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Abstract: Due to their environmental advantages, crumb rubber modified asphalt binders constitute
an interesting alternative to conventional binders for road surfaces of a more durable and sustainable
nature. However, in practice, they remain less commonly used than conventional polymer modified
binders. This research aims to study the real ageing of crumb rubber modified asphalt binders during
their service lives when exposed to various factors, including temperature gradients, the presence of
water and oxidation. To this end, research was conducted on a selection of highways built with these
binders and located in regions with severe climatic and traffic conditions. The binders from cores
of highway surface layers were recovered and tested using the DSR (Dynamic Shear Rheometer)
to determine the evolution of the rheological parameters. Crumb rubber modified asphalt binders
were studied in comparison with traditional polymer modified bitumen. The analysis of the complex
modulus and phase angle was conducted based on frequency and temperature sweep tests, while
the evolution of the elastic recovery, Jnr, L-Index and T-Index were assessed from the multiple stress
creep and recovery test. The results obtained indicate that crumb rubber modified binders show
similar ageing and rheological parameters to those of conventional polymer modified bitumen, even
under severe traffic and climate conditions. Furthermore, it was observed that, at high temperatures,
the effect caused by real service life ageing was different to that obtained in the laboratory through
the RTFO and PAV tests.

Keywords: asphalt; crumb rubber; rheology; field performance

1. Introduction

Crumb rubber from end-of-life tyres has been used as a modifier in bituminous
materials around the world for decades [1]. This modifier both improves the mechanical
performance of asphalt materials via increasing their resistance to fatigue cracking and to
plastic deformations and reduces their ageing and rolling noise [2–7]. In turn, this results
in road surfaces of greater durability with less need for maintenance. Countries, including
the USA, have a wide experience with the use of crumb rubber modified asphalt mixtures
in all types of roads and climates and have proved the aforementioned advantages of their
application [8–13].

In addition to the technical advantages offered by crumb rubber in asphalt materials,
it also offers a major opportunity to reduce the environmental impact caused by road
construction and rehabilitation [14–16]. The incorporation of crumb rubber in asphalt
materials enables the valorisation of a waste product that most countries generate in huge
quantities [17]. In turn, it aligns with the principles of a circular economy and, there-
fore, contributes towards global sustainable development targets and the more effective
management of natural, economic and energy resources.
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However, despite all these environmental and technical advantages, the application of
crumb rubber modified bitumen (CRMB) in Spain remains limited, especially in surface
layers and high-volume-traffic roads [18,19]. One of the main reasons for this lies in the
lack of information and tracking of the experiences already conducted. The mechanical
performance of these experiences has not been studied over the years, leading to road
administrations having insufficient reasoning to select these abundant waste materials
instead of traditional Styrene–Butadiene–Styrene (SBS) modified binders (SBSMB), which
have decades of success and reliable use.

Therefore, to increase the confidence in crumb rubber-based binders while also sup-
porting sustainable development and the circular economy, this paper aims to undertake
an in-depth analysis of the rheological properties of crumb rubber modified bitumen under
real traffic and climate conditions. To achieve this aim, a Public–Private–Academic Part-
nership was carried out with 3 members: (1) the government of Andalusia (Spain), which
has been utilising these materials in the surface layers of highway sections in recent years;
(2) SIGNUS (a non-profit organisation in charge of the management of the used tyres in
Spain); and (3) the Laboratory of Construction Engineering of the University of Granada.
Together, the evolution of the mechanical performance of these materials during their
service life was studied in comparison to the traditional SBS modified binder. To this end,
CRMB and SBSMB were extracted from cores directly obtained from the surface layers of
two highways in this region on different dates. The binders were subsequently tested in the
laboratory using various rheological tests (frequency and temperature sweeps and multiple
stress creep and recovery tests, using the DSR Dynamic Shear Rheometer) to determine
the evolution of their mechanical properties during their service life. These roadways are
subject to some of the most unfavourable conditions in the region in terms of climate and
traffic. This paper summarises the main results obtained from this research work.

