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Abstract: The utilization of vermi-technology to reduce allelopathic effects is a cost-effective, efficient,
and environmentally appropriate alternative to traditional chemical and mechanical methods. The
current investigation was an effort to obtain vermicompost from C. erectus and its binary combination
with soil and farmyard manure (FYM) using E. foetida. The pH, EC, organic carbon, macro and micro-
nutrients, CO2 emission, the average growth rate of the worms, number of worms, number of cocoons,
and weight gained by earthworms were analyzed by standard methods. The present study also
investigated the effect of produced vermicompost on the growth and yield of mung beans (Vigna
radiata L). The maximum reduction in soil pH was observed (6.47) in vermicompost of C. erectus leaves,
among other treatments. The highest N (1.86%), P (0.15%), and K (0.41%) contents were found in the
vermicompost of C. erectus leaves + FYM. Similarly, the maximum plant height (36.00 cm) was achieved
in vermicompost of C. erectus leaves + FYM compared to other treatments. The highest SPAD value
was observed (56.37) when the soil was treated with vermicompost (C. erectus leaves + FYM) @ 5 t ha-1,
followed by the treatment where vermicompost (C. erectus leaves + soil) @ 8 t ha-1 was applied. The
soil amendment of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 showed competitive results (in
terms of the growth and yield parameters of mung beans) compared to other types of vermicompost
and C. erectus biomass. This study has the potential to reduce the phytotoxicity of C. erectus biomass and
transform it into a potent organic fertilizer through vermicomposting.

Keywords: Conocarpus erectus; vermicompost; allelopathy; organic fertilizer; mung bean

1. Introduction

Conocarpus erectus L. is grown in parks, roadsides, and field crops for esthetic value
and the agro-forestry system but causes serious consequences on the environment and
human health. One of the main effects on field crops is allelopathy—a chemical interaction
in which one plant affects the development, growth, reproduction, and survival of adjacent
plants by producing chemical compounds [1]. These chemical compounds (allelochemi-
cals) are secondary metabolites of the acetate metabolic pathway and consist of phenolics;
long-chain fatty acids; alkaloids; and derivatives of flavonoids, organic acids, and quinines.
They may impede germination, respiration, photosynthesis, water relations, growth, and
ion uptake [2]. Moreover, known sites of allelochemicals actions are cell division, photo-
synthesis, specific enzyme function and amino acid metabolism, and iron concentration.
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Thus, allelopathy affects plant invasions and individual performance and reduces plant
performance by 25% [3].

One of the challenges in this field of investigation is reducing allelochemicals in C.
erectus. There is no effective method for reducing its allelopathic potential. The burning of C.
erectus residues pollutes the environment and causes smog formation. Different methods of
reducing the allelopathic effect are used, but vermicomposting seems to be the most feasible
technology [4]. Vermicomposting is a biotechnological method of renovating biological
waste into a nutrient-rich product called vermicast using earthworms. Vermicompost
is peat-like material and has good structure, aeration, porosity, and high-water holding
capacity [5].

Pulses are a chief source of protein and micronutrients such as iron [6], vitamin B, and
several other minerals. Mung beans contain 20.97–31.32% protein [7] which is double the
protein content of maize seeds (7–10%) [8] and is more than root crops [9]. Mung bean
can be grown as a catch crop in the rice-wheat cropping system from April to June due to
its short duration and restorative crops [10]. As it is a legume crop, it fixes atmospheric
nitrogen, improves the fertility of the soil, and needs less irrigation [11]. In Pakistan, mung
bean is grown on 186,700 hectares of land with 132,700 tons of production [12]. However,
the yield potential of mung bean in Pakistan is low due to an imbalance in the plant’s
nutritional plan and loss of organic matter in the soil. The organic matter in soil has
depleted due to the extensive use of synthetic fertilizers that adversely affect the soil’s
physical and chemical properties. Pakistani soils are deficient in organic matter, containing
less than 1%. For the conservation of soil productivity, at least 2% organic matter is essential.
Therefore, it is imperative to add soil organic amendments to restore organic matter loss in
soil [13]. Among different organic amendments, vermicompost is the best organic fertilizer
as it is free from any pathogens and is a source of nutrients such as nitrates, phosphates,
exchangeable calcium, and soluble potassium [14]. Keeping in view the above scenarios,
there is currently limited information regarding the reduction in the allelopathic potential
of Conocarpus erectus L. through vermicomposting. The objectives of our study were (1)
the reduction in the allelopathic C. erectus L. into nutrient-rich organic fertilizer and (2) the
assessment of the influence of different rates and sources of vermicompost on mung bean
growth and yield. This study can help to reduce the dependency on chemical fertilizers
and take a step towards sustainable agriculture.

