
Citation: Tang, A.; Yang, Y.; Yu, Q.;

Zhang, Z.; Yang, L. A Review of Life

Prediction Methods for PEMFCs in

Electric Vehicles. Sustainability 2022,

14, 9842. https://doi.org/10.3390/

su14169842

Academic Editors: Chao Sun,

Dong Zhang and Xingyu Zhou

Received: 14 July 2022

Accepted: 6 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

A Review of Life Prediction Methods for PEMFCs in
Electric Vehicles
Aihua Tang 1 , Yuanhang Yang 1, Quanqing Yu 2,* , Zhigang Zhang 1 and Lin Yang 1

1 School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China
2 School of Automotive Engineering, Harbin Institute of Technology, Weihai 264209, China
* Correspondence: qqyu@hit.edu.cn

Abstract: The proton-exchange membrane fuel cell (PEMFC) has the advantage of high energy
conversion efficiency, environmental friendliness, and zero carbon emissions. Therefore, as an
attractive alternative energy, it is widely used in vehicles. Due to its high nonlinearity, strong time
variation, and complex failure mechanisms, it is extremely difficult to predict PEMFC life in electric
vehicles. The uncertainty of life predictions for the PEMFC limits its wide application. Since it is
particularly important to accurately carry out PEMFC life predictions, significant research efforts are
directed toward tackling this issue by adopting effective methods. In this paper, a number of PEMFC
life prediction methods for electric vehicles are reviewed and summarized. The goal of this review is
to render feasible and potential solutions for dealing with PEMFC life issues considering dynamic
vehicle conditions. Based on this review, the reader can also easily understand the research status of
PEMFC life prediction methods and this review lays a theoretical foundation for future research.

Keywords: failure mechanisms; PEMFC; life prediction methods; dynamic vehicle conditions

1. Introduction

In recent years, new energy vehicles have attracted increased attention worldwide
because of the advocacy of green, environmentally friendly, and low-carbon transporta-
tion modes. Consistent with development trends in renewable energy, hydrogen-based
technologies, such as the PEMFC, which is widely used as fuel in electric vehicles, are
increasingly regarded as key to promoting transport electrification [1]. Compared with
traditional internal combustion engine vehicles, the PEMFC has higher efficiency and zero
emissions [2]. With the popularization of the PEMFC in electric vehicles becoming a trend,
more and more scholars are paying attention to its related research. During the operation
of the PEMFC, its performance degradation can be caused by many factors such as external
complex working conditions, design processes, and materials. Early performance degra-
dation is mainly due to the loss and aggregation of catalysts, whereas later performance
degradation is mainly caused by structural damage to the membrane’s electrode assem-
bly [3]. Lifetime uncertainty caused by performance degradation makes life predictions
for the PEMFC challenging. However, inaccurate PEMFC life predictions could lead to the
failure of fuel cells in electric vehicles and even accidents during driving. Many researchers
have summarized the development process, advantages, disadvantages, and prospects of
PEMFC life prediction methods [4–6]. Therefore, many scholars have developed innovative
life prediction algorithms for comparative experiments to improve prediction accuracy
and reliability [7]. Some researchers have analyzed the test durability conditions, methods,
and health indicators of the PEMFC compared to test data under different working con-
ditions [8] and have highlighted the importance of life prediction methods, ascertaining
that life prediction is the key to determining whether or not the PEMFC can be widely
used in electric vehicles. Failure mechanisms have a certain influence on the accuracy
of life prediction. Factors such as temperature changes and improper battery clamping
processes could cause physical degradation. Factors such as the production of peroxide
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in the reaction process could cause chemical degradation of the battery. The complexity
of the failure mechanism could cause great problems for life predictions. At the same
time, the degradation index of the proton-exchange membrane fuel cell also determines
the accuracy and speed of life predictions, which can be divided into degradation indexes
based on measured data such as stack voltage, polarization curve, ohmic resistance, and the
degradation indexes of components that can reflect the internal degradation trend, so as to
help users understand the aging state of the PEMFC and take timely maintenance measures
to prolong its service life [9]. In addition, some scholars have established a degradation
model with the derived thickness of the polarization curve as the index. Based on this
model, the developed life prediction and estimation algorithm achieves high accuracy and
strong robustness [10]. Some scholars have proposed a fusion prediction strategy, which
uses a degradation model to deal with the dynamic operating conditions of the PEMFC
and have extracted the degradation index for the prediction [11]. The establishment and
application of degradation indicators could also promote the development of more life
prediction methods, which are broadly classified into three categories [12,13]: data-driven
approaches, model-driven approaches, and hybrid approaches, as shown in Figure 1. A
large number of studies on life prediction methods also show the development trends and
challenges of the PEMFC in this area [14–16]. The reliability of long-term life predictions
under complex conditions [17] and the influence of different factors on dynamic operating
condition predictions [18,19] need to be further explored.

