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Abstract: Barite and hematite are the most common heavy-weight minerals applied as aggregates in
radiation shielding concrete (RSC). Therefore, to limit the cement consumption and reduce the CO2

emissions accompanying its production, the aim of this study is to use Egyptian barite and hematite
minerals in their native status and evaluate their attenuation efficiency against fast neutrons and
γ-rays. This was implemented through the measurement of their radiation attenuation against fast
neutrons and γ-rays in the energy ranges of 0.80–11 and 0.40–8.30 MeV, respectively, employing a
Pu-Be source and a stilbene scintillator. Theoretical calculations were prepared using the NXcom
program to validate the fast neutron attenuation measurements. Furthermore, the implications of
the physical, mineralogical, geochemical, and morphological characteristics of these heavy-weight
minerals with respect to their attenuation efficiencies were considered. We found that barite has
superior radiation attenuation efficiency for fast neutrons and γ-rays compared to hematite by 9.17
and 51% for fast neutrons and γ-rays, respectively. This was ascribed to the superior physical,
mineralogical, geochemical, and morphological properties of the former relative to those of the latter.
Furthermore, a satisfactory agreement between the experimental and theoretical results was achieved,
with a deviation of 16 and 19.25% for the barite and hematite samples, respectively. Eventually, barite
and hematite can be successful candidates for their use as sustainable alternatives to common RSC.

Keywords: barite; hematite; radiation attenuation; fast neutrons; gamma rays; NXcom

1. Introduction

In light of the growing concerns about the development of electricity-generating
technologies free of CO2 footprints and other greenhouse gas emissions, many countries
have resorted to nuclear reactor technology [1]. This technology has the potential for
extensive and clean energy production. However, this type of technology is associated
with a dilemma in terms of the hazardous radiation leakage from the nuclear reactors.
Applied mineralogy is one of the essential branches of geology which investigates the
use of minerals in radiation attenuation applications. One of these applications is the
use of minerals as barriers to attenuate the radiation or restrain the radioactive waste
resulting from nuclear reactors or radiotherapy centers [2,3]. Such radioactive waste is
associated with the dual problems of disposal and health hazards due to the release of
ionizing radiation, including neutrons, and γ-rays [4]. Such radiation can cause genetic
damage, developmental irregularities, malignancies, and decreased fertility and fitness [5].
In recent decades, nuclear physicists, engineers, and geologists have developed many
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minerals and rock-forming materials to attenuate such radiation. These materials are
widely used as aggregates or as additives incorporated into concrete, mortar, glass, and
polymers [6–23]. Although concrete is the most prevalent material used to mitigate natural
disasters [24] and man-made radiation leakages, a recent trend has occurred with respect
to the exploitation of such minerals as native materials (in their original state, without their
embedding as aggregates or additives in concrete, composites, or polymers), replacing
concrete and cement pastes [25]. The most common types of these natural materials are
serpentine minerals [26], halloysite [27,28], barite [29,30], chambersite [31], magnetite,
limonite, hematite [30], granite [32,33], serpentinite rocks [34], garnet [35], and quartz [36].
The purposes of this trend are to (1) decrease the pollution resulting from the use of cement
as a result of the use of concrete, (2) reduce the energy and costs stemming from the cement
industry, (3) exploit the massive reserves of these minerals, which have no benefit to be
used as nuclear waste landfills, (4) exploit additional space using thinner shielding walls,
and (5) reduce the amount of maintenance that is needed compared to that which is needed
for concrete. In particular, barite and hematite are the most effective and widely employed
materials for radiation attenuation [17,37,38], owing to their high density, which qualifies
them to be the best types of γ-ray−shielding materials. Additionally, they can effectively
attenuate fast neutrons by moderation through inelastic collisions of fast neutrons with
the heavy nuclei of barium (Ba) and iron (Fe) in barite and hematite, respectively [38,39].
Akkurt et al. [29] experimentally measured the γ-attenuation of barite using 137Cs and 60Co
at 0.662 and 1.330 MeV, respectively. They found that there was an agreement between
these experimental results when they were correlated with the calculated results obtained
by XCOM [29]. Moreover, Oto et al. [30] measured different γ-ray shielding parameters of
barite and hematite minerals at 0.081, 0.276, 0.302, 0.356, and 0.383 MeV photons emitted
from 133Ba and 0.121, 0.244, 0.344, 0.444, and 0.778 MeV photons emitted from 152Eu
using an HPGe detector. They found that the barite and hematite minerals effectively
attenuated the γ-rays with a superior competence for the former ones. To the best of our
knowledge, the earlier studies [29,30] are the only ones focused on the ability of barite and
hematite minerals in their native state to achieve γ-ray attenuation only. However, there
are no reports on the effect of the geological features (e.g., mineralogical and geochemical
compositions), on the radiation shielding properties of these minerals (i.e., barite and
hematite), or on their radiation attenuation ability. Furthermore, their attenuation against
fast neutrons has not been discussed to date.