2. Materials and Methods
2.1. Experiment with C. erectus Vermicomposting Process

The treatments in this experiment were completed in vermicomposting pots of
35 cm × 15 cm at plant & microbial ecology lab, Department of Agronomy, University of
Agriculture, Faisalabad (UAF). The leaves of C. erectus and farmyard manure were collected
from the student research farm UAF and then shade-dried for 7 days. Then, these leaves
were crushed into small pieces in a crusher at Biogas Plant, UAF. The crushed materials
were kept for pre-composting in three pots, one pot for pure crushed leaves, and the remain-
ing pots were filled with a mixture of crushed leaves with FYM and soil with a 50:50 ratio,
respectively, for 20 days. CO2 production in pre-composted material was calculated before
the transfer of earthworms. After pre-composting of material, 40 earthworms (Esenia fetida)
were placed into each of the three pots for 45 days, and moisture content was maintained at
65–70%. After 45 days, sieving was performed to separate vermicompost and earthworms
from non-casted material. Newly prepared vermicompost was packed into zipper bags
after shade-drying.

2.2. Physico-Chemical Analysis

The shade-dried vermicompost samples were physico-chemically analyzed. Total
phenolic contents in vermicompost’s extract were calculated using the Folin–Ciocalteu
method [15]. A total of 100 g of pre-composting material was placed in a gas jar and was
tightly locked and kept for 24 h; after, CO2 gas was calculated using a Servomex 570A
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oxygen analyzer and Servomex PA 404 gas analyzer (Servomex Company, Crowborough,
Sussex, England) according to method described previously [16]. pH was calculated using
a pH meter, and electrical conductivity (EC) was calculated with the help of a conductivity
meter [17]. Nitrogen contents were measured using a Micro-Kjeldahl apparatus; phospho-
rus contents were measured using a spectrophotometer; and moisture, protein, and ash
contents were measured using near-infrared spectroscopy (NIRS). Iron (Fe) and Zinc (Zn)
in vermicompost samples were calculated using an Atomic Absorption Spectrophotometer
(Hitachi Polarized Zeeman AAS, Z-8200, Japan).

2.3. Experiment to Assess the Effect of Soil Amendments of Vermicompost on Mung Bean

A pot experiment was conducted on mung bean (Vigna radiata L.) in open-field condi-
tions at Student Research Farm, University of Agriculture, Faisalabad (UAF) during the
summer of 2019. Soil used for the experiment was loam and collected at a 0–30 cm depth
from the farm site. Soil has pH value of 8.3, electrical conductivity of 1.42 dSm−1, nitrogen
content of 0.045%, phosphorus content of 5.9 ppm, potassium content of 140 ppm, and
organic matter content of 0.91%. The experiment was laid out in a completely randomized
design (CRD) with seven treatments with three replicates, and the soil was clay loam. The
applied treatments were T0 = Control; T1 = Vermicompost (C. erectus leaves) @ 5 t ha−1;
T2 = Vermicompost (C. erectus leaves) @ 8 t ha−1; T3 = Vermicompost (C. erectus leaves +
soil in 50:50 ratio) @ 5 t ha−1; T4 = Vermicompost (C. erectus leaves + soil in 50:50 ratio)
@ 8 t ha−1; T5 = Vermicompost (C. erectus leaves + FYM in 50:50 ratio) @ 5 t ha−1; and
T6 = Vermicompost (C. erectus leaves + FYM in 50:50 ratio) @ 8 t ha−1. Vermicompost was
derived from different combinations of C. erectus leaves with soil and FYM. Then, this
vermicompost was added to the pots containing 8 kg soil @ 5 t ha−1 and 8 t ha−1. PRI
MUNG-2018 cultivar seed was purchased from Ayub Agriculture Research Institute (ARRI)
Faisalabad, and sowing was completed. The manual weeding and optimum soil moisture
of experimental pots were maintained throughout the experiment.

