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Abstract: Here, we grow two different varieties of lentil (lentil-2009 and lentil-93) under different
drought levels and with different applications of melatonin. Increasing the levels of soil water deficit
significantly decreased numerous morphological and biochemical characteristics, including shoot
length, total chlorophyll content, and transpiration rate, in both varieties of lentil. Contrastingly,
drought stress increased the concentrations of malondialdehyde (MDA) and hydrogen peroxide
(H2O2), and electrolyte leakage, an indicator of oxidative damage to membrane-bound organelles.
The activities of enzymatic antioxidants and osmolytes were initially increased up to a drought level
of 80% water field capacity (WFC) but gradually decreased with higher levels of drought stress (60%
WFC) in the soil. At the same time, the results also showed that the lentil-2009 is more tolerant
to drought stress than lentil-93. The negative impact of drought stress can be overcome by the
application of melatonin. Melatonin increased plant growth and biomass, photosynthetic pigments,
gas exchange characteristics, and enhanced the activities of various enzymatic and non-enzymatic
antioxidants and proline content by decreasing oxidative stress. We conclude that foliar application
of melatonin offers new possibilities for promoting lentil drought tolerance.

Keywords: melatonin; drought stress; legume family; oxidative stress; proline

1. Introduction

Environmental variations due to abiotic stresses, such as drought, heat, cold, and salin-
ity, adversely affect and limit agricultural productivity in developing countries, including
Pakistan [1,2]. About 33% of the world’s agricultural land is facing water imbalance and
promoting drought vulnerability, which may drastically decrease the growth and yield
of plants [3–5]. Abiotic stresses, such as drought, can lead to alterations in plant growth
and composition and a decrease in growth-related attributes, affecting photosynthetic
machinery, which ultimately causes a reduction in the dry biomass of the plant as it is
unable to accumulate essential nutrients from the soil [6–8]. In addition, plants are typically
exposed to a myriad of biotic and abiotic stresses, including feeding from wild animals and
insects, weed infestation, mechanical injury, diseases, low soil fertility, drought, salinity,
and others, that can diminish the plant photosynthetic area, and thus the attained total
plant biomass or grain yield [9,10]. Water deficiency-induced impairment in photosynthesis
is attributed to damage of thylakoid membranes in chloroplasts because the lipid contents
of cell membranes are susceptible to the reactive oxygen species (ROS) produced as a
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consequence of drought [11]. Stress conditions can disturb the dynamic equilibrium of ROS
production, which promotes oxidative stress, membrane lipid peroxidation, and disrupts
the structure and function of the cell membrane system [12–14]. The rate of photosynthesis
decreases in many fodder grasses under drought stress, for example in Festuca pratensis,
Lolium perenne, Dactylis glomerata, Phleum pretense, and Arrhenatherum elatius [15]. Activation
of plant stress defensive mechanisms is important for survival.

Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous bio-stimulating molecule,
whose potential roles in plant growth, development, and stress responses have been pro-
gressively investigated in recent studies [16,17]. In plants, melatonin is involved in refining
physiological processes such as photosynthesis, senescence, and reproduction [18,19]. Un-
der stress conditions, melatonin mainly functions as a promoter of plant tolerance, and
reduces oxidative damages by enhancing the antioxidant defense capacity of organelles,
maintaining redox homeostasis [20,21]. It has been reported that exogenous applications
of melatonin enhanced plant tolerance by providing protection against abiotic and biotic
stresses such as drought stress [22–25]. Lentils (Lens culinaris Medik.) are a major cool
seasonal food crop in India and the second most important winter-season legume after
chickpea (Cicer arietinum L.) [26]. Lentils require low temperatures during vegetative
growth, while at maturity, warm temperatures are required. The ‘optimum’ temperature
for its best growth has been reported to be 18–30 ◦C [27]. Of the abiotic stresses experienced
by lentils worldwide, drought and heat stress are considered the most important [28]. The
susceptibility of lentils to hot and semiarid regions is supported by many studies [29–31].
The objective of the present study is to demonstrate the effect of drought stress, drought
tolerance mechanisms, and management measures using melatonin application, for the
alleviation of drought stress in lentil varieties. For this purpose, we designed a pot ex-
periment using two varieties of lentil (lentil-2009 and lentil-93) to study: (i) the role of
exogenous application of melatonin on growth and biomass, (ii) oxidative stress and an-
tioxidant responses, and (iii) lentil sugar and osmolyte content in the drought-stressed
environment. The results suggest that melatonin application may improve plant yield
under drought-stressed conditions.