The Baharia Oases were mined for barite and hematite minerals formed as a result of
hydrothermal solutions during the Middle Eocene [40]. The reserves of the two minerals
have not been recently exploited in the Baharia Oases; however, the quantity of iron ore, the
main hematite, amounted to about 270 million metric tons [41]. Therefore, the hematite of
the Baharia Oases was the primary feedstock of steel production by the Egyptian Iron and
Steel Company (EISC) in Helwan. Nevertheless, the processes of prospecting and mining
hematite were stopped, and millions of tons of hematite ore were no longer exploited,
particularly after the governmental decision to liquidate EISC in January 2021 due to the
costly maintenance and operation processes. Therefore, these reserves of minerals can
be harnessed as a permanent underground repository for radioactive waste or as tiles
to line the walls of radiotherapy facilities or nuclear reactors. Hence, this study is ded-
icated to investigating the attenuation properties of hematite and barite in the Baharia
Oases in the Western Desert, Egypt, against γ-rays and fast neutrons, focusing on the
role of their physical, mineralogical, geochemical, and morphological properties. To this
end, we investigated: (1) their physical properties by density and water absorption tests;
(2) their mineralogy using X-ray diffraction (XRD), transmitted-light microscopy (TLM),
and reflected-light microscopy (RLM); (3) their geochemistry by X-ray fluorescence (XRF);
(4) their morphology by scanning electron microscopy (SEM); (5) their radiation attenua-
tion measurements employing a Pu-Be source and a stilbene detector; (6) the theoretical
calculations of fast neutron attenuation using NXcom; (7) a comparison of the addressed
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samples with the previously studied concrete mixes, which have the same conditions of
radiation attenuation measurement.

2. Geologic Description of Materials
2.1. Lithology and Stratigraphy

Many previous studies investigated the geological aspects of the iron ores and barite
mineralization in detail, including their lithology, outcrops, and stratigraphy [40,42–48].