2.4. Biological Analysis

A total of 40 earthworms were added to different composting materials of C. erectus
leaves. Number of earthworms and number of cocoons after vermicomposting of C. erectus
leaves was calculated manually, whereas the weight of earthworms was measured by
electric weight balance.

2.5. Plant Analysis to Observe the Effects of Soil Amendments of Vermicompost on Mung Bean Growth

Mung bean plants were harvested at maturity, and biochemical parameters of mung
bean leaves for chlorophyll contents were measured at the flowering stage of the plant using
a chlorophyll meter (SPAD-502). Agronomic characteristics of mung bean for emergence
count per pot, plant height at harvest (cm), number of branches per plant, number of pods
per plant, length of pods (cm), total grains per pod, 100-grain weight (g), nodules per plant,
economic yield (kg/ha), biological yield (kg ha−1), and root length (cm) at maturity were
also measured.

2.6. Statistical Analysis

The experimental data were observed statistically using Fisher’s analysis of variance
technique. The least significant difference (LSD) test was used (p < 0.05) to compare
significant treatment means. STATISTICA 8.0 was used to perform statistical analysis.

3. Results

The physico-chemical properties of different vermicomposts and control are presented
in Table 1. The pH value of vermicompost of C. erectus leaves slightly decreased compared
to the pH of C. erectus leaves. The EC values differ significantly (p < 0.05) in the case of
C. erectus leaves and vermicompost of C. erectus leaves + FYM. Total organic carbon contents
in all types of vermicomposts were reduced greatly compared to C. erectus leaves’ biomass.
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Table 1. Effect of vermicomposting on physico-chemical properties of C. erectus leaves with different
combinations of FYM and soil. Values not marked with the same letter are significantly different at
p < 0.05.

Parameters C. erectus Leaves Vermicompost of
C. erectus Leaves

Vermicompost of
C. erectus Leaves +

Soil

Vermicompost of
C. erectus Leaves +

FYM
LSD (p < 0.05)

pH 6.85 A 6.47 C 6.56 BC 6.69 B 0.13

EC 4.32 C 6.27 B 6.95 AB 7.54 A 0.16

Total organic
carbon (%) 39.23 A 24.48 B 21.36 C 16.75 D 1.92

Nitrogen (%) 1.35 D 1.64 B 1.56 C 1.86 A 0.06

Phosphorus (%) 0.01 C 0.06 B 0.07 B 0.15 A 0.01

Potassium (%) 0.26 C 0.40 A 0.29 B 0.41 A 0.01

Zinc (ppm) 21.50 D 35.80 B 30.00 C 39.4 A 1.12

Iron (ppm) 935.00 B 1582.00 A 1604.00 A 1572.00 A 36.98

Copper (ppm) 5.46 D 11.60 C 16.42 B 19.46 A 0.19

Calcium (ppm) 1918.20 D 1981.50 C 2223.50 B 4085.80 A 50.235

The nitrogen (N), phosphorus (P), and potassium (K) contents vary significantly
(p < 0.05) in all treatments of vermicompost and plant biomass. However, the highest
N, P, and K contents were found in the vermicompost of C. erectus leaves + FYM. This
is because the nutrient contents in the final vermicompost depend on the initial nutrient
status of the biomass. Zinc, copper, and calcium contents were significantly higher in
vermicompost of C. erectus leaves + FYM compared to other vermicomposts and plant
biomasses. Meanwhile, the iron content was found to be higher in the vermicompost of C.
erectus leaves + soil. Vermicomposting of C. erectus leaves reduced the phenolic contents in
all types of vermicompost compared to plant biomass. However, a higher reduction (31%)
in phenolic contents was observed in the vermicompost of C. erectus leaves. CO2 is one of
the main gases that are released during the composting of organic wastes. The dynamics of
CO2 released during the pre-composting of C. erectus leaves are shown in Figure 1.
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3.1. Effect of Vermicompost Treatments on Growth and Yield Parameters of Mung Bean