2. Methodology
2.1. Materials

This paper focuses on the study of 4 sections (Figure 1) of the high-capacity road
network of Andalusia (Spain). Two of these sections were part of the A-316 highway
(approximately 5 km each, Jaén) and the other two of the A-92 highway (approximately
13 km each, Granada). These four highway sections were constructed using a 3 cm-thick
surface layer using a BBTM 11B PMB 45/80-60 C; an asphalt mixture composed of a gap-
graded mineral skeleton with a maximum aggregate size of 11 mm and manufactured with
a crumb rubber modified asphalt binder PMB 45/80-60 C [20]. In sections A-316-I, A-92-I
and A-92-II, the same terminal blend of CRMB was used: a modified binder manufactured
in a refinery where the crumb rubber was added to the bitumen, mixed at high speed and
eventually with other additives, and then collected in another tank where the blend stayed
to allow the reaction and was finally transported to the asphalt plant [21]. This blend was
produced from the same refinery in order to assess better how the same CRMB would
perform under various service conditions. Meanwhile, in the A-316-II section, a continuous
blend of CRMB was used: a modified binder produced in a continuous operation in the
asphalt plant, where the crumb rubber was added to the bitumen in a blending tank,
mixed at high speed, which enabled the reaction between the two compounds during the
blending, and then incorporated into the mixer of the plant [21]. This blend was employed
to evaluate how different types of CRMBs behaved under the same service conditions. In
all the highway sections studied, a sub-section of approximately 400 m in length was also
constructed using a BBTM 11B PMB 45/80-60 and manufactured with the same mineral
skeleton but using a conventional SBS polymer modified bitumen. These reference sections
were constructed side by side to ensure the same environmental and traffic conditions as
the crumb rubber modified asphalt layers.
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Figure 1. Schema of the highway section locations.

All the BBTM 11B mixtures used in the different sections were manufactured with
the same binder content (4.8% of the total weight of the mixture) and a similar air void
content (15 ± 0.5%) in order to prevent these variables from affecting the study conducted.
The service conditions of the highway sections studied are summarised in Table 1. It can
be observed that the most severe conditions in terms of traffic and climate occurred in
A-92-I, where more than 3000 heavy vehicles pass every day and the presence of snow,
frost and chemical substances for de-icing purposes is common for 5 months every year.
Conversely, both the A-316 cases offered less severe service conditions with fewer than
600 heavy vehicles a day and no presence of snow/ice on the road surface.

Table 1. Characteristics of the service conditions in the highway sections studied.

A-316-I And A-316-II A-92-I A-92-II

Date of traffic opening November 2015 September 2017 July 2018

Annual Average Daily Traffic
(number of vehicles) 8000 18,000 11,000

Percentage of heavy traffic (of
the total number of vehicles) 8 17 7

Climate conditions

~750 m above sea level; rarely
frost/snow on the road

surface during
autumn/winter; maximum

average temperatures in
summer ~36 ◦C; minimum

average temperatures in
winter ~4 ◦C

~1400 m above sea level; very
frequent frost/snow on the

road surface during
autumn/winter; maximum

average temperatures in
summer ~30 ◦C; minimum

average temperatures in
winter ~1 ◦C

~1100 m above sea level;
frequent frost/snow on the

road surface during
autumn/winter; maximum

average temperatures in
summer ~33 ◦C; minimum

average temperatures in
winter ~4 ◦C

2.2. Testing Plan

In this study, two different CRMBs (a terminal blend PMB 45/80-60 C and a contin-
uous blend PMB 45/80-60 C that we label CRMB (CB)) were evaluated under the same
service conditions (A-316 highway) and compared with a traditional SBSMB. Similarly, the
same terminal blend CRMB (PMB 45/80-60 C) was also evaluated under various service
conditions (A-316, A-92-I, and A-92-II) and compared with the performance offered by a
traditional SBSMB. For this purpose, the three binders under study (CRMB, CRMB (CB)
and SBSMB) were analysed prior to and subsequent to mixture manufacture. The latter
analysis took place at different times (Table 2) depending on the core extraction campaign.
Figure 2 shows the average densities obtained [22] in the cores extracted in each campaign
for the different types of materials. As can be observed, the densities of the asphalt mixtures
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over time remain constant, which indicates that the possible differences to be found in the
ageing are not due to changes produced in the air void content of the mixtures.