In Section 2, the data-driven approaches are described. In Section 3, the model-
driven approaches are summarized, which are divided into three types, the filter model,
degradation mechanism model, and empirical model. In Section 4, the hybrid approaches
are discussed. In Section 5, the future trends and challenges are discussed. In this paper,
the life prediction methods of the PEMFC in recent years are classified and summarized so
that readers have a clearer understanding of the life prediction methods, and the future
development directions of the life prediction methods are summarized, which has guiding
significance for subsequent experimental research.
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2. Data-Driven Approaches

Due to the nonlinear, strong time-varying, and high coupling characteristics of the
PEMFC, difficulties in life prediction are aggravated. To tackle this challenge, data-driven
methods are usually used to learn and intelligently provide valuable information from
the current online sampling data and the large amount of historical offline data stored
in the system [20], This avoids overdependence on the complex decay mechanism of the
PEMFC [21]. The data-driven approaches can be utilized to monitor the health status of the
PEMFC system by learning and training data [22–26]. Data-driven approaches include echo
state network (ESN), long- and short-term memory network (LSTM), adaptive neuro-fuzzy
inference system (ANFIS), nonlinear autoregressive exogenous (NARX), relevance vector
machine (RVM), Gaussian process regression (GPR), extreme learning machine (ELM), and
Digital twin.
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2.1. Echo State Network

As a neural network with wide application fields, the ESN is used for the system
parameter identification of known dynamic systems [27]. Compared with the classical
neural network, the ESN is simpler and more efficient and can be locally optimized. The
ESN training data can be carried out in two steps: sampling and weight calculation. The
ESN trains the weights from the hidden layer to the output layer, transforms the nonlinear
problem into a linear regression problem, simplifies the calculation, and accelerates the
convergence speed. It can perform multi-step predictive tasks and model predictive
control [28].

Rania Mezzi [29] developed a novel method based on the ESN to forecast battery life,
which can be predicted in the case of an unknown variable load profile. The experimental
results showed that the proposed algorithm obtains high PEMFC residual life prediction
accuracy under uncertainty. Meiling Yue [30] proposed an adaptive data-driven PEMFC
prediction method based on multiplicative feature decomposition and the ESN, which was
used to extract the aging tendency from the experimental data. Furthermore, it could be
adapted to train the behavior model and predict the future state. In addition, this method
could be employed to forecast the degradable behavior of the PEMFC under dynamic
operating conditions. Zhiguang Hua [31] introduced the moving weight matrix method
and verified the feasibility and effectiveness of the ESN under different configurations for
life predictions in different periods. The output weight array could be updated in real-
time with the continuous movement of the training date. It was found that the different
structures of the ESN will affect the prediction accuracy and prediction time of PEMFC life
predictions. Zhiguang Hua et al. [32] proposed to predict residual life using multiple-input
multiple-output ESN (MIMO-ESN) combined with multiple aging indicators such as heap
voltage and heap current. A multi-input ESN was designed and tested for more than 1000 h.
Finally, the proposed MIMO-ESN method achieved a high prediction accuracy of residual
life and generalization ability by experimental verification.

2.2. Long- and Short-Term Memory Network

The LSTM is a special recursive neural network that can solve time-series prediction
problems through the recurrent neural network. An LSTM for the PEMFC was proposed by
Jiawei Liu [33] using uniformly spaced sampling and locally weighted regression discrete
smoothing technology to rebuild and smooth the data, which required lower costs while
accurately predicting the remaining life. A long-term aging experiment of the PEMFC
showed that this method had higher prediction accuracy than a backpropagation neural
network (BP) and was suitable for online predictions but can only predict the working
conditions of the constant load operation. The prediction block diagram based on the LSTM
is shown in Figure 2 [33].