The effect of different treatments of vermicompost on the emergence count per pot,
plant height, number of pods per plant, pod length, grains per pod, nodules per plant,
root length, chlorophyll contents, 100-grain weight, biological yield, and economic yield
is recorded in Figure 2. The results showed that all yield-promoted parameters were
significantly influenced by the application of vermicompost. The highest emergence count
(96.66%) was detected in T5, where vermicompost (C. erectus leaves + FYM) was applied
at 5 t ha−1, followed by T6 (90.00%), where it was applied at 8 t ha−1, compared to the
control treatment (78.33%), where no vermicompost was applied. Maximum plant height
(36.00 cm) was achieved in T5 compared to T6 and T3 treatments.
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The average number of branches per plant was increased up to 30% and 18% with
the application of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 and vermicompost
(C. erectus leaves + soil) @ 8 t ha−1, respectively, compared to control treatment. The
nodules per plant and root length of mung bean were observed to be 40% and 42% more in
vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 compared to the control. The fastest
method to estimate the chlorophyll content is the use of a chlorophyll meter (SPAD-502).
The SPAD value of all the treatments ranged between 48.21 and 56.37, and the highest value
was obtained in the treatment with vermicompost (C. erectus leaves + FYM) @ 5 t ha−1,
followed by the treatment where vermicompost (C. erectus leaves + soil) @ 8 t ha−1 was
applied (Figure 2).

The yield-contributing parameters of mung bean differ significantly among all ver-
micompost treatments, as shown in Figure 3. The number of pods per plant increased
up to 40% with soil amendment of vermicompost (C. erectus leaves + FYM) @ 5 t ha-1 in
comparison with the control treatment. The application of vermicompost (C. erectus leaves
+ FYM) @ 5 t ha−1 enhanced the pod length (29%), grains per pod (28%), and 100-grain
weight (22%) of mung bean in contrast to no application of vermicompost. The economical
and biological yield of mung beans was boosted to 59% and 34% with the application of
vermicompost (C. erectus leaves + FYM) @ 5 t ha−1, respectively.

The average number of branches per plant increased to 30% and 18% with the application
of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 and vermicompost (C. erectus leaves
+ soil) @ 8 t ha−1, respectively, compared to the control treatment. The nodules per plant
and root length of mung bean were observed to be 40% and 42% more in vermicompost
(C. erectus leaves + FYM) @ 5 t ha−1 compared to the control. The fastest method to estimate
the chlorophyll content is the use of a chlorophyll meter (SPAD-502). The SPAD value of all
the treatments ranged between 48.21 and 56.37, and the highest value was obtained in the
treatment with vermicompost (C. erectus leaves + FYM) @ 5 t ha−1, followed by the treatment
where vermicompost (C. erectus leaves + soil) @ 8 t ha-1 was applied (Figure 2).

The yield-contributing parameters of mung bean differ significantly among all vermicom-
post treatments, as shown in Figure 3. The number of pods per plant increased to 40% with soil
amendment of vermicompost (C. erectus leaves + FYM) @ 5 t ha-1 in comparison with the control
treatment. The application of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 enhanced
the pod length (29%), grains per pod (28%), and 100-grain weight (22%) of mung beans in
contrast to no application of vermicompost. The economical and biological yield of mung
beans were boosted up to 59% and 34% by the application of vermicompost (C. erectus
leaves + FYM) @ 5 t ha−1, respectively.

3.2. Effect of Vermicomposting of C. erectus Leaves on Earthworms

No earthworm mortality was observed during the composting process of C. erectus
leaves with a different combination of FYM and soil. However, the number of earthworms
increased with vermicomposting. However, during the harvesting of vermicompost, the
number of cocoons increased. The highest number of earthworms, number of cocoons,
average weight of earthworms, and growth rate of the worms significantly increased during
the vermicomposting of C. erectus leaves + FYM, as shown in Table 2.

