IoT framework to have “on demand”
layered data transmission and processing capabilities according to the needs of different
types of data.

Therefore, to further improve the performance of IoT service, this paper intends to
adopt an edge computing mode to improve the limitations of the “cloud-management-end”
closed-loop integrated architecture in the original IoT service system, and builds an open
CEE IoT service architecture that is coordinated by a central cloud, an edge cloud, and
physical terminals via using 5G, edge computing, intelligent routers, and other equipment
and technical means. Then, aiming at the IoT service data transmission belt between
different types of devices such as terminal sensors, intelligent edge devices, and edge
infrastructure network facilities in this architecture, how to design a systematic and reliable
data transmission strategy to optimize resource allocation, balance system load, improve
packet delivery rate, and reduce service delay is the purpose of this paper. The goal is
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to achieve efficient, practical, intelligent, green, secure, and trusted IoT services [35]. The
main work is as follows:

• Taking advantage of edge computing, this paper proposes a novel IoT architecture
under CEE collaboration. This heterogeneous framework includes terminal sensing
devices, edge devices, cloud center devices, and other related application entities. Its
novelty is that the edge cloud is divided into the edge intelligent device layer and the
edge infrastructure layer according to the different data transmission and processing
capabilities of edge devices to meet different needs of different types of data and
applications in the IoT ecosystem for task processing response time.

• Based on the cooperative CEE IoT architecture, a highly reliable layered data trans-
mission strategy is designed. This strategy adopts the principle of dynamic resource
allocation to set corresponding transmission paths for different types of IoT service
data, such as real-time, near-real-time, and offline/batch processing modes; dynam-
ically optimize system resources on demand; balance network load; reduce data
transmission delay; and improve data delivery rate.

• Simulation is used for comparative analysis to verify the rationality and effectiveness
of the layered data transmission strategy of the cooperative CEE IoT architecture
proposed in this paper. The experimental results show that the division of the edge
intelligent device layer and the edge infrastructure layer makes the data transmission
service of IoT have the best performance in terms of the task load, data transmission de-
lay, and data delivery rate. In particular, compared with the cloud–fog framework [36],
which does not refine the edge layer, data transmission rate under CEE collaborative
IoT architecture is increased by about 27.3%, 12.7%, and 8% on average under the
three network environments of light-weight, medium, and heavy loads, respectively.

The rest of this paper is as follows: Section 2 introduces the related work. Section 3
describes in detail the IoT architecture under CEE cooperation proposed in this paper, and
its layered data transmission strategy, resource dynamic allocation method, and system
load balancing scheme. In Section 4, the experimental scenario, evaluation index, and
parameter setting of IoT data transmission under CEE collaboration are constructed, and the
experimental results are deeply analyzed. Section 5 briefly explains the existing problems
and future work. Section 6 summarizes the whole work.

2. Related Work

With the rapid popularization of smart devices in recent years, there are more and
more studies trying to further improve the performance of the IoT from various aspects
such as the efficiency of data transmission, the load of the cloud center, and the system
architecture, so that it can reduce the adverse effects of smart devices and give full play to
their advantages.

Singh et al. [11] designed an intelligent power quality monitoring system integrating
the IoT and the cloud. The system records the mechanical quantity of the driver and the
power quality event data in the Firebase cloud, which limits the space demand for power
quality event analysis and saves time. Mohiuddin et al. [12] analyzed the situation of
time-varying workloads and data-intensive IoT applications when using cloud computing
services and studied and investigated the challenges and strategies brought by cloud com-
puting, so as to promote the transition of IoT applications to cloud security. Alkadi et al. [13]
proposed a security-based distributed intrusion detection and privacy-based smart con-
tract blockchain framework for the IoT. As a decision support system, this framework can
help users and cloud providers migrate data in a timely and reliable manner. Arulanthu
et al. [14] used the cloud–IoT model to design an online medical decision support system for
chronic kidney disease prediction. For cloud computing mode based the IoT, Chinnasamy
et al. [37] leveraged a hashing algorithm and a signature verification model to realize the
secure access of data stored in cloud centers. Obviously, the combination of the IoT and
cloud computing can effectively promote the development of innovative solutions in many
different fields, including industry, military affairs, medical treatment, and so on.
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However, the processing mode that only relies on the cloud center is limited by latency
and power consumption. To overcome these limitations, Cisco introduced the concept of
fog, namely, edge computing, in 2012. Edge/Fog computing can expand computing power
and data analysis applications from the cloud center to the “edge” of the network, create a
carrier level service environment with high performance, low latency, and high bandwidth;
accelerate the distribution and download of various contents, services, and applications in
the network; and let consumers enjoy a higher quality network experience [21].

Kaur et al. [23] explained the different characteristics of the cloud computing plat-
form and the fog computing platform, introduced the detailed architecture of the two
platforms, and made a comparative analysis based on the IoT application scenario. Zah-
matkesh et al. [26] analyzed and studied the edge computing applications and potential
enabling technologies for sustainable intelligent cities under the IoT environment. At
the same time, they also comprehensively discussed the applications of different caching
technologies, UAV (unmanned aerial vehicles) technologies, and various artificial intel-
ligence and machine learning technologies in data caching in the IoT system based on
edge computing. Mancini et al. [38] designed an open source Android library to act as
a gateway between smart devices and edge/cloud computing devices to simplify the
development of Android applications. Chinnasamy et al. [39] described and evaluated in
detail the protection and confidentiality standards, intervention measures, and the latest
technical methods used to avoid network risks in edge computing, classified and analyzed
the common attack and defense technologies on edge devices, and points out its research
direction on privacy and security. El-hasnony et al. [27] proposed a hybrid real-time remote
monitoring framework based on cloud–fog integration to realize the continuous remote
monitoring of patients. Sood et al. [28] proposed an IoT fog–cloud system for monitoring,
evaluating, and controlling dengue virus. Dastjerdi et al. [40] used the edge computing
mode to process massive data in the IoT and enhance its QoS.

