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Abstract: This study conducted an extensive literature review on rice husk ash (RHA), with a focus
on its particle properties and their effects on the fresh, mechanical, and durability properties of
concrete when used as a partial cement replacement. The pozzolanic property of RHA is determined
by its amorphous silica content, specific surface area, and particle fineness, which can be improved
by using controlled combustion and grinding for use in concrete. RHA particle microstructures are
typically irregular in shape, with porous structures on the surface, non-uniform in dispersion, and
discrete throughout. Because RHA has a finer particle size than cement, the RHA blended cement
concrete performs well in terms of fresh properties (workability, consistency, and setting time). Due
to the involvement of amorphous silica reactions, the mechanical properties (compressive, tensile,
and flexural strength) of RHA-containing concrete increase with increasing RHA content up to a
certain optimum level. Furthermore, the use of RHA improved the durability properties of concrete
(water absorption, chloride resistance, corrosion resistance, and sulphate resistance). RHA has the
potential to replace cement by up to 10% to 20% without compromising the concrete performance
due to its high pozzolanic properties. The use of RHA as a partial cement replacement in concrete
can thus provide additional environmental benefits, such as resource conservation and agricultural
waste management, while also contributing to a circular economy in the construction industry.

Keywords: partial replacement of cement; rice husk ash; RHA characterizations; fresh concrete
properties; concrete mechanical properties; concrete durability properties; green concrete

1. Introduction

Concrete is an essential element of civil infrastructure as no other material can match
it in terms of resilience, strength, and wide availability, and is therefore the most produced
construction material on the planet. In concrete production, cement is one of the main
components with an annual production of more than 4.13 billion tons, and it is expected to
increase to 4.68 billion tons/year by 2050 [1]. Since the cement manufacturing process has
a negative impact on the climate, the 4 billion tons of production account for about 8% of
global CO2 emissions [1,2]. To bring the cement industry into line with the Paris climate
agreement, its annual emissions in the built environment must decrease by at least 16%
by 2030 [3]. One of the most practical and economical approaches to reducing CO2 in the
concrete industry is the use of large quantities of supplementary cementitious materials
(SCMs) derived from agricultural by-products and industrial wastes.

Various research studies revealed that using agricultural by-products as a partial re-
placement for cement in concrete production improved the overall performance of concrete
properties and enhanced their sustainability properties by lowering costs and improving
environmental protection [4–9]. Rice husk is one of the agricultural by-products that is
abundant in many rice-producing countries around the world. It is generally indigestible
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for humans and not recommended for use as animal feed due to its low nutritional value.
Additionally, the natural degradation of rice husks is limited due to its uneven abrasive
surface and high silica content, making it a potential pollution candidate [10].

According to the Food and Agricultural Organization’s rice market monitor, the global
rice paddy field forecast for 2021/22 is 714.2 million tons, which equates to approximately
142.84 million tons of rice husks [11]. When burned, each ton of paddy field yields about
0.2 tons of rice husks, which yields about 0.05 tons of rice hull ash (RHA), which contains
a significant amount of silica and thus contributes to pozzolanic activity [12]. For this
reason, RHA can be used as a supplementary cementitious material with a color range of
white, grey, and black depending on the raw material source, mode of incineration, and
duration and temperature of burning [13,14]. Indeed, the use of RHA as a partial cement
replacement has been extensively researched in relation to concrete properties, including
the production of high-performance concrete (high-strength concrete, self-compacting
concrete, self-healing concrete, etc.) [15–21]. It can reduce the consumption of cement and
thus reduce energy and greenhouse gas emissions associated with its production. Therefore,
use of RHA as a partial cement replacement in concrete production contributes to the useful
disposal of agricultural by-products and reducing adverse environmental effects.

The objectives of this work are threefold: (i) to critically review the properties of RHA;
(ii) to discuss the effect of RHA as a partial replacement of cement on concrete properties;
and (iii) to provide insight into the effective use of RHA in concrete production.