Table 2. Dates of the cores extracted from each highway section studied.

Core Extraction Campaign A-316-I A-316-II A-92-I A-92-II

1 37 months
(December 2018)

37 months
(December 2018)

18 months
(March 2019)

11 months
(June 2019)

2 63 months
(February 2021)

63 months
(February 2021)

46 months
(July 2021)

36 months
(July 2021)
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Once the cylindrical cores were obtained from the wheel path in the highway sections
during the periods defined in Table 2, their asphalt binders were recovered using the
rotary evaporator in accordance with UNE-EN 12697-3 [23]. In each campaign and type of
material, three cores were obtained, and from each one, two binder samples were obtained
(i.e., 6 binder samples were used in each test for each type of material and campaign). The
recovered binders were then tested in the Dynamic Shear Rheometer (DSR) using frequency
(from 0.1 to 30 Hz) and temperature (from 5 to 80 ◦C) sweep tests at a 10% strain amplitude
(in accordance with UNE-EN 14,770 [24]). Additionally, the Multiple Stress Creep and
Recovery Test (MSCRT) was conducted at 45, 64 and 70 ◦C, in accordance with UNE-EN
16,659 [25], where 30 load cycles of 3.2 kPa and 1 s of duration were applied to the binder
specimens with a rest period of 9 s after each load pulse. From the results of the frequency
and temperature sweep tests, the Complex Modulus (G*) and phase angle rheological
parameters were calculated. Similarly, the results obtained in MSCRT were shown based on
the percentage recovery (R) and non-recoverable creep compliance (Jnr) parameters. The
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parameter R can identify and quantify how the polymer is working in the binder, while Jnr
indicates the capacity of the asphalt binders to resist permanent deformations.

Nonetheless, based on the MSCRT results obtained at 45 and 70 ◦C, other innovative pa-
rameters were also employed to conduct a complete evaluation of the mechanical response
of asphalt binders [26]: the non-recoverable strain rate (∆εnr, in %/cycle, Equation (1)) and
average recovered strain (RS15–30, in %/cycle), which was the average absolute recovered
strain from each cycle measured from the 15th cycle to the 30th cycle.

∆εnr =
εnr30 − εnr15

30 − 15
(1)

where εnr30 is the cumulative non-recoverable deformation after 30 load cycles and εnr15
is the cumulative non-recoverable deformation after 15 load cycles. This parameter is
calculated from the 15th load cycle and the 30th load cycle, which is when the response of
the binder becomes more stable. As ∆εnr increases, there is a decrease in the resistance of
the binders to permanent deformations under cyclic stress loading.

The Flow index (Equation (2)) is a quantitative measurement of the flow and capacity
of the binder to deform under the effects of stress. The higher this value, the lower the
capacity of the binder to absorb the stress energy without deforming, regardless of whether
such deformation is recoverable. Recovery Capacity (RC, Equation (3)) is a quantitative
measurement of the elasticity of the binder (the proportion of the Flexibility index that
corresponds to recoverable deformations). The higher this value, the greater the amount of
strain that can be recovered by the binder.

F =
√

∆εnr2 + RS15–30
2 (2)

RC = tan−1
(

RS15–30

∆εnr

)
(3)

Based on these parameters, the L-index can be calculated, which measures the sus-
ceptibility of the binder to the loads (Equation (4)). As F increases, there is an increase
in the susceptibility of the materials to stress loads. Meanwhile, as RC increases, there is
an increased capacity to recover the changes produced by the loads since the recovered
strain rises as the non-recoverable strain rate falls. Thus, as the L-Index increases, the
susceptibility of the binder to the loads becomes greater, and therefore there is an increased
likelihood of distress appearing due to the passing traffic.