Based on the definition of individual components of edge computing, Sarkar et al. [41]
proposed a mathematical model of edge computing in the IoT environment, which is
superior to traditional cloud computing in terms of energy consumption and service delay.
Abbasi et al. [22] tried to use the concept of green energy to improve the energy model
of network edge devices, so as to reduce the delay and power consumption of the multi-
sensor framework in the secure IoT system. An et al. [42] designed a hyper-connected
IoT ecosystem using contextual AI technology on the fog platform, aiming to provide
smarter, faster, and more reliable IoT services. Loffi et al. [43] improved a multi factor
mutual authentication method based on variable response time and challenge response
function, which can be used in cloud and edge computing, so that the IoT services have
better average processing time and lower energy consumption.

Mubarakali et al. [44] proposed a delay-sensitive data transmission algorithm based on
edge computing to ensure low and predictable delay in delay sensitive IoT applications such
as traffic monitoring and vehicle tracking. Li et al. [30] combined the long-distance data
transmission function of fog infrastructure and the advantages of multi-opportunity routing
of edge intelligent devices to design an efficient data-forwarding scheme for the mobile IoT,
which not only reduces the data transmission delay and improves the successful delivery
rate of packets but also ensures the safe and reliable transmission of data. Ghosh et al. [31]
proposed a real-time mobile sensing framework under cloud–fog–edge cooperation, which
realizes a hierarchical processing of information and uses a probability graph model to
model the cumulative space–time trajectory of mobile agents, predict the next location of
agents, and effectively reduce latency and power consumption. Leveraging the significant
advantages of edge computing devices, Manogaran et al. [32] proposed an efficient resource
allocation algorithm for the IoT with optimal node configuration to ensure the seamless
transmission of non-delay-tolerant data from the required platform or infrastructure to the
included users. Li et al. [45] introduced edge computing and a software-defined network
(SDN) into the IoT, and put forward a secure edge framework based on SDN for a medical
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IoT system, which can effectively improve the utilization of smart devices and the security
of data access in this system.

The above research shows that applying edge computing can not only effectively
avoid overloading the cloud center and reduce network congestion and service delay,
but it can also provide a safe, reliable, and high-quality architecture support for the IoT
system with different data transmission and processing requirements. Nevertheless, the
application research of the integration of the IoT, cloud computing, and edge computing
or fog computing is still in its initial stage, and a systematic reliable service model and
method of the IoT have not yet been formed, especially in some important aspects such as
data transmission, which need further in-depth research.

3. Load-Balanced, Data-Layered Transmission Strategy in IoT Architecture Based on
Cloud–Edge–End (CEE) Collaboration
3.1. IoT Architecture under CEE Collaboration

As the terminal bodies of IoT services, various physical objects such as houses, bridges,
local environments, plants, people, animals, etc., are also an indispensable part of IoT
applications. Therefore, this paper refines the edge layer according to the type or communi-
cation mode of the devices and uses various communication technologies to build an open
CEE collaborative IoT architecture based on physical terminals, intelligent edge devices,
edge infrastructures, and cloud devices, as shown in Figure 1. The functions of the main
components of the architecture are described below.
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(1) Physical terminal

It acts as data perception layer and is mainly responsible for identifying various
physical objects and collecting real-time, near-real-time, and non-real-time context or index
data from them. The data are mainly measured from the individual and their surrounding
environment through small sensors, embedded systems, RFID tags and readers, medical
diagnosis and healthcare equipment, medical and clinical imaging equipment, and any
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equipment supporting data acquisition and transmission. These data are then transmitted
to the corresponding sink node through a wireless ad hoc sensing network. As a short-range
communication network centered on physical objects, wireless ad hoc sensor technology
provides a good means to realize the real-time, objective, accurate, and low-cost IoT
applications. It is the foundation of the research on IoT data transmission strategy.

(2) Edge cloud

• Intelligent edge device layer

The main significance of its existence is to facilitate the processing of data with strict
requirements for reaction time. It includes many intelligent computing nodes such as
various mobile intelligent devices or other small network sites similar to home routers,
which can make the IoT service architecture form a decentralized architecture mode. With
the help of sensors and execution controllers, intelligent edge devices can operate at
the extreme edge of the architecture and can perform basic rule-based preprocessing
operations (such as data filtering, aggregation, and fusion) on the data to be transmitted,
which helps to optimize resource utilization. For example, Mahmud et al. [46] studied
communication power consumption and computing power and pointed out that ensuring
the objective on-demand system transmission rather than the on-demand transmission
of users’ subjective intention will be more helpful to optimize power consumption when
communication consumes about five times the computing power. Obviously, the intelligent
edge device layer is an important part of IoT application structure, which can provide more
opportunities for the data transmission and computing of IoT.

• Edge infrastructure layer

This layer mainly includes various network infrastructures with small data center
functions such as base stations, which can make computing resources and application
services closer to the edge, so as to reduce the response delay. In terms of function, it
supports local data storage, data filtering, data compression, data fusion, and intermediate
data analysis; can conduct near/non-real-time comprehensive processing of perceived
data; and feed the result information back to users as quickly as possible, so as to reduce
one-time load in the cloud, improve the system performance and QoS, and save backbone
bandwidth. Meanwhile, perception data can also be transferred to cloud center for more
detailed analysis and comprehensive calculation.