The remainder of the paper is organized as follows. A brief background regarding the
production of RHA is presented in Section 2. Section 3 provides a thorough overview of
the properties of RHA. The effect of RHA on the properties of fresh concrete is critically
reviewed in Section 4. An in-depth review of the effect of RHA on concrete mechanical
strength properties is presented in Section 5. The influence of RHA on concrete durability
properties is presented in Section 6. Finally, in Section 7, conclusions are drawn.

2. RHA Production

Rice production is dominated by Asia, because rice is the only food crop that can be
grown in flooded tropical areas during the rainy season. The mills are typically larger, and
disposal of the husks is a big problem. Rice husks are the coating of the seeds or grains of
the rice plant to protect the seeds from physical damage and attacks by pathogens, insects,
and pests during the growing season, and are separated from the grains during milling
process [12]. During the milling process, the husk is removed from the grain to make brown
rice; the brown rice is then further milled to remove the brown layer and become white
rice [12].

Rice husk ash has many applications because of its numerous properties. It is a
wonderful insulator and has applications in industrial processes that include steel foundries
and the manufacturing of insulation for houses and refractory bricks. It is an active pozzolan
and has numerous packages in the cement and concrete industry [22]. It is also exceedingly
absorbent and is used to absorb oil on difficult surfaces, and potentially to filter arsenic
from water [13,23,24].

To produce RHA, open field burning or controlled incineration of rice husks can be
applied [25]. The amorphous silica and carbon content of RHA are dependent on the time
and temperature of the incineration. Well-burned and well-ground RHA is very active
and greatly improves the strength and durability of cement and concrete. This pozzolanic
material with good and consistent properties can only be obtained by burning the rice
husks under precisely defined conditions [12].

Therefore, the type of silica formed after rice husk combustion is determined by the
temperature and duration of the process. According to the literature, burning rice husks at
temperatures ranging from 400 ◦C to 1100 ◦C produces RHA with high pozzolanic activity
that remains in the amorphous or crystalline silica form [12,23,26–28].
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3. RHA Particle Properties
3.1. Physical Properties of RHA

The physical properties of RHA are determined by ash processing parameters such as
burning methods, temperature and duration of burning, separation process, and grinding.
The pozzolanic property of RHA is dependent on its amorphous silica content, specific
surface area, and fineness of particles, and those can be improved by adopting controlled
combustion and grinding for application in structural concrete [29,30].

The pore structures of the RHA obtained by different scholars varied, including
small-sized pits and large interconnected pores, which depend on the source of rice husks,
calcination temperature, burning time, holding time, etc. In addition, the combustion of
rice husks after acid leaching can produce rice husk ash with high purity silica content [13].

N. K. Krishna et al. [31] confirm that the specific gravity of RHA was much lower than
that of cement. The study also discovered that the bulk density of RHA was lower than
that of cement. Because of the low bulk density, the volume occupied for a given mass was
greater, and as a result, the RHA filled the pores in the concrete, making it impermeable.
E. Mohseni et al. [32] also noted that surface area of RHA was greater than that of Portland
cement (4091 cm2/g and 3105 cm2/g, respectively). Table 1 summarizes the mean particle
size and specific gravity of RHA reported in various works.

Table 1. Mean particle size and specific gravity of RHA samples.

References Mean Particle Size (µm) Specific Gravity (g/cm3)

[23] 1–50 2.25–2.32
[24] - 2.19
[32] - 2.07
[33] 6.27 2.08
[34] - 2.14
[35] - 2.08
[36] - 2.09
[37] >45 2.36
[38] <45 2.3
[39] - 2.21
[40] - 2.12
[41] <45 2.06
[42] - 2.12
[43] - 2.17
[44] <25 2.3
[45] 25 2.7

According to A. A. Raheem and M. A. Kareem [46], the fineness of RHA blended
cement increases with the further addition of RHA content (from 330 m2/kg at RHA 0%
and 550 m2/kg at RHA 25%), and finer particles of RHA release more silica and have a
better filler effect, resulting in higher pozzolanic reactivity. N. K. Krishna et al. [31] reported
that the lower density of RHA in comparison to that of cement contributes to the higher
fineness of the RHA blended cement, which increases as the RHA content increases [46].
Table 2 displays the physical properties of RHA blended cements at various replacement
levels. As expected, the fineness of the blended cement increases with RHA, the residue on
a 45 µm sieve decreases. The higher residue obtained for the low RHA blended cement
was due to a higher content of coarser OPC clinker rather than RHA. The lower specific
gravity of the blended cements can be attributed to their higher fineness when compared
to the control cement. The soundness of RHA blended with cement ranges between 4 and
6 mm as the percentage replacement of RHA increases.
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Table 2. Physical properties of RHA blended cements at various replacement levels [46].