L − Index =
F

tan RC
=

∆εnr
√

∆εnr2 + RS15–30
2

RS15–30
(4)

Moreover, the changes produced in the bitumen due to variations in temperature
should also be evaluated. This is particularly important in the case of polymer modifiers
since not only do they provide asphalt binders with elastic recovery properties, but they
can also reduce thermal susceptibility. As the test temperature increases, the mechanical
response of asphalt binders becomes softer and therefore F increases while RC decreases.
Thus, under a given variation in temperature (from 45 to 70 ◦C, in the case of the proposed
study), the increment produced in F (F45–70, obtained from the norm of the vector formed
by the ∆εnr and RS15–30 values at 45 and 70 ◦C) and the loss of RC (RC45–70) can be utilised
to determine the temperature susceptibility of the binder evaluated (Figure 3). Based on
these considerations, the T-Index (Equation (5)) can be obtained to determine the resistance
of asphalt binders to temperature variations.

T − Index = F45–70
RC45 − RC70

RC45
(5)
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3. Analysis of Results

Figures 4–6 show the Black diagrams obtained in the frequency and temperature
sweep tests conducted on the asphalt binders from the A-316 highway, where two different
types of CRMBs and a traditional SBSMB were evaluated under the same service conditions.
Results demonstrate that the three binders suffered a stiffening process during their service
life, with a higher complex modulus for the same frequency and temperature over time.
These materials also became more elastic at lower temperatures (lower phase angles) and
more viscous at high temperatures (higher phase angles), which demonstrated the positive
effects of the polymers in the binders (in that they became more elastic at high temperatures
and less brittle at lower temperatures) were less marked due to the ageing suffered during
their service life. This made the modified binders become less thermo-rheologically complex
due to ageing under real service conditions, which is not observed at the laboratory level
when they are aged using an RTFOT (Rolling Thin Film Oven Test) and PAV (Pressure
Ageing Vessel) test [27,28]. It should be borne in mind that the variations suffered by the
traditional SBSMB are lower than those observed in the CRMB and the CRMB (CB), which
could indicate that this binder is less affected by ageing during its service life. These results
are in accordance with other results obtained at the laboratory level [27]. Nonetheless, it
must also be stated that the fresh CRMBs offered a more elastic performance than did the
SBSMB, and the behaviour obtained after ageing was similar for the three binders. No
significant differences were found between the results obtained in the two types of CRMBs,
which demonstrates that the two processes (terminal and continuous blends) produce
materials with similar properties.

These results can easily be observed in the isochrone curves for a fixed frequency
(5 Hz) and different temperatures (Figures 7–12). The complex modulus of the binders,
after several months of service life, was found to have significantly higher values than that
obtained for the fresh binders and at lower temperatures. All the binders became more
elastic as their service life progressed (lower phase angles), regardless of the type of bitumen
and test temperature analysed. This aspect had previously been observed at the laboratory
level when using RFTO+PAV tests [27,28]; however, contrary to the laboratory observations,
in the case of the CRMB, where no significant differences were observed between the
two manufacturing processes, they became more viscous, and therefore more susceptible to
plastic deformations, at higher temperatures (higher phase angles), which demonstrated the
reduction of the effects of polymers in the binders in that they became thermo-rheologically
simpler. In the case of the SBS, in spite of lower service-life temperatures, it also became
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more brittle (similar to the CRMB) at higher temperatures, which inferred that it was able
to maintain the same phase angles as the fresh SBSMB: this was also in contrast with the
observations made at the laboratory, where the values of the phase angle in aged binders
were reduced regardless of the temperature [27,28].
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Figure 8. Isochrone curves at 5 Hz of the complex modulus of the CRMB (CB) used in the A-316-II at
different service-life periods.
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Figure 9. Isochrone curves at 5 Hz of the complex modulus of the SBSMB used in the A-316 at
different service-life periods.
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Figure 10. Isochrone curves at 5 Hz of the phase angle of the CRMB used in the A-316-I at different
service-life periods.
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Figure 11. Isochrone curves at 5 Hz of the phase angle of the CRMB (CB) used in the A-316-II at
different service-life periods.
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Figure 12. Isochrone curves at 5 Hz of the phase angle of the SBSMB used in the A-316 at different
service-life periods.