(3) Cloud center

The cloud center can interact with physical terminals, the edge layer, and application
entities. Among them, the index data gathered from edge layer can be transferred to cloud
for long-term storage or for big data processing and advanced analysis. However, in fact,
while using the cloud to calculate expensive operations or tasks, assigning appropriate
computing tasks to the edge side will also greatly improve the efficiency and performance
of the system.

In addition, the architecture can provide a user interface between some application
entities at the top (such as researchers, instructors, medical care, coaches, applications and
information systems) and the stakeholders/consumers of the service system. Through
these interfaces, it can deliver various IoT services to their relevant users and also provide
corresponding program developers and consumers with permissions or privileges to
directly access relevant resources from the cloud center or the edge layer. Obviously, the
application entities are the most interactive, but they have little analytical ability.

To sum up, the proposed architecture is an interoperable ecosystem that includes
various devices, applications, and back-end systems. It can ensure that information/data
flows are not disturbed, so as to make corresponding decisions accurately and timely [47].
Such an architecture can not only reduce the amount of data transmitted by IoT devices
through rule-based data preprocessing but can also greatly reduce power consumption,
delay, and computational complexity.



Sustainability 2022, 14, 9602 7 of 22

In this architecture, the main object of transmission and processing is terminal-aware
data. Generally, IoT terminal sensors may generate three kinds of delay-sensitive data,
namely, real-time data, near-real-time data, and offline/batch mode big data. Different
demand types of data have different delay requirements for processing and transmission.
Therefore, to ensure the delay-tolerant transmission of real-time data, near-real-time data,
and big data, this paper proposes an adaptive hierarchical data transmission strategy based
on the above IoT architecture under CEE collaboration.

3.2. Data Layered Transmission Scheme

Seen from Figure 1, based on data type, data flow size, and resource availability,
computing tasks generated by rule-based preprocessing, pretraining machine learning,
advanced machine learning, and big data analysis can be delegated to the most appropriate
layer in the CEE collaborative IoT architecture for computing and processing, so as to
realize the seamless communication between heterogeneous devices in the IoT. Therefore,
this paper takes data as the key object and adopts the scheme of separating transmission
path to classify real-time, near-real-time, and non-real-time data in order to obtain better
QoS, lower delay, and minimum power consumption.

Figure 2 shows the data transmission and layered processing flow based on the ar-
chitecture in Figure 1 and uses dotted lines to segment and clearly identify the important
components of the architecture (including its hierarchical components and the data trans-
mission and processing modules with self-expandable functions in the corresponding
layers). Among them, the heterogeneous data source on terminals mainly includes the
indicator data of the monitored objects, which provides basic data support for the operation
of the entire IoT service.

Known from Figure 2, first, the terminal index data collected by sensing devices
usually need to use a wireless ad hoc sensor network formed by surrounding sensors to
transmit it to sink node. In this process, for different index data, compression processing
and other technologies can be used to minimize the amount of data before transmission to
reduce system energy consumption. Then, the flow direction is determined according to
the attribute and function of indicator data. If a node in wireless ad hoc sensor network
has no ability to process or save it, a high-performance data-forwarding module can be
called directly to forward data to the corresponding sink node; otherwise, real-time and
simple processing, such as for display, shall be carried out according to the preset rules.
For example, in intelligent medical IoT applications, when a patient has blood pressure
fluctuations and discomfort symptoms, it is necessary to first process the generated data
and forward the decision to medical staff as soon as possible to prevent stroke. In this
case, the data preprocessed from the mobile intelligent device layer is further processed in
edge infrastructure layer and forwarded to the corresponding application entity to facilitate
stakeholders to take necessary actions.

Sink nodes are generally sensor nodes with stronger processing capabilities such as
smart phones and watches. These devices have certain data computing capabilities and can
form a mobile access network environment of a certain scale. With the help of these devices,
the opportunities for IoT data transmission increase and the system ability to process
real-time/near-real-time data improves. Therefore, when the indicator data are transmitted
to the edge-intelligent device layer, its flow direction can be determined according to its
attributes and the computing capacity of devices. In case of real-time/near-real-time data,
high-performance data-transmission mechanisms based on machine learning can be called
to find target nodes, so as to timely process the data and feedback information. Otherwise,
the data are directly transmitted to the edge center network equipment. For example, in
the case of adverse drug reaction service in smart medicine application because adverse
drug reaction has inherent universality, the drugs for treating specific diseases need to
be diagnosed, and it is also necessary to understand or view the patient’s past medical
history. Therefore, the results diagnosed from patients or the data perceived by intelligent
terminals are first forwarded to edge infrastructure network layer for drug identification.
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Later, edge network infrastructure forwards the identified drugs to cloud center. After
the cloud carefully analyzes the relevant electronic medical records and allergy files, it
determines the compatibility of drugs, and finally sends the decision to relevant application
entities for medical professionals to access.
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Usually, edge center network processes the indicator data of near-real-time or a small
number of batch processing requirements. Therefore, if these types of data are not trans-
ferred, they will be directly transferred to the cloud center for analysis, calculation, storage,
display, and other operations. Otherwise, optimal target nodes need to be found according
to certain rules, and data will be transferred to it for processing, storage, or displaying to
users. In addition, all non-real-time big data in the offline/batch mode need to be trans-
ferred to cloud center for processing operations such as computing, long-term storage, data
display preparation, etc. For example, in the applications of intelligent medical IoT, each
inspection of MRI will produce thousands of high-resolution images, which requires the
cloud with more computing power and storage space to provide effective services. Thus, in
this application, the image information will be directly forwarded to the cloud without any
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processing or saving in the edge layer. Moreover, data from non-sensor sources such as
electronic medical records, electronic health records, and electronic prescription platforms
can also be seamlessly integrated in the cloud center.