A navigation sequence-driven LSTM (NSD-LSTM) was designed by Zhu Wang et al. [34]
to solve the cumulative error and uncertainty of the LSTM model due to long-term identifi-
cation. Then, the method was verified using different data sets. Compared with the NARX
and ESN data-driven methods, the NSD-LSTM has a more accurate life prediction ability.

2.3. Adaptive Neural Fuzzy Inference System

ANFIS is a fuzzy reasoning system implemented under the framework of an adaptive
network [35]. In an ANFIS system, the nonlinear function is utilized to model, nonlinear
components are identified online, and time series are predicted. ANFIS combines a neural
network with a fuzzy system to increase the influence of logic and prior knowledge and
employs an artificial neural network to learn the membership function of fuzzy logic [36].
S. Rezazadeh [37] used ANFIS to simulate the performance of the PEMFC and compared it
with the experimental results of the training and test data. Moreover, the performance of
the PEMFC could be modeled utilizing these data with ANFIS. The results showed that
the proposed ANFIS modeling method was feasible and could be used for PEMFC life
predictions. The ANFIS structure diagram can be seen in Figure 3 [37].
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2.4. Nonlinear Autoregressive Exogenous Neural Network

Kui Chen et al. [38] fused wavelet analysis and NARX to predict the life of the PEMFC.
The reliability of the model was verified by three durability experiments of the PEMFC
under different conditions and the accuracy of the degradation prediction was higher
than that of the traditional NARX. Francisco da Costa Lopes [39] proposed a system
identification modeling method based on NARX and the nonlinear output error neural nets
to achieve the PEMFC stack model for accurate prognostication. The constructed model is
utilized to provide high-precision stack voltage predictions for a long time. In addition,
the experimental results proved that the model developed using NARX and nonlinear
output error (NOE) neural structures can well approximate the time-varying behavior of
the PEMFC battery pack without retraining the network for a long time.

2.5. Relevance Vector Machine

The RVM constructs a learning machine based on the Bayesian framework, which has a
shorter prediction time and better generalization ability and contributes to online prediction.
Shiming He [40] proposed a novel troubleshooting method called the DEPSO-RVM. In the
proposed method, a particle swarm optimization (PSO) algorism and differential evolution
(DE) algorism were employed to improve the RVM and four diagnostic models were
developed to verify its effectiveness. The experimental results showed that the DEPSO-
RVM had higher accuracy, which is conducive to life predictions.

Weilun Geng [41] explored the best prediction for fuel cell prediction models based on
relevance vector machines with different kernel functions. Four different RVM prediction
models were established for comparative analysis and the forecasting effect was discussed.
It was found that the mixed kernel function had the highest accuracy and excellent learning
ability. Kui Chen et al. [42] used vehicle operation data to predict the PEMFC based on
multi-kernel relevance vector regression (MRVR) and the whale optimization algorithm
(WOA). This method proved to be more accurate than the single kernel function method by
comparing other algorithms. The prediction block diagram of PEMFC degradation using
the WOA-MRVR is given in Figure 4.

2.6. Gaussian Process Regression

GPR is a nonparametric model that uses the Gaussian process (GP) prior to data
regression analysis. The assumption of the GPR model consists of prior noise and Gaussian
processes and its solution is based on Bayesian inference.

Because it is difficult to extract learning data from PEMFC high-frequency noise for
training and learning using the current method, Yucen Xie [43] proposed a remaining useful
life (RUL) prognostication technique combining singular spectrum analysis (SSA) and a
deep Gaussian process (DGP). The first step of the SSA-DGP model was to apply SSA to
remove noise data and use DGP to learn the degradation characteristics for life prediction
after obtaining the processed data. The experimental results proved that this approach
had better accuracy, could avoid excessive fitting, and had a respectable effect. The DGP
prediction model training is shown in Figure 5 [43].