2. Materials and Methods
2.1. Seed Collection and Experimental Setup

Fresh and mature lentil seeds (Lens culinaris Medik.) named lentil-2009 and lentil-
93 were collected from the Ayub Agriculture Research Institute (AARI) in Faisalabad,
Pakistan. Both varieties were surface-sterilized with 0.1% bleaching powder for 10–20 min
and washed gently with deionized water and sown in plastic pots (25 × 35 cm2). The
experiment was conducted at the Department of Botany, Government College University,
Faisalabad, Pakistan (coordinates: 31.4162◦ N, 73.0699◦ E; elevation m a.s.l.: 186). The
seedlings that emerged were thinned to maintain four almost uniform size seedlings per pot,
and three pots were used for each treatment. After 21 days of seed germination, drought
stress treatments, including control (100% water field capacity (WFC)) and drought-stressed
(80% and 60% WFC), were initiated. Water levels were checked and maintained twice a
week by weighing and adjusting the moisture level of the pots. After 30 days of drought
stress, two levels of melatonin—control (no spray) and 3 mM—were applied as a foliar
spray to stressed and non-stressed plants. Each pot was filled with 0.5 kg of sandy loam
soil and five seeds were sown per pot. After one week of sowing, germination started. All
plants in the glass house territory received natural light, with a day/night temperature
of 35/40 ◦C and day/night humidity of 60/70%. The experiment was arranged in a
completely randomized design (CRD) with three replications of each treatment.

2.2. Morphological Traits and Data Collection

After four weeks of foliar-applied melatonin, plant samples were collected from each
replicate, and root and shoot fresh weight were measured separately using an electrical
balance after harvest. Analyses of different biological parameters were performed at
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Government College University, Pakistan. Shoot length was defined as the length of the
plant from the surface growth medium line of the pot to the tip of the uppermost shoot, and
root length was also measured. Shoot fresh weight was measured with the help of a digital
weighing balance and root fresh weight was also measured. After that, plant samples were
oven-dried for 1 h at 105 ◦C, then 65 ◦C for 72 h until the weight became uniform, and dry
biomass was recorded. Roots were washed with distilled water and dipped in 20 mM of
Na2EDTA for 15–20 min, washed thrice with distilled water, and finally with deionized
water, and then oven-dried for further analysis. The leaf in each treatment was picked at a
rapid growth stage during 09:00–10:30 a.m. The sampled leaves were washed with distilled
water, immediately placed in liquid nitrogen, and stored in a freezer at a low temperature
(−80 ◦C) for further analysis.

2.3. Determination of Photosynthetic Pigments

Leaves were collected for determination of their chlorophyll and carotenoid contents.
For chlorophylls, 0.1 g of fresh leaf sample was extracted with 8 mL of 95% acetone for
24 h at 4 ◦C in the dark. The absorbance was measured by a spectrophotometer (UV-2550;
Shimadzu, Kyoto, Japan) at 646.6, 663.6, and 450 nm. Chlorophyll content was calculated
by the standard method of Arnon [32].

Gas exchange parameters were also measured during the same days. Net photosyn-
thesis (Pn), leaf stomatal conductance (Gs), transpiration rate (Ts), and intercellular carbon
dioxide concentration (Ci) were measured from three different plants in each treatment
group. Measurements were conducted between 11:30 and 13:30 on days with a clear
sky. Rates of leaf Pn, Gs, Ts, and Ci were measured with a LI-COR gas exchange system
(LI6400; LI-COR Biosciences, Lincoln, NE, USA) with a red–blue LED light source on the
leaf chamber. In the LI-COR cuvette, CO2 concentration was set as 380 mmol mol–1 and
LED light intensity was set at 1000 mmol m–2 s–1, which is the average saturation intensity
for photosynthesis in lentils [33].