To sum up, the layered data transmission strategy of IoT architecture under CEE
collaboration has good scalability. That is, for the different network layers, the correspond-
ing data processing schemes can be integrated at any time according to actual needs. For
example, terminal wireless ad hoc sensor networks usually pay more attention to the energy
consumption of sensor devices, mobile access networks pay more attention to the security
of data transmission, and the edge network center and cloud center pay more attention to
the energy efficiency of data transmission. Therefore, data transmission mechanisms with
high energy efficiency, low energy consumption, or safety and reliability can be designed
and developed at the corresponding layer.

3.3. Optimal Resource Allocation and Load-Balancing Policy

In the proposed IoT architecture under CEE collaboration, various types of data are
first collected through sensors, and then, according to the data flow level or processing
requirements, these data will be transmitted to the terminal convergence node, intelligent
edge device layer, edge infrastructure layer, or cloud center for display, computing, or
storage. In the whole process, the end-to-end delay, the cumulative delivery rate of packets,
and system load balancing have become important indicators to measure the performance
of the architecture and the quality of data transmission service. Therefore, to effectively
process heterogeneous IoT data and obtain better user experience quality, it is necessary to
set up a central control module to manage functions such as dynamic resource allocation
and hierarchical data routing to meet the needs of various tasks. The corresponding
application scenarios are shown in Figure 3. Seen from Figure 3, the central control module
can manage the entire data transmission process and plays a vital role in the continuous
and effective operations of the IoT. In practical applications, it can be considered to use
SDN [48] to realize its functions because it can separate the control surface of network
equipment from data surface and realize the flexible control of network traffic.
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In addition, various heterogeneous data streams generated by IoT terminal devices
are divided into three types of data: delay-sensitive, loss-sensitive, and hybrid data based
on their different requirements for data transmission rate and queuing delay. Table 1
gives the basic characteristics of the three types of data such as transmission priority,
service type, and typical application examples in the intelligent medical IoT. Meanwhile, to
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effectively process heterogeneous IoT data and maintain a high QoS, this paper dynamically
allocates the network resources based on hierarchical data transmission of IoT under CEE
collaboration. The relevant parameters and performance indicators are as follows.

Table 1. Classification and characteristics of IoT Data.

Data Type Data
Rate

Queue
Delay

Transmission
Priority Service Type Typical Examples in Medical IoT

Delay-Sensitive high low high
key data real-time patient monitoring

multimedia conference telephone conference

video data video stream for elderly health
monitoring or sports control

Loss-Sensitive low high middle
judgement result electronic health records

image/video medical imaging

Hybrid middle middle low non-key professional
parameters

measurement of outine physiological
indexes of patients

3.3.1. Dynamic Resource Allocation Strategy

Reducing the data transmission delay (Td) and improving the cumulative delivery
rate (Cdr) of packets can make IoT applications have a better QoS. Therefore, in the IoT
architecture under CEE collaboration, all nodes in the edge mobile intelligent device layer
can obtain optimal thresholds of data transmission delay and successful delivery rate by
using a resource allocation optimization strategy.

In Figure 3, suppose that the total buffer length and output link capacity of an edge
intelligent gateway node (such as an access site) are L and C, respectively, and the edge
intelligent device layer has M mobile intelligent nodes connected to the gateway node. For
ease of reading, the key parameters and their meanings of each intelligent node in the edge
intelligent device layer are listed in Table 2.

Table 2. Mathematical symbols and their meanings.

Symbol Meaning

Psize the size of a packet on each intelligent node
Bdi the bandwidth demand of the i-th intelligent node
Bli the buffer length requirement of the i-th intelligent node
Tdi the total delay of all packets on the i-th intelligent node
Cdri the cumulative delivery rate of all packets on the i-th intelligent node

Pic
the ratio of the bandwidth demand of the i-th intelligent device node to the

maximum capacity of edge intelligent gateway node

Pil
the ratio of the buffer length demand of the i-th intelligent device node to the

total buffer length of edge intelligent gateway node
Qic the demand ratio of the bandwidth of the i-th intelligent node
Qil the demand ratio of the buffer length of the i-th intelligent node
Ui the total number of packets on the i-th intelligent node
Ri the maximum resource assigned to the i-th intelligent device

tTd-i the transmission delay of packets on the i-th intelligent node
pTd-i the processing/calculation delay of packets on the i-th intelligent node
qTd-i the queuing delay of packets on the i-th intelligent node
Aqli the average queue length of packets on the i-th intelligent node

To meet the QoS demand of the i-th intelligent node, the users’ requirements and cor-
responding resource allocation requirements are set to (Tdi, Cdri) and (Bdi, Bli), respectively.
Since the resources allocated to the i-th device are proportional to that required by the user,
Ri assigned to the i-th intelligent device is shown as follows:

Ri = max
{

Bd′

C
,

Bl′

L

}
= max

{
Bdi
C

Bd′

Bdi
,

Bli
L

Bl′

Bli

}
= max{PicQic, PilQil} (1)
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where Pic = Bdi/C represents the ratio of the bandwidth demand of the i-th intelligent
device node to the maximum capacity of the intelligent edge gateway node, and Pil = Bli/L
represents the ratio of the buffer length demand of the i-th intelligent device node to the total
buffer length of the intelligent edge gateway node; Qic = Bd′/Bdi and Qil = Bl′/Bli are the
demand ratios of the bandwidth and buffer length of the i-th intelligent node respectively.