Table 2. Effect of vermicomposting of C. erectus leaves with different combinations of FYM and soil on
earthworms population. Values not marked with the same letter are significantly different at p < 0.05.

Substrate Number of
Earthworms Number of Cocoons Average Weight of

Earthworm (mg)

Growth
Rate/Worm/Day

(mg)

C. erectus leaves 43.00 B 12.00 B 686.67 B 7.11 B

C. erectus leaves +
soil 47.33 AB 16.00 AB 836.67 AB 9.33 A

C. erectus leaves +
FYM 55.00 A 23.00 A 940.00 A 11.11 A

LSD (p < 0.05) 10.33 9.98 198.34 1.99
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4. Discussion

Allelopathy in agriculture has a detrimental effect on the target plant, soil, microbe,
and environment. Allelochemicals can trigger soil sickness and auto-toxicity and have a
negative impact on crop growth [18]. A plant with phenolic contents has phytotoxicity
toward specific plant species and the environment [19]. The results of the present studies
unveiled that C. erectus residues are rich in phenolic compounds, which indicates their
allelopathic potential against crop plants. The vermicomposting of different combina-
tions of C. erectus leaves with FYM and soil significantly reduced the phenolic contents of
C. erectus leaves. The highest reduction in phenolic contents was observed in vermicompost
of C. erectus leaves with FYM, as FYM acts as a buffer to allelochemicals [20]. Our results are
supported by [21,22], who conducted several experiments on the reduction in allelopathy
of Parthenium hysterophorus L. by vermicomposting. There was also an improvement in the
average weight of worms, number of earthworms, number of cocoons, and growth rate
of earthworms in different combinations of C. erectus leaves with FYM and soil. However,
the highest earthworm growth parameters were observed in C. erectus leaves and FYM
composting material. Different factors are important to earthworm growth and reproduc-
tion, but the type of composting material plays a significant role in earthworm growth and
reproduction [23]. No earthworm mortality was observed during the vermicomposting of
C. erectus leaves. The death of earthworms is the result of an anaerobic condition developed
after two weeks of the vermicomposting process of waste material [24]. In our experiment,
all the vermicomposting material was pre-composted before the addition of earthworms
into the material. Therefore, all the toxic gases produced were released from the material
during the pre-composting of C. erectus leaves. Consequently, pre-composting is considered
the best practice to avoid earthworm mortality. The growth rate is used as a comparative
index of worms to compare their growth in different wastes. The highest growth rate was
observed in C. erectus leaves + FYM material compared to C. erectus leaves and C. erectus
leaves + soil material (Table 2).

CO2 is one of the main gases produced during the composting of C. erectus leaves
and its mixture with soil and FYM. The release of CO2 depends on the temperature of
composting material. More CO2 emission was observed in the initial stage of composting,
characterized by higher temperatures and intensive biodegradation of waste material.

During vermicomposting, there was a significant increase in biochemical characteris-
tics such as N, P, K, Zn, Fe, and other micronutrients in the final vermicompost compared
to the starting feed material. The increase in nitrogen contents of vermicompost is due
to the mineralization of C. erectus biomass and earthworms stabilizing nitrogen, excreta,
enzyme, mucus, and other enzymes [25,26]. The increased phosphorus contents in the
final vermicompost is due to the role of phosphorus-solubilizing bacteria in the earthworm
gut [27]. Total potassium increased in all types of vermicompost compared to C. erectus
biomass. However, total potassium increased by 37% in C. erectus leaves + FYM vermicom-
post in comparison with uncomposted material. Our findings are supported by [28], who
reported that the total potassium increased 7–10% percent during vermicomposting. This
increase in potassium contents is due to speedy mineralization by microbial action [29].
Zinc, iron, copper, and calcium content was lowered in fresh C. erectus leaves compared
to vermicomposted C. erectus leaves with soil and FYM combinations, and these findings
agreed with the studies of [30]. The decrease in pH of vermicompost might be due to
microbial activity and the elimination of volatile ammonia during vermicomposting. The
EC of vermicompost increased compared to C. erectus leaves. The increase in EC might
be due to organic matter loss and the release of mineral salts in available forms, such as
ammonium, phosphate, and potassium [31].