2.4. Determination of Oxidative Stress Indicators

The degree of lipid peroxidation was evaluated by measuring malondialdehyde (MDA)
content. Briefly, 0.1 g of frozen leaves were ground at 4 ◦C in a mortar with 25 mL
of 50 mM phosphate buffer solution (pH 7.8) containing 1% polyethene pyrrole. The
homogenate was centrifuged at 10,000× g at 4 ◦C for 15 min. The mixtures were heated
at 100 ◦C for 15–30 min and then quickly cooled in an ice bath. The absorbance of the
supernatant was recorded by using a spectrophotometer (xMark™ Microplate Absorbance
Spectrophotometer; Bio-Rad, Hercules, CA, USA) at wavelengths of 532, 600, and 450 nm.
Lipid peroxidation was expressed as l mol g−1 by using the formula: 6.45 (A532–A600)–0.56
A450. Lipid peroxidation was measured by using a method previously published by Heath
and Packer [34].

To estimate the H2O2 content of plant tissues (root and leaf), 3 mL of sample extract
was mixed with 1 mL of 0.1% titanium sulfate in 20% (v/v) H2SO4 and centrifuged at
6000× g for 15 min. The yellow color intensity was evaluated at 410 nm. The H2O2 level
was computed by an extinction coefficient of 0.28 mmol−1 cm−1. The contents of H2O2
were measured using the method presented by Jana and Choudhuri [35].

Stress-induced electrolyte leakage (EL) of the uppermost stretched leaves was deter-
mined by using the methodology of Dionisio-Sese and Tobita [36]. The leaves were cut
into minor slices (5 mm length) and placed in test tubes containing 8 mL of distilled water.
These tubes were incubated and transferred into a water bath for 2 h prior to measuring
the initial electrical conductivity (EC1). The samples were autoclaved at 121 ◦C for 20 min,
and then cooled down to 25 ◦C before measuring the final electrical conductivity (EC2).
Electrolyte leakage was calculated by the following formula:

EL = (EC1/EC2) × 100
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2.5. Determination of Antioxidant Enzyme Activities

To evaluate enzyme activities, fresh leaves (0.5 g) were homogenized in liquid nitrogen
and 5 mL of 50 mmol sodium phosphate buffer (pH 7.0), including 0.5 mmol ethylene-
diaminetetraacetic acid (EDTA) and 0.15 mol NaCl. The homogenate was centrifuged at
12,000× g for 10 min at 4 ◦C, and the supernatant was used for the measurement of super-
oxidase dismutase (SOD) and peroxidase (POD) activities. SOD activity was assayed in a
3 mL reaction mixture containing 50 mM sodium phosphate buffer (pH 7), 56 mM nitro blue
tetrazolium, 1.17 mM riboflavin, 10 mM methionine, and 100 µL enzyme extract. Finally,
the sample was measured with a spectrophotometer (xMark™ Microplate Absorbance
Spectrophotometer; Bio-Rad, Hercules, CA, USA). Enzyme activity was measured using
the method of Chen and Pan [37] and expressed as U g−1 FW.

POD activity in the leaves was estimated using the method of Sakharov and Ardila [38]
by using guaiacol as the substrate. A reaction mixture (3 mL) containing 0.05 mL of enzyme
extract, 2.75 mL of 50 mM phosphate buffer (pH 7.0), 0.1 mL of 1% H2O2, and 0.1 mL of 4%
guaiacol solution was prepared. Increases in the absorbance at 470 nm because of guaiacol
oxidation were recorded for 2 min.

Catalase (CAT) activity was analyzed according to Aebi [39]. The assay mixture
(3.0 mL) was comprised of 100 µL enzyme extract, 100 µL H2O2 (300 mM) and 2.8 mL
50 mM phosphate buffer, with 2 mM ETDA (pH 7.0). CAT activity was measured from the
decline in absorbance at 240 nm as a result of H2O2 loss (ε = 39.4 mM−1 cm−1).

Ascorbate peroxidase (APX) activity was measured according to Nakano and Asada [40].
The mixture containing 100 µL enzyme extract, 100 µL ascorbate (7.5 mM), 100 µL H2O2
(300 mM), and 2.7 mL of 25 mM potassium phosphate buffer with 2 mM EDTA (pH 7.0)
was used for measuring APX activity. The oxidation pattern of ascorbate was estimated
from the variations in wavelength at 290 nm (ε = 2.8 mM−1 cm−1).