Generally, the Baharia Oasis is a large depression in the Western Desert of Egypt. It is
located about 270 km southwest of Cairo and 180 km west of the Nile Valley. The outcrop
succession of the area is subdivided from the bottom to the top into the lower Cenomanian
Baharia Formation, the upper Cenomanian El Heiz Formation, the Campanian El Hufuf
Formation, and the Maastrichtian Khoman Chalk Formation. The upper Cretaceous forma-
tions are unconformably overlain by the Eocene Naqb, Qazzun, and El Hamra formations.
The iron ore deposits are located in the northern part, and they extend over 11.70 km2 with
a thickness ranging from 2–35 m. In that area, the iron ore is restricted to the lower portion
of the Middle Eocene limestone of the Naqb Formation. The Naqb Formation consists
of hard yellow-brown limestone that is intercalated with marl. As shown in Figure 1,
the iron ores are concentrated in three regions, including the Ghorabi, El Harra, and El
Gedida [42,49]. The current study focuses on the iron ore of El Gedida due to its high grade
and amount of reserves. El Gedida mine is situated within the Naqb Formation hills. The
central part of the depression is characterized by a high relief surrounded by the low Wadi
area, which comprises the Cenomanian sandstone and clayey sandstone of the Baharia
Formation at the base, which is overstepped by the main Lutetian iron ore successions of
the Naqb-Qazzun Sequence. The Eocene ironstones are unconformably overlain by the
upper Eocene glauconitic clay beds [48]. In the Eastern and Western Wadi areas of the
depression, the iron ores are truncated unconformably by Late Eocene (Lutetian–Bartonian)
glauconite with lateritic iron ore interbeds of the Hamra Formation [50]. El Aref et al. [50]
found that this iron ore sequence is composed of a pisolitic-oolitic ironstone unit which
is followed by bedded iron ores intercalated with ferruginous mudstones (Figure 2a). As
reported previously by Baioumy et al. [49], the iron ore of the Baharia Oases is mainly
composed of hematite and goethite ores.
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Figure 2. Stratigraphic sections showing the lithology of the iron ores with positions of barite
mineralizations along: (a) the Eastern Wadi of El Gedida mine area and (b) the Ghorabi mine area.
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On the other hand, the investigated barite samples were collected from the Ghorabi
area, which is characterized by several small, rounded hills that reach 15 m in the large
hills and 6 m in the small ones. Barite was recorded as a predominant mineral in the
Ghorabi area [47]. In the Ghorabi iron ore deposits, the barite was found at the bottom of
the iron deposits, which was mixed in some parts with the iron ore bed. It is supposed that
the hydrothermal fluids are responsible for depositing the barite [47]. Baioumy et al. [49]
found that the barite was formed in many stratigraphic levels of the ironstone sequences
in the shape of stratabound to stratiform barite and as rosettes at the contact between the
underlying Baharia Formation and the Middle Eocene ironstone sequences (Figure 2b).
Stratiform barite nodules are hosted in the organic-rich green mudstone facies at the bottom
of the upper ironstone sequence of the Gabal Ghorabi mine area [51]. As in the El Gedida
mine, the main barite deposits are the stratabound karst-related deposits in the Ghorabi
mine. They form cavities and fractures, filling the barite pockets and masses. It was found
that the secondary enrichment during dissolution and reprecipitation within solution
cavities and fractures is responsible for the formation of the stratabound karst-related
barite deposits.

2.2. Megascopic Characterization

Field geology is one of the most fundamental means by which geologists can dis-
criminate between various minerals and rocks. This type of characterization requires
experience-based knowledge. In this study, by the visual inspection aided by a hand lens,
the samples were identified at first sight through their colors, weathering, or physical
properties [52].

During the field inspection, barite was detected by its pale brown-yellow color with
a glassy luster and a heavy specific gravity (Figure 3a). On the other hand, hematite has
different varieties of red colors, including scarlet or dark red, with an earthy feel and a
heavy specific gravity (Figure 3b). Besides its earthy luster, the hematite sample has the
distinguishing property of its color sticking to the hand.
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3. Materials and Methods
3.1. Materials

As shown in Figure 1, the location map illustrates the Ghorabi and El Gedida mines in
the Baharia Oases in the Western Desert, where the representative samples of barite and
hematite were collected, respectively.

3.2. Material Preparation

The barite and hematite samples were washed, and then dried to dispose of the
harmful materials. Then, each mineral was cut into six blocks with thicknesses of 2, 4, 6, 8,
10, and 12 cm using a chop saw. After cutting them, the blocks were smoothed and flattened
to guarantee the cohesion of the blocks without any gaps when they were collected.

3.3. Material Characterization
3.3.1. Mineralogical Characterization

The mineralogical description is essential not only for petrographic classification
but also to accentuate the features influencing the physical, chemical, and mechanical
behavior of the natural samples [53]. X-ray diffraction (XRD), transmitted-light microscopy
(TLM), and reflected-light microscopy (RLM) are the most common techniques used to
describe the mineralogical composition of mineral samples. Unlike TLM, RLM is specified
to characterize the non-transmitted minerals known as ores. The samples were pulverized
and sieved using a 230 mesh (63 µm) sieve before being measured using a Philips X-ray
diffractometer (XRD, Mod. PW 139) with Ni-filtered Cu-Kα radiation. The XRD patterns
were obtained between 4 and 70◦ 2θ with a step size of 0.020◦ within a step time of 0.4 s.
According to BS EN 12407:2007 [53], thin and polished sections of minerals were prepared
to be examined by TLM and RLM using a digital camera, respectively.