Generally, the whole response time from the user sending the request to the system
returning the result is determined by the end-to-end data delay, and the total end-to-end
delay based on the M/D/1 queue model [49] includes the data transmission delay tTd-i, the
processing delay pTd-i, the queuing delay qTd-i, and the delay of the processing result return.
However, since the delay of the result return is usually much smaller than the first three
delays, it can be ignored. Then, the total delay Tdi can be calculated by Equation (2):

Tdi = tTd−i + pTd−i + qTd−i = ∑
cld

∑
e−ctr

∑
e−md

[
UiPsize

C
+

(
ε

2κ(κ − ε)
+

1
κ

)
+ aε

]
(2)

where cld represents the cloud center; e-ctr and e-md represent the edge infrastructure layer
and the intelligent edge device layer, respectively; a is the constant duration required for a
single processor to complete a task; and ε and κ refer to the arrival rate and service rate of
packets, respectively.

When the average queue length of packets on the i-th device node is larger than the
required buffer pool length, that is, Aqli > Bli/Psize, packets may be lost. Therefore, based
on the relationship between the loss rate and cumulative delivery rate of packets [49], the
latter can be expressed by Equation (3) below:

Cdri =

Bli
Psize

Aqli
(3)

Finally, the problem of dynamic optimal allocation of system resources is transformed
into the following equation :

max{(Q1c, Q1l), · · · , (Qic, Qil), · · · , (QMc, QMl)} s.t.

{
∑M

i=1 Bdi ≤ C & ∑M
i=1 Bli ≤ L

min
(

∑M
i=1 Tdi

)
& max

(
∑M

i=1 Cdri

) (4)

3.3.2. System Load-Balancing Scheme

In each network access layer, the end-to-end transmission delay can be reduced
through the link distribution and the link fusion technologies. In reality, multiple different
network facilities or devices can transmit data at the same time, and thus, the link scheduler
can choose multiple links in an access layer such as the intelligent edge device layer or the
edge infrastructure layer, allocate data streams to reduce the end-to-end delay, and, finally,
aggregate data streams at the other end of the corresponding network layer.

When data packets are transmitted from one end of a network layer to the other,
the link scheduler needs to coordinate all devices in this layer for efficient collaborative
transmission. Obviously, network throughput and cumulative packet delivery rate are the
most suitable measures of the performance of this process. This is because the network
throughput can reflect the utilization or saturation of equipment resources well and the
packet delivery rate reflects how many packets the target node can successfully receive
from the source node. The larger the network throughput, the more saturated the resource
utilization; the higher the delivery rate, the more packets that successfully arrive at the
target node, and the more conducive it is for the system to perform timely and rapid
processing and responses to user requests. At the same time, the bandwidth and buffer
length are also directly related to the performance of data transmission. Therefore, this
paper considers the use of the throughput, packet delivery rate, and the requirements of the
bandwidth and buffer length to build the utility of link calls. If the link scheduler chooses N
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links according to users’ requirements, the link-adaptive optimization problem is expressed
as follows according to [49]:

max`
(

Tp, 1
1−Cdr

)
s.t.

(
∑N

n=1 ξnBd ≤ C & ∑N
n=1 ξnBl ≤ L

)
(5)

where Tp is the system throughput, Bd and Bl are the bandwidth demand and buffer
length demand of the corresponding gateway node, and ξn represents the percentage of
bandwidth/buffer length allocated by load balancer, that is, the proportion of resources
allocated in the n-th link. To reflect the objectivity of the experimental results, this paper
uses the weighted sum of the ratio of the demand of the n-th link for each resource to the
total demand of all links for each resource to calculate ξn in Equation (5), which is shown
as follows:

ξn =
Bdn

∑n Bdn
γ +

Bln
∑n Bln

(1− γ) (6)

For delay-sensitive, loss-sensitive, and hybrid data in IoT applications, based on the
characteristics of data types, γ is assigned the corresponding values: 1, 0, and 0.5, respectively.

In the proposed IoT architecture under CEE collaboration, its data-transmission lay-
ered processing strategy is actually to choose N links to coordinate the load and task
allocation according to the data requirements. Obviously, optimizing the load balancing of
the IoT system is to optimize the load balancing between the service links in the process
of data transmission. The main pseudocode of the load-balancing scheme is shown in
Algorithm 1.

In Algorithm 1, when the IoT business process starts, is the data are divided into
corresponding categories according to the actual needs. For each output link n, ξn is first
calculated according to Equation (6). For the delay-sensitive and loss-sensitive service data,
the load is allocated according to the required bandwidth and buffer length, respectively.
For hybrid data, the load is allocated according to the larger demand, which is reflected by
the operations when r = 0.5 (line 14–18) in Algorithm 1. That is to say, if the hybrid data
have a large demand for bandwidth, the load will be allocated to the corresponding link
according to the calculation standard of the bandwidth. On the contrary, the load will be
allocated to the link according to the calculation standard of the buffer length. Obviously,
the method can make the system more self-adaptive and objective when dealing with
hybrid data, so as to ensure that the experimental results are more accurate. Simultaneously,
when the number of available service links is N, the time complexity of the algorithm is
O(N), which is much lower than other existing frameworks. The main reason is that
the framework proposed in this paper has the ability of hierarchical data processing and
enables data to be calculated and processed on the corresponding network layer based on
the corresponding category, greatly reducing the amount of calculation required by other
network layers, thus reducing the computational complexity of the whole system.