In the present study, the highest emergence count (96.66%) was detected in
vermicompost-treated plants, as vermicompost is rich in organic chemicals and is possible
to contain compounds that boost germination [32]. Maximum plant height (36.00 cm)
was gained in T5, where vermicompost (C. erectus leaves + FYM) was applied at 5 t ha−1.
These findings were supported by [33], who described that plant height boosted with



Sustainability 2022, 14, 12840 9 of 11

vermicompost amendment in soil. Vermicompost holds a combination of macro and micro-
nutrients, and the uptake of these nutrients has a positive effect on nutrition, plant growth,
chlorophyll contents, and the photosynthesis of leaves [34]. The authors of [35] detected
that the biomass and plant height of sorghum were significantly higher with the application
of earthworm casts and soil mixture. The maximum number of pods (22.66) were recorded
with vermicompost (C. erectus leaves + FYM) @ 5 t ha−1. The authors of [36] described that
the use of humic substance and phosphorus increased the number of flowers and pods per
plant compared to the control. Our findings are in harmony with [37], who noted that the
highest pod length of bush bean, long, and winged bean—10.75 cm, 30 cm, and 22.27 cm,
respectively—were found in treatment with vermicompost applied compared to the control.
The data on the number of grains per pod of mung bean as influenced by vermicompost
prepared using different ratios of conocarpus leaves, soil, and FYM and applied at 5 t ha-1
and 8 t ha−1 are shown in Figure 3. The authors of [38] recorded the highest number of
grains per pod from a combination of MoP @ 20 kg ha−1 and vermicompost @ 8 t ha−1.

Leguminous crops, such as mung beans, have root nodules that serve as a home for
rhizobia (nitrogen-fixing bacteria). The maximum number of nodules (29.00) was shown
where vermicompost (C. erectus leaves + FYM) was applied @ 5 t ha−1, and these findings
are supported by [39,40]. The application of vermicompost (C. erectus leaves + FYM)
proliferates the root length and chlorophyll contents of mung beans. This might be due to
the beneficial effect of vermicompost in root proliferation with higher carbon content [41].
The improvement in chlorophyll content with the application of vermicompost was also
detected by [42]. In the present experiment, vermicompost affected the 100-grain weight
of mung bean, and statistically, the results were highly significant. These findings are in
parallel to the results of [43] in mung beans and [44] in groundnuts. The authors of [45]
reported that soil amendment of vermicompost @ 7.5 t ha−1 increased the dry matter,
plant height, dry weight of root nodules, chlorophyll contents, and biological yield of
mung beans. Data related to the economic yield of mung beans at harvest are described
in Figure 3. These results are supported by Rajkhowa et al. (2000), who disclosed that the
grain yield was highly significant in crops receiving vermicompost @ 5t ha−1 + NPK at the
recommended dose compared to treatment receiving NPK alone. The current experiment
demonstrated that vermicomposting reduced the allelochemicals and converted C. erectus
leaves into benign fertilizer. The positive outcomes of this study may be used to reduce the
allelopathic effect of different crop residues and the production of organic fertilizer.

5. Conclusions

The present study shows that the allelochemicals in C. erectus leaves are reduced
through the vermicomposting process. The highest reduction (31%) in allelochemicals is
found with the vermicomposting of C. erectus leaves + FYM. However, the soil amendment
of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 produced competitive results (in terms
of growth and yield parameters of mung bean) compared to other types of vermicompost.
Thus, vermicomposting can be a fit method for reducing the allelopathic effect of C. erectus
leaves, and non-toxic fertilizer is obtained.

6. Future Prospective

The results of the current study lay the foundation for future research examining
the potential use of vermicomposting to reduce the allelopathic effect of different crops.
More research into the large-scale use of these vermicomposts and their impacts on crop
development and production is recommended.
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