Parameters
Percentage of RHA Replacement

0 5 7 11.25 15 20.25 25

Residue on 45 µm sieve (%) 17.87 14.7 14.63 12.13 17.63 15.7 10.87
Fineness (m2/kg) 330 410 409 494 497 509 550
Soundness (mm) 4 6 5 6 5 5 6
Specific Gravity (g/cm3) 3.19 3.09 2.97 2.94 2.89 2.8 2.69

Furthermore, the color of RHA obtained by various researchers ranges from white to
gray to black, with the color proportional to the carbon concentration during production.
Short combustion times resulted in insufficient RHA combustion, resulting in higher carbon
content [12].

3.2. Chemical Composition of RHA
3.2.1. Oxide Composition of RHA

The chemical composition of RHA varies with temperature and burning time, but the
variations in the components are minor. When silica is kept in a non-crystalline state, con-
trolled combustion can produce highly pozzolanic ash. The majority of research confirms
that the burning temperature is an important factor in the production of amorphous reac-
tive ash [29,30]. The oxide composition of RHA samples reported by various researchers is
given in Table 3. The chemical composition and pozzolanic reactivity of RHA are primarily
determined by its silica content. As shown in Table 3, the silica content of RHA in all
studies is generally greater than 70%. The pozzolanic reactivity can, however, be improved
by using controlled combustion and grinding methods.

Table 3. Oxide composition of RHA sample from X-Ray Fluorescence (XRF) analysis.

References
Chemical Composition

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O Others LoI SiO2 + Al2O3 + Fe2O3

[27] 87.22 0.70 1.68 2.12 1.18 0.04 0.20 1.12 1.52 1.06 89.6
[32] 91.15 0.41 0.21 0.41 0.45 0.45 0.05 6.25 - 0.45 91.77
[33] 87.89 0.19 0.28 0.73 0.47 - - 3.43 - 4.36 88.36
[35] 83.74 0.29 0.67 0.74 0.86 0.87 0.091 2.84 0.51 8.39 84.7
[36] 84 1.35 1.45 3.17 - 0.92 - - - - 86.8
[39] 90.16 0.11 0.41 1.01 0.27 - 0.12 0.65 - - 90.68
[42] 74.35 1.379 1.029 1.39 1.06 - - 3.51 - 1.50 76.758
[43] 93.6 0.2 0.3 0.8 0.4 0.1 0.7 1.1 - 2.5 94.1
[45] 90.6 1.7 0.7 0.1 0.8 - - 2.4 2.65 <6 93
[47] 85.3 - 0.817 1.42 0.81 0.23 - 2.37 4.881 - 86.117
[48] 86.73 0.04 0.61 0.39 0.08 1.32 9.76 0.01 - 0.54 87.38
[49] 81.8 0.38 0.78 1.8 0.9 0.56 0.05 3.1 5.56 - 82.96
[50] 93.5 0.55 0.23 1.11 0.31 0.07 0.1 1.4 - - 94.28
[51] 87.8 0.4 0.3 0.7 0.6 0.1 0.5 2.2 - 2.2 88.5
[52] 88.07 1.35 0.22 1.04 0.74 0.49 1.15 2.02 2.31 2.61 89.64
[53] 86.98 0.84 0.73 1.4 0.57 0.24 0.11 2.46 - 5.14 88.55
[54] 96.84 1.03 0.38 0.47 0.32 - 0.03 0.81 0.1 - 98.25
[55] 87.8 0.4 0.3 0.7 0.6 0.1 0.5 2.2 - 2.2 88.5
[56] 94.91 0.37 0.79 0.98 0.26 0.09 0.02 1.67 0.85 0.06 96.07
[57] 91.56 0.19 0.17 1.07 0.65 0.47 - - 4.89 - 91.92
[58] 92.19 0.09 0.10 0.09 0.41 0.41 1.64 0.05 0.72 4.14 92.38