Algorithm 1 Load-Balancing Scheme.

Input:
Given queue buffer length L; gateway node output link capacity C; bandwidth
length requirement eBd; buffer length requirement eBl;

Goal: Optimal load distribution.
1: Initialize γ, χ, λ, δ;
2: Link scheduler selects N links based on data requirements;
3: SWICH (data transmission priority) {
4: CASE 1: γ = 1; BREAK;
5: CASE 2: γ = 0; BREAK;
6: CASE 3: γ = 0.5; BREAK;
7: }
8: FOR (n = 1; n ≤ N; n ++) {
9: Calculate ξn according to Equation (6);

10: χn = ξn× eBd; λn = ξn × eBl;
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11: SWICH (γ) {
12: CASE 1: allocate load to link n based on χn;
13: BREAK;
14: CASE 0: allocate load to link n based on λn;
15: BREAK;
16: CASE 0.5: Ω = eBd/∑nBdn; 0 = eBl/∑nBln; δ = max`(Ω, 0);
17: IF δ = Ω
18: THEN allocate load to link n based on χn;
19: ELSE allocate load to link n based on λn;
20: BREAK;
21: }
22: }

In short, the proposed IoT architecture can choose the appropriate data-transmission
path based on different data sources to reduce the delay and increase the cumulative
delivery rate of packets. Secondly, by delegating the corresponding data flow to the
appropriate layer with relatively less load, it can ensure the best use of system resources.
Meanwhile, in the case of system load balancing, it takes into account minimizing the
transmission delay of packets, ensures that the sensitive data are transmitted first, and
realizes the most favorable resource allocation.

4. Experiments and Performance Analysis
4.1. Experimental Environment and Parameters Setting

To verify the feasibility, rationality, and robustness of the layered data transmission of
the IoT architecture under CEE collaboration, this section will set up experimental environ-
ment and data proof based on the above conditions. Given the unreality of constructing
real scenes, the following experiments will use MATLAB R2020b as the test platform for
simulation verification, and the computer running environment configuration is the Intel
Core i7-10700 CPU at 2.9 GHz 4.8 GHz, RAM 16G, and 64-bit Windows 10 OS.

Assume that there is one cloud server, 15 edge infrastructure nodes, and 150 mobile
intelligent edge devices. The communication connection between the mobile intelligent
edge devices and edge infrastructure nodes and between the edge infrastructure and cloud
server adopt the IEEE 802.11 a/g standard. To improve spectrum efficiency, reduce the
burden of the edge center network, the delay, and the power consumption, D2D (device-
to-device) communication technology is used for data transmission or exchange between
mobile edge intelligent devices. The network has a total of 20,000 data packets, and the size
of each packet is randomly generated from 100 B to 50 KB. The packet type is the delay-
sensitive or loss-sensitive data, and original data packets generated or collected by mobile
edge intelligent devices can be processed by using the resources on edge infrastructures.
When the edge infrastructure is difficult to process (for example, the processing delay or
the resource occupancy rate is too high), these data packets can also be directly unloaded
to the corresponding cloud server to improve system operation efficiency and QoS. In the
whole process of data transmission and operation, the transmission delays of the cloud
server, edge infrastructure, and edge mobile intelligent devices are the random numbers
between 15 and 35 ms, 0.5 and 1.5 ms, and 1 and 2 ms, respectively. The availability of
processes is randomly generated. The connection bandwidth between nodes and the length
of task queues on nodes are also randomly distributed; however, the higher-level nodes
are still selected optimally based on the actual needs of tasks and the processing delay. In
addition, to make the experimental results more in line with the characteristic requirements
of heterogeneity IoT under CEE collaboration, it is assumed that the processing rates of
cloud server to edge infrastructure and the latter to mobile edge intelligent devices are set
to 100:1 and 1000:1, respectively.
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4.2. Comparison Metrics

Known from the proposed resource allocation and load-balancing scheme in Section 3.3,
this paper uses the bandwidth and buffer length of the intelligent device nodes as the
measurement indicators of resource utilization, and within the allowable range of the
two, converts the problem of system resource optimal allocation under the proposed
network architecture into the problem of making service data transmission delay small
and cumulative delivery rate high. At the same time, this paper also chooses the link
scheduler constructed by system throughput and cumulative delivery rate as the main
processing method to maintain the load balancing of the system. Therefore, this paper takes
the average delay and cumulative delivery rate of packets, as well as system throughput
and task distribution during the service architecture operation as the four comparison
indicators to measure the performance of the proposed optimal resource allocation scheme,
the load balancing algorithm, and the CEE collaborative data layered transmission strategy
based on the two. Their definitions in this paper are shown as follows.

• Average delay Ad

This indicator means the average of the total delay of all packets to be processed in
the network and can be gained according to the total delay of all packets on each node (Tdi)
defined in Equation (2) and the number of mobile intelligent nodes (M) in the intelligent
edge device layer. Its calculation is shown as follows:

Ad =
1
M ∑M

i=1Tdi (7)

• Cumulative delivery rate Cdr

The cumulative delivery rate represents the average delivery rate of all packets in the
network. Since the average delivery rate of all data packets on the i-th intelligent node
can be obtained by Equation (3), the cumulative delivery rate of data packets of the whole
network can be calculated by Equation (8) below:

Cdr =
1
M ∑M

i=1Cdri (8)

• System throughput St

System throughput refers to the total number of data bytes transmitted by all equip-
ment nodes in the network in a unit time. Suppose that tsend-i means the time when the
i-th intelligent node starts to send packets, trec-I is the time when the system ends receiving
the packets on the i-th intelligent node, and Bytei represents the total number of bytes
of packets successfully reaching the target nodes on the i-th intelligent node. Then, the
calculation of system throughput is shown as follows.