Huiwen Deng [44] designed a GPR modeling framework based on a variational auto-
encoded deep Gaussian process (VAE-DGP) and a sparse pseudo-input Gaussian process
(SPGP) to forecast the degradation trend of PEMFCs and deal with model uncertainties.
Static and dynamic aging tests were conducted with electric tension and delivered the
power of the stack as health determinants. The experiments showed that this method
could be applied to less data and had higher precision, making it superior to the other
data models.
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2.7. Extreme Learning Machine

Compared with the traditional neural network, the ELM’s advantage is that the weight
calculation is from the hidden layer to the output layer without iteration so it has a faster
learning ability and training speed [45]. Yi-Peng Xu et al. [46] designed an improved ELM
model for identifying the PEMFC stack system parameters. In addition, the ELM algorithm
had rapidity and significant generalization performance [47].
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Xie Y [48] combined the deep belief network (DBN) and ELM to accurately predict
PEMFC performance degradation. This method could not only accurately extract the
nonlinear characteristics from the data but also improved the prediction reliability. The
developed degradation prediction method had accurate and stable prediction performance
in different sample sizes and prediction ranges. The deficiency was that the method was
not applied to PEMFC life prediction under dynamic conditions. The overall prediction
framework is shown in Figure 6.
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Boyan et al. [49] developed a hybrid strategy with extreme learning machine and
meta-heuristic algorithms to extract multiple unknown parameters of the solid oxide
fuel cell model. Through simulation analysis, this method was more stable and had
higher prediction accuracy than the traditional ELM. Xuexia Zhang and her colleagues [50]
integrated discrete wavelet transform and adaptive differential evolution algorithms into
an extreme learning machine to predict the PEMFC’s life. The running data under constant
currents were compared with the ELM. The experimental results showed that the method
had better robustness and faster convergence speed and was more suitable for small sample
predictions, but that variable load predictions were still a challenge.

2.8. Digital Twin

Safa Meraghni [51] constructed a digital twin model to predict the RUL of the PEMFC
and updated the online data by connecting the digital twin side to the physical side
and the number of data had little effect on the accuracy of the results. The digital twin
prediction method had a breakthrough in online predictions and combined with the health
management system could have good application prospects.

3. Model-Based Approaches

The model-driven method relies on the internal reaction mechanism of the batteries
to establish a comprehensive electrochemical formula to obtain accurate life predictions.
This method requires fewer process data [52] but its accuracy depends on the consistency
between the established model and the actual system [53–55]. Model-driven methods
include particle filter (PF), Kalman filter (KF), degradation mechanism, and empirical.



Sustainability 2022, 14, 9842 10 of 18

3.1. Particle Filter

As a nonlinear filtering algorithm based on Bayesian estimation, PF can eliminate
various error effects including systematic errors and random errors when processing
data [56] and can include unknown states through its degradation into physical models.
This method can predict the remaining lifetime of the system by continuously drawing the
probability distribution of possible degradation states.

Considering the effects of load current and other factors, Kui Chen [57] used the
grey neural network to establish the recession model, and a particle swarm optimization
algorithm was employed to optimize the weights and thresholds; then, iterative training
was carried out based on the different moving window sizes. Through the recession
experiment of the battery under three working conditions of static current, dynamic load
current, and postal fuel cell electric vehicle, they concluded that the proposed method
could obtain a satisfactory prediction accuracy in a small amount of data.

Yujie Cheng [58] combined regularized particle filter (RPF) with least squares support
vector machine (LSSVM), which could accurately capture the nonlinearity in the data set
and carry out a better assessment of the degradation trend. The predictability of the RPF
and PF methods was compared to verify the effectiveness of this method. This method
could provide the uncertainty characteristics of the RUL while also predicting it.

Mayank Shekhar Jh et al. [59] proposed a solution for the prediction of industrial
PEMFCs. Combining PF‘s advantages with the fault indicator derived from the Bond
Graph model, it was used to predict electrochemical parts and proved to be more effective
in degradation tests than the extended Kalman filter.

3.2. Kalman Filtering

KF is a kind of algorithm for the optimal estimator of the system state through import
and export to observe the data of the linear system. Due to the observational data containing
the influences of noise and disturbances in the system, the sharp estimation could also
be looked upon as a filtered process [60]. However, the accurate estimation of battery life
using the Kalman filter depends largely on accurate battery modeling and its online model
parameter estimations [61].