In the other highway sections studied (A-92-I and A-92-II), the results obtained were in
accordance with those observed in the A-316 highway, and no significant differences were
presented between the three scenarios investigated (Figures 13–16). Both types of modified
bitumen (CR and SBS) experienced an increment in their complex modulus regardless
of the test temperature (Figures 17–19). Furthermore, the CRMB and SBSMB suffered a
marked reduction in phase angle at lower temperatures, but only the CRMB resulted in
an increase in this parameter at higher temperatures (which again demonstrates both the
loss of efficiency of the polymer additive as the service life progresses and the differences
between the effect of real ageing and laboratory ageing through RTFOT+PAV). After several
months in service, the SBSMB was able to maintain similar phase angle values at higher
temperatures than those obtained when tested as fresh SBSMB. However, it is important
to highlight that the values obtained from the specimens that underwent higher service
temperatures were very similar to those obtained in CRMB since fresh CRMB mixtures
were more elastic than fresh SBSMB (Figures 20–24).

The MSCR test findings (Figures 25–31) corroborated that the stiffening process suf-
fered by the binders during their service life reduced their susceptibility to plastic deforma-
tions (lower values of Jnr), regardless of the test temperature and the service conditions:
this finding was obtained in all the binders and highway sections studied; it was also in
accordance with previous results obtained in the laboratory [29,30]. In contrast, the capacity
for recovering from the deformations was found to be different per binder type and service
condition. This property was not found to be affected in the case of SBSMB on the A-316
and A-92-II highways. However, the recovery capacity of SBSMB decreased under the
service conditions in A-92-I (which presented the most severe conditions), especially at
higher temperatures. The CRMB (CB) experienced no changes in recovery capacity in the
A-316 highway (the only scenario where it was tested), while the CRMB underwent changes
in the three highway sections studied (A-316, A-92-I and A-92-II). This was found to be the
case, especially at higher temperatures and under the most severe service conditions in the
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A-92-I. Finally, it should be borne in mind that while the CRMB was found to be the most
affected binder, its performance after ageing was in the same order as (or even better than)
that offered by CRMB (CB) and SBSMB.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 27 
 

In the other highway sections studied (A-92-I and A-92-II), the results obtained were 
in accordance with those observed in the A-316 highway, and no significant differences 
were presented between the three scenarios investigated (Figures 13–16). Both types of 
modified bitumen (CR and SBS) experienced an increment in their complex modulus re-
gardless of the test temperature (Figures 17–19). Furthermore, the CRMB and SBSMB suf-
fered a marked reduction in phase angle at lower temperatures, but only the CRMB re-
sulted in an increase in this parameter at higher temperatures (which again demonstrates 
both the loss of efficiency of the polymer additive as the service life progresses and the 
differences between the effect of real ageing and laboratory ageing through RTFOT+PAV). 
After several months in service, the SBSMB was able to maintain similar phase angle val-
ues at higher temperatures than those obtained when tested as fresh SBSMB. However, it 
is important to highlight that the values obtained from the specimens that underwent 
higher service temperatures were very similar to those obtained in CRMB since fresh 
CRMB mixtures were more elastic than fresh SBSMB (Figures 20–24). 

 
Figure 13. Black diagrams of the CRMB used in the A-92-I at different service-life periods. 

Figure 13. Black diagrams of the CRMB used in the A-92-I at different service-life periods.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 27 
 

 
Figure 14. Black diagrams of the SBSMB used in the A-92-I at different service-life periods. 

 
Figure 15. Black diagrams of the CRMB used in the A-92-II at different service-life periods. 

Figure 14. Black diagrams of the SBSMB used in the A-92-I at different service-life periods.