3.3.2. Morphological Characterization

The powdered samples (<63 µm) were dried at 60 ◦C, and then, they were coated
with platinum under vacuum for their examination by scanning electron microscopy (SEM,
Beam energy: 20–30 kV, JSM-6700F, JEOL Ltd., Tokyo, Japan) with secondary electron (SE)
imaging to identify the morphology and grain shape of the minerals visually.

3.3.3. Physical and Mechanical Characterization

In terms of the physical properties, the addressed minerals were considered to be
dimension stones as they were fabricated in specific sizes or shapes [54]. Moreover, density
and water absorption are the most significant physical properties, which characterize these
types of samples as a measure of their specific gravity and porosity, respectively. Therefore,
the density and water absorption were measured in compliance with ASTM C97 [55].
The Brunauer–Emmett–Teller (BET) method was applied to detect the surface area of the
samples using the N2-adsorption–desorption isotherm (BET), which was determined using
a BET Multi-point (St 2 on NOVA touch 4LX (s/n:17016062702), Quantachrome Instruments,
Boynton Beach, FL, USA) [56]. Relating to the mechanical properties of the samples, they
were evaluated by measuring both the crushing and impact values following BS 812-110
and BS 812-112 [57,58], respectively.

3.3.4. Geochemical Characterization

According to ASTM E1621 and D7348 [59,60], an Axios Sequential Wavelength Dis-
persive X-Ray Fluorescence (WDXRF) Spectrometer (Mod. Connolly, 2005/PANalytical,
Almelo, The Netherlands) was employed to describe the geochemical features of the sam-
ples (<63 µm) as this is one of the essential parameters controlling radiation attenuation [61].
Additionally, XRF provides the elemental composition that is necessary as an input file in
the theoretical calculations by the NXcom program.
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3.4. Radiation Attenuation
3.4.1. Radiation Measurements

The radiation measurements were performed at the Nuclear Research Center (Egyptian
Atomic Energy Authority). The mineral blocks were irradiated by a collimated beam
emitted by PuBe (with activity of 185 GBq) based on a fine beam geometry setup, which
was conducted to evaluate their shielding capacity against fast neutrons and γ-rays. A
stilbene organic scintillator with the dimensions of 40 mm (diameter) × 40 mm (thick) with
a 6 mm slit was used to detect the transmitted radiation beam behind the samples. As
shown in Figure 4, the source was set at a distance of 400 mm from the detector. To protect
the detector from the background radiation, the detector was enclosed by a lead shield,
and the experiment set-up was positioned in the middle of the room. In all of the radiation
measurements, the mineral blocks were positioned 50 mm away from the PuBe source
(Figure 4). To obtain the needed thicknesses, some blocks were experimented on alone (e.g.,
20, 40, and 60 mm) or together (e.g., 80 and 100 mm). The assembled blocks were flattened
to avert cavities or gaps, which would worsen the shielding effectiveness.
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Through the anticoincidence mode with a zero cross-over method, a pulse shape
discrimination (PSD) was conducted to process the recoil protons and electrons when the
neutrons and γ-rays interacted with the scintillator, respectively [62]. So, neutrons and
γ-rays can be differentiated [63]. The γ-ray spectra at 4.43 and 3.92 MeV produced from
PuBe as well as those at 0.661 and 1.332 MeV from 137Cs and 60Co, respectively, were
employed to calibrate the stilbene detector. The working energy ranges of the PuBe source
for the fast neutrons and γ-rays were 0.8–11 and 0.4–8.3 MeV, respectively. The counting
time was adjusted to maintain statistical uncertainty. A digital counter was accompanied
by a high operating voltage of −1900 V to detect the energy instabilities of the radiation
source. As shown in Figure 5, the planning arrangement of the experiment included the
electronic devices of the neutron–gamma spectrometer with the dynode collections of the
photomultiplier tube.
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Figure 5. A block diagram of the experimental design showing the electronic device of a fast neutron–
gamma spectrometer with dynode collections of the photomultiplier tube.