Based on KF, Yunjin Ao [62] proposed a frequency-domain Kalman filter(FDKF)to
forecast the remaining service life. The effectiveness of the method was verified using an
example, and it was superior to the other methods based on KF. Mathieu Bresse et al. [63]
employed an extended Kalman filter (EKF) to estimate the health and degradation trends.
The method was applied to the experimental data of long-term battery heap tests to verify
their validity and the error effect was small. Zhuo Wang [64] demonstrated the use of
cell-level state estimation technology in large-scale battery energy storage systems using
experimental data from a 2 MW, 1 MWh battery energy storage system. It proved that
the state of charge (SOC) estimation of the double sigma point Kalman filter (DSPKF)
could obtain accurate estimation results with a smaller computational burden. Kui Chen
et al. [65] combined the unscented Kalman filter (UKF) algorithm with a voltage degradation
model for fuel cell degradation trend predictions. The proposed algorithm was also
guaranteed in practical applications for the degradation trend of the battery under different
working conditions.

3.3. Degradation Mechanism Model

The degradation mechanism model obtains life prediction parameters of the PEMFC
through the aging internal mechanism, which has strong robustness and superiority but
cannot forecast the PEMFC life under dynamic loads.

Kui Chen [66] considered the effect of the PEMFC loading current and proposed a
hybrid degradation model based on wavelet analysis, ELM, and a genetic algorithm (GA).
Through the verification of the actual data of the electric vehicles, it was found that the
model was faster than the traditional prediction method and met the calculation conditions
of online measurement in practice and had higher accuracy. The diagram of the optimized
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GA-ELM using wavelet analysis is shown in Figure 7. Manik Mayur [67] proposed a
physical-based regression model that used Pt degradation as a degradation mechanism to
predict the durability of the PEMFC. By comparing and analyzing the degradation of two
different driving cycle batteries and observing the dissolution rate of platinum, this rate
could be used as the monitoring index of the PEMFC to obtain a healthy PEMFC state.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 19 
 

PEMFC operation data

wavelet analysis

Approximation signal Detailed signals

Build the degradation 
model based on ELM

Initialize population

Calculation fitness

Stop threshold 
/ iterations

Update the population

Output weight and 
threshold

Establish the 
degradation model

PEMFC prediction 
model

Yes

No

Yes
GA-ELM

 
Figure 7. GA-ELM flow chart optimized by wavelet analysis. 

4. Hybrid Approaches 
The structure of data-driven approaches is simple, but it depends on the quality and 

quantity of data. The model-driven method has high forecast accuracy but the structure 
is complex and it is difficult to fully consider the reaction mechanism within the PEMFC. 
Therefore, how to combine the advantages of both for accurate life predictions is of great 
significance. Combining model and data-driven methods with different hybrid strategies 
can achieve more accurate life predictions, but the structure is more complex and the 
amounts of the calculations are larger. The hybrid approaches overcome the boundedness 
and shortcomings of the model and data-driven methods for measuring residual lifetime 
[71]. Previously, hybrid approaches were applied in other areas [72–75]. 

Figure 7. GA-ELM flow chart optimized by wavelet analysis.

3.4. Empirical Model

The mapping relations between the aging parameters and experimental conditions
are realized by introducing parameter identification into an empirical model with high
accuracy and reliability. Marvin Messing et al. [68] carried out load cycle and start/stop
cycle experiments and the consequences were used to build the empirical durability model
of cathode electrodes during the operation of fuel cell vehicles, which could be further
integrated with the membrane durability model so as to comprehensively predict the life
and performance recession of fuel cells under wide application conditions and system
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designs. Alexander Kneer [69] proposed a semi-empirical electrochemically active surface
area loss model to predict the dissolution of Pt and estimate the degradation of catalyst
for fuel cells. The experimental results showed that the semi-empirical loss model could
measure the corresponding loss in different voltage cycles and had high accuracy for
degradation predictions. Mingyang Ou [70] proposed a semi-empirical model method for
accurate PEMFC life predictions. The model considered various polarization behaviors and
introduced parameter identification to process complex data in the model. The feasibility
of the model was verified by the PEMFC data sets.

4. Hybrid Approaches

The structure of data-driven approaches is simple, but it depends on the quality and
quantity of data. The model-driven method has high forecast accuracy but the structure
is complex and it is difficult to fully consider the reaction mechanism within the PEMFC.
Therefore, how to combine the advantages of both for accurate life predictions is of great sig-
nificance. Combining model and data-driven methods with different hybrid strategies can
achieve more accurate life predictions, but the structure is more complex and the amounts
of the calculations are larger. The hybrid approaches overcome the boundedness and
shortcomings of the model and data-driven methods for measuring residual lifetime [71].
Previously, hybrid approaches were applied in other areas [72–75].