2.6. Determination of Non-Enzymatic Antioxidant and Proline

Plant ethanol extracts were prepared for the determination of non-enzymatic an-
tioxidants and some key osmolytes. For this purpose, 50 mg of plant dry material was
homogenized with 10 mL of ethanol (80%) and filtered through Whatman No. 41 filter
paper. The residue was re-extracted with ethanol and the two extracts were pooled together
to a final volume of 20 mL. The determination of phenolics [41], ascorbic acid [42], and total
sugars [43] was measured in the extracts.

Fresh leaf material (0.1 g) was mixed thoroughly in 5 mL of aqueous sulphosalicylic
acid (3%). The mixture was centrifuged at 10,000× g for 15 min and a 1 mL aliquot was
poured into a test tube having 1 mL of acidic ninhydrin and 1 mL of glacial acetic acid. The
reaction mixture was first heated at 100 ◦C for 10 min and then cooled in an ice bath. The
reaction mixture was extracted with 4 mL of toluene and test tubes were vortexed for 20 s
and cooled. Thereafter, the light absorbance at 520 nm was measured by using a UV-VIS
spectrophotometer (Hitachi U-2910, Tokyo, Japan). Free proline content was determined on
the basis of a standard curve at 520 nm absorbance and expressed as µmol (g FW)−1 [44].

2.7. Statistical Analysis

Statistical analysis was performed with analysis of variance (ANOVA) by using the
statistical program Co-Stat version 6.2 (Cohorts Software, 2003, Monterey, CA, USA). All the
data obtained were tested by one-way ANOVA. Thus, the differences between treatments
were determined by using ANOVA, and the least significant difference test (p < 0.05)
was used for multiple comparisons between treatment means. Logarithmic or inverse
transformations were performed for data normalization, where necessary, prior to analysis.
Pearson’s correlation analysis was performed to quantify relationships between various
analyzed variables. Graphs were drawn in Origin-Pro 2017 (Systat Software Inc., San Jose,
CA, USA). RStudio was used to calculate Pearson’s correlation.
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3. Results
3.1. Impact of Melatonin Application on Plant Growth and Photosynthesis in Lentil Varieties
Grown under Drought Conditions

We measured various growth and photosynthetic parameters in both varieties of
lentils grown under the varying levels of drought (100%, 80%, and 60% WFC), both with
and without the application of melatonin. Morphological traits are presented in Figure 1
and data regarding photosynthetic pigments and gas exchange attributes are presented
in Figure 2. Decreasing soil water levels significantly decreased shoot length, root length,
shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, chlorophyll a,
chlorophyll b, total chlorophyll, carotenoid, net photosynthesis, stomatal conductance,
and transpiration rate in lentil varieties, compared to 100% WFC. Under the same levels
of drought in the soil, lentil-2009 showed better growth and development compared to
the lentil-93. Melatonin also increased plant growth and biomass and photosynthetic
pigments even in the plants grown in the drought-stressed environment. The application
of melatonin increased shoot length, root length, shoot fresh weight, shoot dry weight, root
fresh weight, root dry weight, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, net
photosynthesis, stomatal conductance, and transpiration rate. However, drought stress did
not affect the intercellular CO2 in both varieties of lentil and the application of melatonin
also did not have any significant effect on the levels of intercellular CO2.

3.2. Impact of Melatonin Application on Oxidative Stress and Antioxidant Enzymes in Lentil
Varieties Grown under Drought Conditions

We measured various markers of oxidative stress in both lentil varieties grown in
drought conditions, including malondialdehyde, hydrogen peroxide, and electrolyte leak-
age (EL) (Figure 3A–C). We also measured antioxidant capacity in the form of super
oxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase
(APX) (Figure 3D–G, respectively). Increasing levels of drought stress in the soil increased
the concentrations of MDA, EL, and H2O2 in the tissues of both lentil varieties. The maxi-
mum increase was observed by the lentil-sensitive variety, i.e., lentil-2009, compared to the
control. The activities of various antioxidant enzymes (SOD, POD, CAT, and APX) initially
increased up to a water-deficit level of 80% WFC, but then decreased significantly at the
highest level of drought in the soil. In addition, the activities of enzymatic antioxidants
were higher in the drought-tolerant varieties, i.e., lentil-2009, compared to the drought-
sensitive variety, i.e., lentil-93. However, we also noticed that the application of melatonin
decreased the concentrations of MDA, EL, and H2O2 in both varieties of lentil, compared
to those which did not have melatonin applied. Similarly, increasing levels of melatonin
significantly increased the activities of SOD, POD, CAT, and APX in the leaves of both lentil
varieties, compared to those which were not treated with melatonin (Figure 3).