St = ∑M
i=1

Bytei
trec−i − tsend−i

(9)

• Task distribution Td

Task distribution usually refers to the ratio of the number of tasks running in the
network to the total number of tasks put into the network at a certain time, and this
paper regards a packet as a task. Suppose that there are dpi packets of the i-th intelligent
node running in the network within a certain period of time, and the network has a
total of 20,000 packets. Thus, the task distribution of cloud center can be gained by the
following equation:

Td = 1−
∑M

i=1dpi

20000
(10)
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4.3. Performance Analysis

According to the above experimental parameters and simulation environment settings,
Figures 4–8 show the performance of the CEE collaborative data layered transmission
scheme of the IoT based on the optimal resource allocation and load balancing algorithms
in terms of the task distribution of network, the average delay and cumulative delivery
rate of packets, and the system throughput under different conditions, respectively. In
these experiments, the number of edge infrastructure nodes varies from 1 to 15 as needed
to verify the adaptability, robustness, and effectiveness of the proposed strategy because its
impact on the performance of the IoT system is more obvious than that of cloud and other
intelligent devices.

Figure 4 shows the impact of different numbers of adjacent edge infrastructure nodes
on system task allocation under the network architecture with only edge infrastructure layer
and the architecture with edge infrastructure layer and cloud center. Simulation results
show that, no matter which network architecture is adopted, when more adjacent edge
infrastructure nodes are included in the data hierarchical transmission process, the load of
each edge infrastructure node and cloud center gradually decreases with the improvement
in the overall processing performance of edge infrastructure nodes. For example, when
there is only one adjacent edge infrastructure node, system load containing only the edge
infrastructure layer is about 55%, and the load of the cloud center containing both is about
73%. When the number of adjacent edge infrastructure nodes is nine, the corresponding
load drops exponentially to 21% and 36%, respectively. After that, with the increase in
the number of edge infrastructures, the load of the cloud center tends to be stable. For
example, it only reduces by about 11% and 15%, respectively, when the number of adjacent
edge infrastructure nodes is 15. This is because the total number of packets in the network
is fixed. When the edge infrastructure reaches a certain number, it can help the system
accommodate the packets put into it and process them quickly.
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Figure 4. Influence of the number of adjacent edge infrastructure nodes on system task distribution
under two different IoT architectures.

According to the experimental environment and simulation parameters set in Sec-
tion 4.1, Figure 5 shows the average delay of the end-to-end data transmission and process-
ing in the IoT architecture with different network hierarchies. Known from Figure 5, when
mobile intelligent edge devices and edge infrastructures participate in the task computing
together with the cloud center, the average delay of the end-to-end transmission is smaller,
and especially, the average delay of packets in the architecture including more edge infras-
tructures is the smallest. For example, the average delay of packets in the architecture with
1 cloud, 15 edge infrastructures, and 150 mobile intelligent devices is about 71 ms, which



Sustainability 2022, 14, 9602 16 of 22

is 23.7%, 35.5%, and 51% lower than that of the architecture containing 1 cloud, 10 edge
infrastructures, and 150 mobile intelligent devices; the architecture containing 1 cloud and
10 edge infrastructures; and the architecture containing only the cloud, respectively. In
other words, the participation of more edge mobile intelligent devices and adjacent edge
infrastructures can reduce the end-to-end delay because this process reduces the probability
of network congestion and the queuing and transmission time of packets. Obviously, as
the number of adjacent edge infrastructure nodes increases, the delay of task computing
and data transmission will gradually decrease, and the response time of the system is also
relatively shortened.
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Figure 5. Comparison of the average delay of end-to-end data transmission and processing in four
different IoT architectures.

For the IoT architecture with different network hierarchies or different numbers
of edge infrastructure nodes, Figure 6 shows the impact of system buffer size on the
cumulative delivery rate of packets. Apparently, with the gradual expansion of the buffer
area, the cumulative delivery rate of the transmitted data packets in the IoT system with
any architecture will increase, and accordingly, the data packet loss rate will decrease.
Nevertheless, regardless of the buffer size, the cumulative delivery rate of packets in the IoT
architecture with more edge infrastructures and mobile intelligent devices is the highest,
that of packets in the architecture with only edge infrastructures is lower than the former,
and that of packets in the architecture only including mobile intelligent devices is the
lowest. For example, when the buffer size is 35 MB, the cumulative delivery rate of the two
architectures with 15 and 10 edge infrastructures and mobile intelligent device is 73% and
66%, respectively, of which the largest ones are 12.3%, 15.9%, and 19.7% higher than that of
packets in the architectures with only 10, 6, and 3 edge infrastructures, respectively, and
about 2.5 times that of packets in the architecture only including mobile intelligent devices.
Obviously, the greater the number of edge infrastructures is, the higher the cumulative
delivery rate of packets in the system. The main cause is that compared with mobile
intelligent devices, edge infrastructure has better computing and storage performance and
has the advantages of being closer to users, being able to process medium and large-scale
data, and being convenient for installation and maintenance compared with the cloud
center. In addition, the increase in buffer size can usually increase the queuing delay of task
data and the total delay. Therefore, to ensure that the system has a high packet delivery
rate and low transmission delay, it is necessary to select the appropriate buffer size.
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Figure 6 Figure 6. Impact of the buffer size on Cumulative delivery rate of packets under different IoT architectures.