Model-driven adaptive KF was fused with data-driven NARX to predict the PEMFC
life by Rui Pan et al. [76]. Two groups of aging data under different conditions were used
for the test. The comparative analysis showed that this method could capture the overall
degradation trend information and detailed degradation information and had higher ac-
curacy than other prediction methods. Liu Hao [77] introduced a novel comprehensive
analysis method to analyze the aging tendency and residual PEMFC life under various
current loads. On this basis, a machine learning algorithm founded on an evolutionary
algorithm and adaptive fuzzy logic was proposed. Moreover, semi-empirical degradation
and UKF were used to evaluate the residual lifetime of the system. The test results showed
that compared with the previous method based on the integrated model, the combined
prediction method had higher prediction accuracy and faster prediction speed for battery
residual life. Chu Wang et al. [78] employed a new fusion prediction technology to an-
alyze the health index of FC using an aging model and moving window method, then
utilized symbol-based LSTM to predict the degradation trend in the health indicators. The
experimental results showed that the proposed method could reflect the voltage change
in FC storage over time, with a large range and high accuracy. Huicui Chen et al. [79]
introduced a new idea for machine learning predictions based on the operating parameters.
By predicting voltage consistency under different combinations of operating parameters, it
could accurately predict the online PEMFC life. In order to solve the degradation prediction
problem of the PEMFC in the frequency domain, Yunjin Ao et al. [80] proposed a voltage
degradation model and FDKF joint drive method to predict PEMFC degradation. Degra-
dation experiments were conducted at a constant current and dynamic current to verify
the prediction performance under different working conditions. Compared with other
prediction methods, the proposed method had better accuracy and robustness. Penghao
Wang [81] introduced polarization resistance and combined the degradation model with
PF to predict the future PEMFC degradation trend (FDT) and the RUL. Compared with the
commonly used aging model, the errors were smaller and the accuracy was higher. Daming
Zhou et al. [82] proposed a new stability prediction method to forecast PEMFC life. Firstly,
the physical aging model (PAM) was used to analyze the degradation process of the original
PEMFC to eliminate its unstable changes. Then, they used the autocorrelation function
(ACF), partial ACF, Akaike, and other information criteria to determine the order of the
autoregressive moving average model, and then the autoregressive and moving average
(ARMA) method was used to filter the linear components in smooth times series. Finally,
the residual nonlinear damping models were utilized to train the delayed neural network
to obtain the ultimate forecast effect. The prediction results showed that the innovative
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PAM-ARMA-TDNN (time delay neural network) method had higher forecast accuracy and
robustness and was more reliable in practical prediction work.

There are multi-data-driven and multi-model-driven approaches in the hybrid method.
The multi-data driven approach is to weight or integrate various data-driven methods to
improve the accuracy and robustness of remaining life predictions. Without establishing a
complex battery model, the relationship between a battery’s state and its external parame-
ters can be automatically explored [83]. To accurately predict PEMFC life Chen et al. [84]
proposed an aging prediction model based on a BP neural network and evolutionary
algorithm. The degradation prediction model of the PEMFC was established using the
BP neural network. The degradation model was optimized using the mind evolutionary
algorithm (MEA), PSO, and GA with a higher precision ratio. Rui Ma et al. [85] proposed
a PEMFC performance data integration prediction method based on an LSTM recurrent
neural network and autoregressive integrated moving average (ARIMA). The proposed
LSTM-ARIMA method could accurately forecast the decomposition of the PEMFC via
experiments, making online diagnostic control possible, as shown in Figure 8. Rui Ma [86]
established the physical aging model of the PEMFC to reflect the internal aging parameters
to predict PEMFC life. The nonlinear characteristics of the PEMFC were filtered using
EKF, and the parameter updating problem was solved by the LSTM. The validity of the
method was verified using static and quasi-dynamic test data. The experiment showed
that the technique could accurately forecast the degeneration trend of the PEMFC output
tension and aging parameters under different training stages. Focusing on the difficulties in
online predictions, Penghao Wang [87] and other scholars proposed a nonlinear empirical
degradation model and then employed PF to estimate the degradation state variables online
to achieve the online prediction standard of the PEMFC. Taking the rated voltage as the new
aging index, it could achieve superb life predictions in variable load and online predictions.
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5. Prospects and Challenges of PEMFC