3.3. Impact of Melatonin Application on Osmolytes and Proline of Enzymatic Antioxidants in
Lentil Varieties Grown under Drought Conditions

We also measured the contents of phenolics, ascorbic acid, soluble sugar, and proline
from both varieties of lentil grown under varying levels of drought stress, i.e., 100%, 80%,
and 60% WFC, with or without the application of melatonin. Decreasing levels of water
(80% and 60% WFC) in the soil significantly induced (p < 0.05) the phenolic acid, ascorbic
acid, soluble sugar, and proline content of both varieties of lentil, compared to control plants
(Figure 4). Phenolics and ascorbic acid contents first increased up to a drought level of 80%
WFC but gradually decreased with more drought in the soil (60% WFC). The application of
melatonin also increased the content of phenolics, ascorbic acid, soluble sugar, and proline
in both varieties of lentil compared to plants grown without the application melatonin.
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Figure 1. The impact of melatonin application on different morphological traits. The graphs show 
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melatonin (0 or 3 mM). Means sharing similar letter(s) within a column for each parameter do not 

differ significantly at p < 0.05. Data in the figures are means of four repeats (n = 4) of just one harvest 

of lentil varieties ± standard deviation (SD). Different lowercase letters on the error bars indicate 

significant difference between the treatments. 

Figure 1. The impact of melatonin application on different morphological traits. The graphs show
shoot length (A), root length (B), shoot fresh weight (C), shoot dry weight (D), root fresh weight (E),
and root dry weight (F) under various water-deficit conditions (W100 (100% WFC), W80 (80% WFC),
and W60 (60% WFC)) in both varieties of lentil (lentil-2009 and lentil-93), either with or without
melatonin (0 or 3 mM). Means sharing similar letter(s) within a column for each parameter do not
differ significantly at p < 0.05. Data in the figures are means of four repeats (n = 4) of just one harvest
of lentil varieties ± standard deviation (SD). Different lowercase letters on the error bars indicate
significant difference between the treatments.
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Figure 2. Impact of melatonin application on different photosynthetic pigments and gas exchange 

attributes. The graphs show chlorophyll “a” (A), chlorophyll “b” (B), total chlorophyll content (C), 

total carotenoid content (D), net photosynthesis (E), stomatal conductance (F), transpiration rate (G), 

Figure 2. Impact of melatonin application on different photosynthetic pigments and gas exchange
attributes. The graphs show chlorophyll “a” (A), chlorophyll “b” (B), total chlorophyll content (C),
total carotenoid content (D), net photosynthesis (E), stomatal conductance (F), transpiration rate (G),
and intercellular CO2 (H) under various water-deficit conditions (W100 (100% WFC), W80 (80% WFC),
and W60 (60% WFC)) in both varieties of lentil (lentil-2009 and lentil-93). Means sharing similar
letter(s) within a column for each parameter do not differ significantly at p < 0.05. Data in the figures
are means of four repeats (n = 4) of just one harvest of lentil varieties ± standard deviation (SD).
Different lowercase letters on the error bars indicate significant difference between the treatments.
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Figure 3. Impact of melatonin application on different markers of oxidative stress. The graphs show 

malondialdehyde content (A), hydrogen peroxide content (B), electrolyte leakage (C), and enzy-

matic antioxidants superoxidase dismutase (SOD) (D), peroxidase (POD) (E), catalase (CAT) (F), 

and ascorbate peroxidase (APX) (G) under various water conditions (W100 (100% WFC), W80 (80% 

WFC), and W60 (60% WFC)) in both varieties of lentil. Means sharing similar letter(s) within a col-

umn for each parameter do not differ significantly at p < 0.05. Data in the figures are means of four 