Table 1 lists Equations (1)–(4) which were applied to determine the necessary pa-
rameters for assessing the radiation attenuation efficiency against the fast neutrons and
γ-rays. The propagated statistical uncertainties were evaluated to be under 10% using
Equations (5) and (6).
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Table 1. Equations employed to determine the different attenuation parameters of fast neutrons and
γ-rays, as well as uncertainty propagation equations.

No. Parameter Symbol Unit Description Equation Abbreviations

1

Effective
Macroscopic

removal
cross-section of

fast neutrons

ΣR cm−1
Probability of fast neutron to undergo a first

collision removing it from the group of
penetrating, uncollided neutrons

N = Noe−ΣR x (1)

N0 and N are incident
and transmitted

intensities for fast
neutrons, respectively,

within the energy
range of 0.8–11 MeV;

x: sample thickness in
cm.

2
Linear

attenuation
coefficient of

γ-rays
µ cm−1 Fraction of attenuated incident photons per

unit thickness of a material I = I0e−µx (2)

I0 and I are incident
and transmitted

intensities for total
γ-rays, respectively,
within the energy

range of 0.4–8.3 MeV

3 Mean free path MFP cm Average distance between the two successive
interactions MFP = 1/ΣR, 1/µ (3)

4 Half value layer HVL cm Thickness reducing the radiation intensity to
half

HVL = ln 2/ΣR, ln
2/µ (4)

5
Uncertainty
propagation

equations

∆(µ) = 1
x

√(
∆Io
Io

)2
+
( ∆I

I

)2
+
(

ln Io
I

)2
[(

∆ρ
ρ

)2
+
( ∆x

x

)2
]

(5)

ρ: sample density

6 ∆(ΣR) =
1
x

√(
∆No
No

)2
+
( ∆N

N

)2
+
(

ln No
N

)2
[(

∆ρ
ρ

)2
+
( ∆x

x

)2
]

(6)

3.4.2. Theoretical Calculations (NXcom)

The NXcom program was applied in this study, using the elemental compositions and
density values as an input file to calculate the fast removal cross-section (ΣR) of the ad-
dressed shield material [64]. NXcom is a computational program developed by El-Khayatt
to calculate ΣR based on the “Mixture Rule” according to the following equation [65]:

ΣR = ∑
i

wi(ΣR)i

where wi and (ΣR)i are related to the fractional weight and the fast neutron macroscopic
removal cross-section of the ith element constituting the samples, respectively.

4. Results and Discussion
4.1. Mineralogical Characterization

The XRD analyses, supported by the 2θ values of each peak position, show that the
barite and hematite minerals are the main constituents of the two samples (Figure 6).
Insignificant appearances of calcite, hematite, and quartz minerals are present in the barite
sample, while insignificant amounts of alunite, goethite, quartz, and barite are associated
with hematite sample. Figure 7 illustrates the different photomicrographs taken when we
conducted optical microscopy in two examination positions, plane-polarized light (PPL)
and crossed-polarized light (CPL), confirming the mineral association of XRD. As for the
microscopic examination of the barite sample, euhedral and clear crystals of barite are
present with some fracture-filling Fe oxides (i.e., hematite), as illustrated in Figure 7a,b.
Additionally, tiny grains of quartz are randomly present in the fractures between the barite
crystals (Figure 7c). As for the hematite sample, Figure 7d illustrates white colloform bands
of hematite, indicating the hydrothermal origin of this mineral, and this was also stated by
Baioumy et al. [43]. These hematite bands are intersected by a grey veinlet of barite.
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Figure 6. XRD charts of the studied samples showing the constituent mineral phases with their 2θ
values of peak positions: (a) barite sample and (b) hematite sample.
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4.2. Morphological Characterization