Sustainability 2022, 14, 11189 13 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 27 
 

 
Figure 14. Black diagrams of the SBSMB used in the A-92-I at different service-life periods. 

 
Figure 15. Black diagrams of the CRMB used in the A-92-II at different service-life periods. 

Figure 15. Black diagrams of the CRMB used in the A-92-II at different service-life periods.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 27 
 

 
Figure 16. Black diagrams of the SBSMB used in the A-92-II at different service-life periods. 

 
Figure 17. Isochrone curves at 5 Hz of the complex modulus of the CRMB used in the A-92-I at 
different service-life periods. 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90

Co
m

pl
ex

 M
od

ul
us

, G
* 

(P
a)

Temperature (°C)

CRMB (Fresh) CRMB A-92-I  (18 months) CRMB A-92-I  (46 months)

Figure 16. Black diagrams of the SBSMB used in the A-92-II at different service-life periods.
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Figure 17. Isochrone curves at 5 Hz of the complex modulus of the CRMB used in the A-92-I at
different service-life periods.
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Figure 18. Isochrone curves at 5 Hz of the complex modulus of the SBSMB used in the A-92-I at
different service-life periods.



Sustainability 2022, 14, 11189 15 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 27 
 

 
Figure 18. Isochrone curves at 5 Hz of the complex modulus of the SBSMB used in the A-92-I at 
different service-life periods. 

 
Figure 19. Isochrone curves at 5 Hz of the complex modulus of the CRMB used in the A-92-II at 
different service-life periods. 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90

Co
m

pl
ex

 M
od

ul
us

, G
* 

(P
a)

Temperature (°C)

SBS MB (Fresh) SBS MB A-92-I (18 months)

SBS MB A-92-I (46 months)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90

Co
m

pl
ex

 M
od

ul
us

, G
* 

(P
a)

Temperature (°C)

CRMB (Fresh) CRMB A-92-II  (11 months) CRMB A-92-II  (36 months)

Figure 19. Isochrone curves at 5 Hz of the complex modulus of the CRMB used in the A-92-II at
different service-life periods.
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Figure 20. Isochrone curves at 5 Hz of the complex modulus of the SBSMB used in the A-92-II at
different service-life periods.
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Figure 21. Isochrone curves at 5 Hz of the phase angle of the CRMB used in the A-92-I at different
service-life periods.
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Figure 22. Isochrone curves at 5 Hz of the phase angle of the SBSMB used in the A-92-I at different
service-life periods.
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Figure 23. Isochrone curves at 5 Hz of the phase angle of the CRMB used in the A-92-II at different
service-life periods.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 27 
 

 
Figure 24. Isochrone curves at 5 Hz of the phase angle of the SBSMB used in the A-92-II at different 
service-life periods. 

The MSCR test findings (Figures 25–31) corroborated that the stiffening process suf-
fered by the binders during their service life reduced their susceptibility to plastic defor-
mations (lower values of Jnr), regardless of the test temperature and the service condi-
tions: this finding was obtained in all the binders and highway sections studied; it was 
also in accordance with previous results obtained in the laboratory [29,30]. In contrast, the 
capacity for recovering from the deformations was found to be different per binder type 
and service condition. This property was not found to be affected in the case of SBSMB on 
the A-316 and A-92-II highways. However, the recovery capacity of SBSMB decreased 
under the service conditions in A-92-I (which presented the most severe conditions), es-
pecially at higher temperatures. The CRMB (CB) experienced no changes in recovery ca-
pacity in the A-316 highway (the only scenario where it was tested), while the CRMB un-
derwent changes in the three highway sections studied (A-316, A-92-I and A-92-II). This 
was found to be the case, especially at higher temperatures and under the most severe 
service conditions in the A-92-I. Finally, it should be borne in mind that while the CRMB 
was found to be the most affected binder, its performance after ageing was in the same 
order as (or even better than) that offered by CRMB (CB) and SBSMB. 