Figure 3. Impact of melatonin application on different markers of oxidative stress. The graphs
show malondialdehyde content (A), hydrogen peroxide content (B), electrolyte leakage (C), and
enzymatic antioxidants superoxidase dismutase (SOD) (D), peroxidase (POD) (E), catalase (CAT)
(F), and ascorbate peroxidase (APX) (G) under various water conditions (W100 (100% WFC), W80
(80% WFC), and W60 (60% WFC)) in both varieties of lentil. Means sharing similar letter(s) within a
column for each parameter do not differ significantly at p < 0.05. Data in the figures are means of four
repeats (n = 4) of just one harvest of lentil varieties ± standard deviation (SD). Different lowercase
letters on the error bars indicate significant difference between the treatments.
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Figure 4. Impact of melatonin application on phenolics content (A), ascorbic acid (B), soluble sugar
(C), and proline (D) under various water conditions (W100 (100% WFC), W80 (80% WFC), and W60
(60% WFC)) in both varieties of lentil. Means sharing similar letter(s) within a column for each
parameter do not differ significantly at p < 0.05. Data in the figures are means of four repeats (n = 4)
of just one harvest of lentil varieties ± standard deviation (SD). Different lowercase letters on the
error bars indicate significant difference between the treatments.

3.4. Relationship between Various Growth Parameters of Lentil

A Pearson’s correlation graph depicts the relationship between various growth and
physiological parameters in lentils (lentil-2009) (Figure 5). Malondialdehyde was positively
correlated with electrolyte leakage, hydrogen peroxide, catalase, ascorbate peroxide, super-
oxide dismutase, peroxidase, phenolics, ascorbic acid, sugar, and proline. Malondialdehyde
was negatively correlated with shoot length, root length, shoot fresh weight, shoot dry
weight, root fresh weight, root dry weight, chlorophyll a, chlorophyll b, total chlorophyll,
carotenoid, net photosynthesis, stomatal conductance, and transpiration rate. Similarly,
electrolyte leakage was positively correlated with malondialdehyde, hydrogen peroxide,
catalase, ascorbate peroxide, superoxide dismutase, peroxidase, phenolics, ascorbic acid,
sugar, and proline, while negatively correlated with shoot length, root length, shoot fresh
weight, shoot dry weight, root fresh weight, root dry weight, chlorophyll a, chlorophyll b,
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total chlorophyll, carotenoid, net photosynthesis, stomatal conductance, and transpiration
rate. This relationship showed a close connection between various attributes of lentil.
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Figure 5. Correlation between various lentil growth parameters under the different water-deficit
conditions with or without the application of melatonin. Different abbreviations used are as follows:
(MDA) malondialdehyde contents, (EL) electrolyte leakage percentage, (H2O2) hydrogen peroxide
content, (CAT) catalase activity, (APX) ascorbate peroxide activity, (SOD) superoxide dismutase
activity, (POD) peroxidase activity, (Phe) phenolic content, (AsA) ascorbic acid content, (SS) sugar
content, (Pro) proline contents, (SL) shoot length, (RL) root length, (SFW) shoot fresh weight, (SDW)
shoot dry weight, (RFW) root fresh weight, (RDW) root dry weight, (Chl-a) chlorophyll a content,
(Chl-b) chlorophyll b content, (TC) total chlorophyll content, (Carot) carotenoid content, (NP) net
photosynthesis, (SC) stomatal conductance, and (Tr) transpiration rate.

4. Discussion

Drought stress adversely affects morphological aspects of plants, such as early germi-
nation, plant height, relative root length, root diameter, the total biomass of leaves and roots,
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the number of leaves, and branch number [11]. We assessed the influence of melatonin
on growth, osmolyte accumulation, and enzymatic and non-enzymatic antioxidants in
lentil varieties under drought stress conditions. Drought-induced reductions might be
due to photosynthesis, respiration, cell extension, and enzymatic activities [6,8] because
drought-stressed plants had a diminished number of leaves, and the development of new
leaves, stems, and leaflets, and leaf area were reduced compared to those in the control
plants. This might be attributed to the impact of water stress on the physiological cycles
in plants, such as photosynthesis, leaf zone extension, nucleic acid metabolism, protein
synthesis, and the partitioning of assimilates [30,45,46]. In addition to this water deficiency,
decreased photosynthesis restricts the mechanism of cell development and cell enlargement
closed stomata [47], eventually reducing the yield [27,48].