The SEM images confirm the findings of the TLM, including the euhedral forms
of orthorhombic-shaped barite particles. These euhedral orthorhombic particles allow
for more compacting and fewer intra-particle pores in the mineral structure (Figure 8a).
Additionally, the magnified image shows very fine sub-spherical or botryoidal particles
of hematite on the barite surface (Figure 8b). These findings are corroborated by those
of previous studies [66]. On the other hand, Figure 8c,d shows the hematite particles
with a botryoidal shape, which permits there to be more pores between the particles,
producing a less compacted structure in the hematite sample compared to that in the barite
one. This shape could have a detrimental effect on the radiation shielding properties of
these minerals.
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4.3. Physical and Mechanical Characterization

The physical tests of the studied samples (Table 2) demonstrate that the barite sample
has a higher density (4.2 g/cm3) than the hematite one has (2.9 g/cm3). This can be assigned
to the higher compactness of the particles in the barite structure than those in the hematite
one, as was mentioned before and is illustrated by the SEM images (Figure 8). Otherwise,
the water absorption capacity of the barite sample (1.07%) is less than that of hematite
(12.31%). This is also ascribed to the higher density and lower porosity of barite compared
to hematite. Additionally, the surface area analysis reveals that the hematite has a larger
surface area (3.50 m2/g) than the barite sample does (2.12 m2/g). This can be attributed to
the botryoidal habit of the hematite particles compared to the orthorhombic habit of the
barite ones (Figure 8). This larger surface area accounts for the higher water absorption
capacity of hematite (12.31%) compared to that of barite (1.07%). Based on the results of the
mechanical properties, the barite sample exhibits higher crushing and impact values (42.5
and 41%) than the hematite sample does (7.70 and 6.80%). This indicates the lower strength
of barite compared to the hematite sample. This difference in the sample strength can be
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attributed to the stronger Fe–O bond in the hematite compared to the S–O bond in the
sulfate group of the barite. Therefore, barite is not recommended as a principal aggregate
in concrete.

Table 2. Physical and mechanical properties of the studied samples.

Property Barite Hematite International Standard

Density (g/cm3) 4.20 2.90 ASTM C97 [55]
Water absorption (%) 1.07 12.31 ASTM C97 [55]
Surface area (m2/g) 2.12 3.50 BET method [56]
Crushing value (%) 42.50 7.70 BS 812-110 [57]

Impact value (%) 41.00 6.80 BS 812-112 [58]

4.4. Geochemical Characterization

Table 3 summarizes the chemical compositions of the two addressed mineral samples.
The main composition of the barite sample comprised four principal oxides, including BaO,
SO3, Fe2O3, and SiO2, with quantities of 57.89, 29.55, 6.79, and 2.03%, respectively. The
high proportions of BaO and SO3 are due to the presence of barite minerals, which consist
of BaSO4. As for the ratio of Fe2O3, the reason for it is due to the association of some iron
oxyhydroxides, such as hematite or goethite, as illustrated in the TLM images (Figure 7).
On the other hand, the minor oxides of SiO2, CaO, Al2O3, and MgO with quantities of
2.03, 0.66, 0.64, and 0.38%, could be ascribed to the presence of clay deposits, which are
associated with barite [45]. Otherwise, the presence of SiO2, Al2O3, and CaO may also be
credited to the presence of the gangue minerals of quartz (SiO2), alunite [KAl3(SO4)2(OH)6],
and calcite (CaCO3), respectively. These findings are in agreement with those of previous
studies [45]. The lower LOI% (1.16%) may be attributed to the minor presence of goethite
and alunite minerals. This low LOI% can also be attributed to the presence of the calcite
mineral. Concerning the hematite sample, the high amount of Fe2O3 (87.32%) is assigned
to the high presence of the hematite mineral, and to a lesser extent, goethite and iron
oxyhydroxide FeO(OH), as was assured by XRD data (Figure 6). The minor quantities
of SiO2 and SO3 in the hematite sample can be ascribed to the low occurrences of quartz
and barite minerals, respectively. As reported previously by Baioumy et al. [43], the lower
quantity of MnO2 (0.79%) in the hematite ore is attributed to the associated hydrothermal
solutions. The presence of the major minerals (i.e., barite and hematite) and some minor
minerals (i.e., calcite, quartz, and hematite) was confirmed by the XRD (Figure 6) and TLM
(Figure 7).