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

Ph
as

e 
An

gl
e 

(°
)

Temperature (°C)

SBS MB (Fresh) SBS MB A-92-II (11 months)

SBS MB A-92-II (36 months)

Figure 24. Isochrone curves at 5 Hz of the phase angle of the SBSMB used in the A-92-II at different
service-life periods.
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Figure 25. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the CRMB
used in the A-316-I at different service-life periods.
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Figure 26. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the CRMB
(CB) used in the A-316-II at different service-life periods.
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Figure 27. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the SBSMB
used in the A-316 at different service-life periods.
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Figure 28. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the CRMB
used in the A-92-I at different service-life periods.
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Figure 29. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the SBSMB
used in the A-92-I at different service-life periods.
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Figure 30. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the CRMB
used in the A-92-II at different service-life periods.
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Figure 31. Non-recoverable creep (Jnr) and elastic recovery measured with the MSCRT on the SBSMB
used in the A-92-II at different service-life periods.

The analysis of the evolution of the rheological properties of the binders, studied as
a function of the service life, through the L-Index and T-Index parameters, demonstrated
that all materials became less susceptible to mechanical loads over time (lower values of
L-Index). This may be associated with the stiffening process (Figure 32). Similarly, all
SBSMB and CRMB (CB) became less susceptible to thermal gradients as the service life
progressed (lower values of T-Index). However, this property seemed to remain unaffected
in the CRMB mixture (Figure 33).

As a general conclusion, it can be stated that regardless of the scenario studied, the
three binders evaluated were found to have similar evolutions of their rheological properties
as a function of the service life. Figures 34 and 35 analyse the L-Index and T-Index of the
binders studied overall, regardless of the highway section. These figures demonstrate that
none of the binders was found to have excessive deterioration with respect to the others.
Moreover, it has been observed that the ageing produced during the service life renders the
binder less susceptible to mechanical loads and to thermal effects, which means that ageing
leads to binders of a more stable nature.
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4. Conclusions

This paper summarises the results obtained in the present research study, whose
main objective is to carry out an in-depth analysis of the rheological properties of crumb
rubber modified bitumen under real traffic and climate conditions. For this purpose, cores
were extracted at different dates from the surface layers of several highway sections in
Andalusia, Spain. The binder from these cores was then recovered, tested in the laboratory,
and compared to the properties of the same binder prior to production. From the results
obtained in this study, the following conclusions may be drawn:
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For ageing under real service conditions, the three modified binders studied (CRMB,
CRMB (CB) and SBSMB) were found to present an increase in their complex modulus at
all test temperatures studied after in-service ageing, but the CRMB and CRMB (CB) were
found to have an increase in phase angle at high temperatures, which was unexpected
according to previous results obtained at laboratory level. This inferred that the binders
became less elastic in such an environment and that the positive effect of the recycled
polymers added was lost at that temperature since, at lower temperatures, the expected
reduction in their phase angle was found. The SBSMB was not found to have these phase
angle values at high temperatures after ageing on the highway, which demonstrated that
this material had lower susceptibility to harsh traffic and climatic actions.

Despite the different degrees of deterioration found for the three binders subsequent
to testing, they all demonstrated that such differences were minor when their performances
were compared. Thus, by ensuring the high-performance properties of the binders prior to
manufacturing an asphalt mixture, a sufficient indicator may be provided for constructors
and agencies that the binder will have an appropriate long-term performance, regardless of
the harshness of the service conditions.

No significant differences were found between the CRMB and CRMB (CB) after
ageing, which suggested that both binders were similarly affected by the highway service
conditions. In this respect, it may also be concluded that CRMB could offer similar service
conditions to those of SBSMB, despite their elastic performance at higher temperatures.

The results obtained in the present study show that, under real severe traffic and
climate conditions, the crumb rubber modified bitumen presents similar characteristics
subsequent to ageing to those offered by asphalt mixtures manufactured with traditional
SBS modified bitumen. Nonetheless, the time period analysed in this study (63 months)
remains distant from the threshold established for this type of material, and it is therefore
of interest to continue this study into the future.
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