Figure 7 reflects the change in the system throughput with the increase in the number
of transmitted packets in the network under four different IoT architectures when applying
the optimal resource allocation and load balancing scheme in Section 3.3. Seen from the
figure, in the architecture that only includes edge mobile intelligent devices, due to the
limited system resources and processing capacity of mobile devices, a large number of
bottleneck congestion phenomena occur with the increase in the number of transmitted
packets. These bottleneck congestions are not easy to solve or adjust. Therefore, the system
throughput of the architecture rapidly drops after reaching a certain inflection point. When
five edge infrastructure nodes are added to the above architecture, its ability to handle
complex non-real-time computing is correspondingly enhanced. Thus, when the number
of transmitted packets is the same, the IoT architecture, including edge infrastructures, has
better performance on the system throughput. However, as the number of transmitted
data packets increases, the number of links needs to increase continuously to ensure higher
throughput, and meanwhile, different types of data are best transmitted to devices with
corresponding capabilities for processing. However, due to the lack of the ability to process
large and complex data such as comprehensive case analysis, and the limited number
and capacity of links, the system throughput decreases with the increasing number of
packets. Although the system throughput of the IoT architecture composed of cloud,
edge infrastructures, and mobile intelligent edge devices increases first and then decreases
with the increase in the number of transmitted packets, it still has the best performance
on the system throughput compared with the first two architectures. This is because
each transmission device can dynamically allocate data to the least congested link, and
simultaneously, high-quality forwarding is also used to transmit packets to the most suitable
target nodes for computing, so as to improve the overall network performance. In addition,
the system throughput of the architecture with more edge infrastructures is bigger, and the
main cause is same as that of the cumulative delivery rate of packets in Figure 6.
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15 edge infrastructures is obviously lower than that with 10 edge infrastructures, and the
difference is about 9% on average between the two under the heavy load of the system,
which means that the performance of the former must be better than that of the framework
in [36]. To sum up, compared with the comparison framework, the framework of these
two configurations proposed in this section can improve the service response efficiency
by an average of 27.3%, 12.7%, and 8%, respectively, under the light, medium, and heavy
load of the system. The above experiments fully illustrate the importance and necessity
of subdividing the edge layer into the mobile intelligent edge device layer and the edge
infrastructure network layer according to the type of data to be processed. Among them,
the mobile intelligent device layer is used to process small-scale, real-time data, and the
edge infrastructure layer can process near-real-time data that are not sensitive to delay or
even some non-real-time big data.

Apparently, after subdividing the edge layer, the proposed IoT architecture under
CEE collaboration has a better data-filtering function and can reasonably allocate resources
according to the actual needs of users. It can not only reduce the time of data transmission
and the amount of real-time data transmitted along the network, but it can also reduce
the computational complexity of the application system based on this architecture, which
significantly improves system operation efficiency, QoS, and user experience quality.
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5. Discussion

This paper refines edge cloud based on the different computing ability of edge intelli-
gent devices and edge infrastructures, and proposes a CEE collaborative heterogeneous IoT
architecture. Meanwhile, the corresponding data layered transmission strategy, the optimal
resource allocation scheme and the load balancing algorithm are designed or developed for
this IoT architecture. Although a large amount of experiments have proved the effective-
ness and accuracy of this CEE collaborative architecture by measuring its task distribution,
average delay, cumulative delivery rate and system throughput under different conditions,
it still exists three major weaknesses as follows.

(1) The proposed architecture does not take into account the differences in communication
technology standards between different types of devices, especially among devices
with different purposes, which makes the experimental results somewhat unrealistic.

(2) This paper only uses a random way to select the optimal target nodes from multiple
nodes, and does not provide corresponding optimal data forwarding models for
each layer in the proposed CEE collaborative IoT architecture, which makes the
experimental results lack some objectivity.

(3) Although experiments verify that the IoT architecture with more edge infrastructures
has the best performance in all aspects, this paper does not test and evaluate the
optimal configuration proportion of the number of various devices, which may lead
to a waste of resources, because the amount of data packets in the experiments is fixed
and too many edge facilities will make some of them idle for a long time.

The above three shortcomings need to be improved or solved and will be our further
research contents in the future.

6. Conclusions

According to the different types and processing requirements of data transmitted in
IoT applications, this paper uses the advantages of edge computing to build a collaborative
CEE and multi-layer heterogeneous IoT architecture, including the center cloud, edge cloud,
and terminals, and designs the corresponding data-layered transmission strategy for it. In
particular, considering the difference of the data-processing ability between mobile intelli-
gent devices and devices that act as small data centers at the network edge, this paper first
subdivides the edge cloud into the intelligent edge device layer and the edge infrastructure
layer. Then advanced machine learning methods are used to identify heterogeneous data
flows so as to route them hierarchically and reduce the overall computational complexity
of IoT applications by improving data distribution. Based on this proposed architecture,
the terminals can complete the transmission and convergence of index data after collection
through wireless ad hoc sensor network formed by its surrounding sensors. Third, the
data in the sink nodes will be transmitted to intelligent edge devices, edge infrastructure,
or cloud center for judgment, calculation, analysis, and other operations according to its
characteristics or the actual needs of users. Then, the corresponding result information will
be fed back to the user–system interface for display, so that users can view or implement
other decisions. Experimental results show that the layered data transmission scheme
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of IoT architecture under CEE collaboration has good applicability. It can achieve the
optimal allocation of system resources through data flow control, reduce transmission
delay between devices, and improve packet delivery rate and system QoS.
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