Table 3. XRF analysis of the studied samples.

Oxide (%) Barite Hematite

MgO 0.38 0.18
SiO2 2.03 2.05

Fe2O3 6.79 87.32
CaO 0.66 0.12

Al2O3 0.64 1.11
BaO 57.89 0.98
SO3 29.55 1.22
K2O 0.02 0.02

Na2O 0.42 0.42
TiO2 0.01 0.02

MnO2 0.20 0.79
P2O5 0.03 0.30
SrO 0.01 0.01
NiO 0.01 0.00
ZnO 0.00 0.10
LOI 1.16 5.34
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4.5. Radiation Attenuation
4.5.1. Fast Neutron Attenuation

Figure 9 demonstrates a linear relationship between ln (N0/N) and the sample thick-
ness which is consistent with the Beer–Lambert law. From these relationships, the ex-
perimental macroscopic removal cross-section of the fast neutrons (ΣR,ex., cm−1) for each
sample was attained. As shown in Table 4, the measured fast neutron attenuation parame-
ters, including the ΣR,ex. (cm−1), MFP (cm), and HVL (cm) of the barite sample are better
than those of the hematite sample by about 9.17%. The higher density (4.20 g/cm3) and
compacted morphology of it (Figure 8a) compared to those of the hematite sample (i.e.,
lower density, 2.90 g/cm3 and less compacted morphology) account for the superiority
of the barite sample in neutron attenuation. This can be attributed to the fact that the
higher density and lower porosity of material allow for more potency in the inelastic and
elastic collisions to slow down the fast neutrons [25]. As shown in Table 4, the NXcom
calculation illustrates that the fast neutron attenuation of the barite sample is higher than
that of the hematite sample by 12.25%. Moreover, there is a satisfactory agreement between
the NXcom results and the measurements of the fast neutron attenuation, as shown in
Table 4. More specifically, the measured results are lower than the NXcom findings by
about 16 and 19.25% for barite and hematite, respectively. This difference can be credited to
the irregularities in the sample thicknesses, the source power, the radiation background, or
the inaccuracy in the elemental composition.
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Figure 9. Variation of ln (N0/N) with different thicknesses (0, 2, 4, 6, 8, 10, and 12 cm) of samples of
(a) barite and (b) hematite at neutron energy value of 0.8–11 MeV.

Table 4. Experimental fast neutron attenuation parameters measured behind PuBe with statistical
uncertainty correlated with their corresponding theoretical (NXcom) values.

Sample Type
Experimental Theoretical (NXcom) Dev. (%) *

ΣR
(cm−1)

MFP
(cm)

HVL
(cm)

ΣR
(cm−1)

MFP
(cm)

HVL
(cm)

Barite 0.119 ± 0.010 8.330 ± 0.580 5.780 ± 0.400 0.1026 9.750 6.760 16.00

Hematite 0.109 ± 0.009 9.170 ± 0.640 6.360 ± 0.450 0.0914 10.940 7.580 19.25

* Dev. (%) = [ΣR (experimental) − ΣR (theoretical)] × 100/ΣR (experimental).

4.5.2. γ-Rays

As in the fast neutrons (Figure 9), Figure 10 reveals a linear relationship between
ln (I0/I) and the sample thicknesses, which follows the Beer–Lambert law. From these
relationships, the linear attenuation coefficient of the γ-rays (µ, cm−1) for each sample has
been attained. As shown in Table 5, the values of µ, cm−1, and the other γ-ray attenuation
parameters (i.e., MFP and HVL) are listed. Similar to the fast neutron attenuation, these
attenuation parameters demonstrate that the efficiency of the γ-ray attenuation of the
barite sample shows superiority over its corresponding hematite one. Moreover, the γ-ray
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attenuation efficiency of the barite sample is higher than that of the hematite sample by
about 51%. This can be attributed to the following: (1) the barite sample has a higher
density and compactness than the hematite sample does (Table 2 and Figure 8), which is
in agreement with [67], (2) the barite sample is mainly composed of barium (Ba), which
has a higher atomic number (Z = 56) than iron (Z = 26), which is the main component of
the hematite sample (Table 3), and (3) in the hematite sample, the high secondary γ-ray
emissions from PuBe contributed to the deterioration of the attenuation capacity as a
result of (a) the inelastic scattering of the fast neutrons with different energies inside the
sample [68], (b) the neutron interactions especially of energies >0.5 MeV with Fe nuclei,
and (c) the radiative capture of the slow neutrons [69].
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Table 5. Experimental γ-ray attenuation parameters measured behind PuBe with statistical uncer-
tainty.