In this paper, the classification and research of lifetime prediction methods for the
PEMFC are compared, analyzed, and summarized. The methodology is divided into
data-driven, model-driven, and hybrid approaches. Data-driven approaches are simple
and convenient without considering the internal degradation mechanism of the PEMFC
but require large amounts of comprehensive actual operation data. Compared with data-
driven approaches, model-driven approaches require less data, higher accuracy, and wider
application. However, it is difficult to predict the life of the research object without knowing
its internal structure and reaction mechanisms, and model-driven approaches are more
complex in their modeling. Hybrid prediction approaches have higher accuracy than
the aforementioned two methods but make the calculations more complicated. These
approaches have certain reliability but are far from being applied in practice. In the area
of PEMFC life predictions, online forecasts are still the key issue. However, considering
the calculation time, robustness, and accuracy required for online predictions, the current
methods cannot be directly applied to practice. The operating conditions of PEMFCs in
electric vehicles are complex, and the life prediction methods cannot be verified according
to the constant load conditions in general experiments. It is necessary to demonstrate the
reliability of this method under complex dynamic conditions. According to the current
researches, the primary aging indicators are voltage and power, which cannot accurately
predict PEMFC life under dynamic operating conditions in electric vehicles. Consequently,
it is particularly important to extract aging indicators that can be utilized for accurate
online PEMFC life predictions with a low calculation burden under dynamic conditions.
With the wide application of the Internet of Vehicles in the automotive field, future life
predictions of the PEMFC are closely related to algorithms, and the parameters, structures,
and degradation indexes in life predictions tend to be automatically selected through those
algorithms. In prediction methods, especially for the data-driven and empirical models, the
use of an integrated framework could greatly improve the accuracy and reliability of the
prediction results. In addition, the advantage of data-driven approaches is that they train
and analyze trends, whereas the advantage of model-driven approaches is that they extract
aging indicators. The hybrid method formed by the combination of the two methods has
great advantages in dynamic conditions, which is helpful for the accurate application of
life predictions in practice under the premise of solving the huge calculation burden.

6. Conclusions

In this paper, the life prediction methods of the PEMFC are reviewed and classified.
The data-driven method and the model-driven method each have their advantages and
disadvantages, which are the basis of PEMFC life prediction methods and have been
gradually adopted to solve practical problems. In this paper, the three methods for life
prediction are compared and discussed, the related research is discussed in detail, and a
more characteristic outline is drawn. The challenges faced by the current research and future
research directions are summarized, which could have a guiding role in subsequent life
prediction method research. However, this paper only classifies the life prediction methods
for the PEMFC and is not suitable for application in other batteries. The development
process of the life prediction methods has not been summarized as the focus of this work
is on recent research results. In the follow-up studies, the life prediction methods of the
PEMFC will be more comprehensively summarized and more valuable research directions
will be explored.
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ANFIS Adaptive neuro-fuzzy inference system ARMA Autoregressive and moving average
ARIMA Autoregressive integrated moving average ACF Autocorrelation function
BP Backpropagation DSPK Double sigma point Kalman filter
DBN Deep belief network DE Differential evolution
DGP Deep Gaussian process EKF Extended Kalman filter
ESN Echo state network ELM Extreme learning machine
FDKF Frequency-domain Kalman filter FDT Future degradation trend
GP Gaussian process GA Genetic algorithm
GPR Gaussian process regression KF Kalman filter
LSSVM Least squares support vector machine LSTM Long- and short-term memory network
MRVR Multi-kernel relevance vector regression MIMO Multiple-input multiple-output
MEA Mind evolutionary algorithm NOE Nonlinear output error
NARX Nonlinear autoregressive exogenous NSD Navigation sequence-driven
PSO Particle swarm optimization PAM Physical aging model
PF Particle filter RUL Remaining useful life
PEMFC Proton exchange membrane fuel cell RPF Regularized particle filter
RVM Relevance vector machine SPGP Sparse pseudo-input Gaussian process
SSA Singular spectrum analysis SOC State of charge
UKF Unscented Kalman filter VAE Variational auto-encoded
WOA Whale optimization algorithm
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