Water-deficient environments are generally known to initiate oxidative stress in plants
by the production of extra reactive oxygen species (ROS) [49–51] and antioxidative enzymes
that play a protective role in reducing metal toxicity by scavenging ROS [52,53]. Excessive
reactive oxygen species (ROS) production causes oxidative stress, as reported for many
crops under drought stress treatment, and is likely to be initiated by molecular oxygen
excitation (O2) to generate singlet oxygen or by electron transfer to O2 and genesis of free
radicals, i.e., O2− and OH− [11,27]. Plant responses to oxidative stress also depend upon
plant species and cultivars, and ROS are removed in plants by a variety of antioxidant
enzymes, such as SOD, POD, CAT, and APX [54,55]. The increase in the activities of antiox-
idant enzymes is concomitant with the generation of extra ROS. It has also been reported
that an increase in the activities of various antioxidant enzymes under environmental
stress conditions is due to a reduction in the glutathione level [56,57]. Plants produce a
variety of antioxidants (ascorbic acid, glutathione, proline, carotenoids, phenolic acids,
and flavonoids) that improve tolerance against drought stress [58,59]. Phenolics are potent
antioxidants against drought-induced oxidative damage and efficiently scavenge ROS [60].
Proline accumulation in plant tissue/organs is a response to drought stress, which might
be associated with signal transduction and prevents membrane distortion [61]. Studies
related to our results found that drought increased oxidative stress by increasing MDA, EL,
and H2O2 in wheat [46], cucumber [62], and canola [63].

Many efforts have been made to mitigate the hazardous impacts of drought stress by
using various plant growth regulators, such as salicylic acid [64], polyamine [65], abscisic
acid [66], glycine betaine [67], and melatonin [18,23,24]. Melatonin is an amphiphilic bio-
logical (indolamine) hormone found throughout the animal and plant kingdoms. Melanin
is produced by the shikimate pathway in chloroplasts from tryptophan [68,69]. Melatonin
plays a vital part in plant growth and development by regulating plant physiology and root
regeneration [17], antioxidant activity [16], photosynthesis [22], senescence of leaves [70],
and immunological enhancement [71]. Melatonin might also boost the antioxidative ca-
pacity to fortify a variety of plant species from various abiotic stresses, especially drought
stress [23,70], by altering the expression of salt tolerance genes, upregulating antioxidant
enzymes, and directly scavenging ROS. Previously, melatonin has been reported to enhance
resistance against drought stress in various crops, including barley [72], soybean [73], and
tomato [74]. Many possibilities could be suggested to explain how melatonin can help
plants to alleviate the adverse effects of various environmental conditions. One of the most
important defensive mechanisms in this respect is the protection of the photosynthetic
apparatus via improving the scavenging efficiency of reactive oxygen species (ROS) and
reducing the stress-induced oxidative damages [71,75]. Under drought stress, melatonin
joins in the readjustment of the cell osmotic potential and accumulation of osmolytes such
as proline and soluble sugars [76]. Moreover, melatonin can maintain the water status of
water-stressed plants through regulating stomatal movement [20] and modulating a broad
spectrum of anatomical aspects, i.e., preserving the integrity of cell membranes [74] and
increasing the cuticle and/or wax accumulation [77]. In addition, it has been confirmed that
during the exposure to stress, melatonin has a close linkage in plant signal transduction



Sustainability 2022, 14, 16345 12 of 15

and can trigger cascades of reprogramming primary metabolites, transcriptomes, and
proteomes [16].

5. Conclusions

In this study, we investigated the influence of melatonin on the growth of lentil va-
rieties in well-watered (100% WFC) and water-depleted conditions (80% and 60% WFC).
Drought conditions had a harsh impact on plant growth, and as well as influencing photo-
synthetic measurements, they induced oxidative stress, antioxidant enzymes, and osmo-
protectants. The application of melatonin is useful in alleviating oxidative stress by acceler-
ating the activities of antioxidants and increasing the content of soluble sugars and other
enzymatic and non-enzymatic antioxidants, even in drought conditions. Hence, we suggest
that the application of melatonin offers new opportunities by promoting greater drought
tolerance and enhancing the capacity to adapt to future environmental challenges.
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