Sample Type µ

(cm−1)
MFP
(cm)

HVL
(cm)

Barite 0.1370 ± 0.0140 7.300 ± 0.510 5.060 ± 0.150
Hematite 0.0907 ± 0.0090 10.990 ± 0.660 7.620 ± 0.380

4.5.3. Radiation Attenuation Comparison

The radiation attenuation efficiencies of the current investigated samples were com-
pared to that of other previously studied samples, which were investigated under similar
experimental conditions. The description of the compared samples from the previous
studies is exhibited in Table 6, while the comparison of their attenuation efficiency is il-
lustrated in Figure 11. It was found that the barite sample shows a higher fast neutron
attenuation rate than the concrete mixes of A, AB1, AB2, AH25, LBC, and CBC did, while
the hematite sample has a higher fast neutron attenuation rate than the same previous
concrete mixes did, except for AH25. Moreover, the γ-attenuation of the barite sample
exhibits superiority over all of the compared concrete mixes, while the hematite sample
has a higher capability than the concrete mixes of A, AB1, AB2, AH25, LBC, and CBC do.
This comparison confirms that barite and hematite can be eco-friendly and sustainable
alternatives to some RSCs which require high cement production. This can be a significant
means to reduce the production cost and significant emissions of greenhouse gases.



Sustainability 2022, 14, 16225 15 of 19

Table 6. Description of the compared samples of previous studies including different concrete mixes
with the same conditions of radiation attenuation measurement.

Sample Code Description Ref.

A Concrete totally composed of antigorite serpentine aggregate

[70]AB1 Concrete composed of antigorite serpentine aggregate incorporated with 1% of boric
acid by cement weight

AB2 Concrete composed of antigorite serpentine aggregate incorporated with 3% of boric
acid by cement weight

AH25 Concrete composed of 75% antigorite serpentine aggregate + 25% hematite aggregate

[68]AH50 Concrete composed of 50% antigorite serpentine aggregate + 50% hematite aggregate

AB25 Concrete composed of 75% antigorite serpentine aggregate + 25% barite aggregate

AB50 Concrete composed of 50% antigorite serpentine aggregate + 50% barite aggregate

LBC Concrete totally composed of lizardite serpentine aggregate
[71]

CBC Concrete totally composed of chrysotile serpentine aggregate
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5. Conclusions

Based on the outcomes of the recent study, the following conclusions can be drawn:

• Unlike the mechanical properties (i.e., crushing and impact values), the physical
properties (i.e., density and water absorption) of barite are more enhanced than those
of hematite.

• The dense structure of barite can be correlated to its orthorhombic-shaped grains,
whereas the sub-spherical and botryoidal-shaped grains of hematite result in a decom-
pressed structure.

• The radiation attenuation of barite against fast neutrons and γ-rays surpassed that of
hematite by 12.25 and 51%, respectively.

• The high ratio of BaO (57.89%) and the densified structure of barite justify its higher
radiation attenuation compared to that of hematite, which has a higher Fe2O3 % and a
less compact structure.

• A considerable agreement was obtained between the experimental and theoretical
calculations (NXcom) of the fast neutron attenuation for both the barite and hematite
samples, with reasonable deviations of 16 and 19.25%, respectively.

• Compared to different concrete mixes, barite and hematite can be employed as natural,
sustainable, and cost-effective alternatives to cement-consuming RSC.
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