3.2.2. Pozzolanic Properties of RHA

RHA and other supplementary cementitious materials must meet ASTM C618-19
chemical composition standards in order to be used as pozzolan. According to ASTM
C618-19, any substances with a pozzolanic index of 70% or higher could be used as a
supplementary cementitious material. RHA contains a small amount of CaO, along with
various oxides, with a silica content of more than 70%. However, the loss on ignition of RHA
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products is high due to the incineration, processing, and grinding processes. Well-burned
and ground rice husk ash is very active and greatly improves the strength and durability
of concrete. The sensitivity of combustion conditions is the main reason preventing the
widespread use of this material as pozzolan [59,60].

The efficiency of RHA as a cementitious material is determined by the proportion of
cement, rice husk ash, admixtures, and water content in the mixtures, as well as the curing
conditions [18]. Aside from these determining factors, the fineness of RHA controls the
pozzolanic; thus, the grinding condition is critical. Indeed, grinding strategies of RHA
have an additional effect on fineness, with mechanical grinding being more efficient than
the recommended method (manual grinding). In addition, the calcination temperature,
and thus the degree of crystallinity, have been observed to have a sturdy influence on
pozzolanic activity [60,61].

3.3. Microstructure of RHA

The microstructure of RHA is dependent on the incineration, processing, and grinding
methods [37,60,62]. Scanning Electron Microscope (SEM) images typically show that RHA
particles are commonly irregular in shape, have a micro-porous cellular structure on the
surface, and are discrete widely. Table 4 shows some of the microstructure of RHA samples.

Table 4. Microstructure of RHA samples.

References Microstructure of RHA Sample

[24] Porous cellular structure.
[26] A denser microstructure with excellent aggregate bonding and cement matrix observed.
[28] Porous cellular structure.
[32] More packed pore structure.
[33] Irregular particles with micro-pores.
[37] Highly porous material with a large internal surface area.
[39] Irregular particles.
[58] Interconnected pores and loosely packed geo-polymer matrix with rough flaky extended feature.
[62] Cellular and porous structure, with a high specific surface.
[63] Poorly densified and porous structure.

Figure 1 depicts a typical SEM image of the RHA pattern grounded for varying lengths
of time. As observed from this figure, the RHA particles are porous, non-uniform in
dispersion, and coarser in nature. They are also no longer of uniform length and shape.
However, with the boom in grinding time, the RHA debris becomes uniform in length,
shape, and texture, and disperses more uniformly with fewer pores trapped inside. A
similar concept has also been demonstrated in a variety of studies.
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3.4. Mineralogical Compositions and Morphology of RHA

Identification and quantification of the mineralogical compositions as major and
minor elements present in RHA samples, X-Ray Diffraction (XRD), and Scanning Electron
Microscope (SEM) analyses carried out and reported by various researchers, and the results
are given in Table 5. The morphology of almost all RHA samples reviewed in this paper is
amorphous (non-crystalline).

Table 5. Mineralogical compositions of RHA samples.

References Mineralogical Compositions of RHA Sample

[23] Amorphous and identified as quartz (SiO2).
[28] Amorphous structures consist of cristobalite (SiO2).

[33] Amorphous structures and identified as gypsum (soft sulphate mineral composed of calcium sulphate dehydrate) and ettringite
(hydrous calcium aluminum sulphate mineral) in the surface pores.

[41] In both, amorphous and crystalline forms identified as cristobalite (SiO2).
[43] Amorphous structures consist of quartz (SiO2) and cristobalite (SiO2) minerals.
[49] Amorphous and low crystallinity of the samples showed the peak value known to be the quartz (SiO2) primary.
[54] Amorphous structures identified as calcium silicate hydrate (C-S-H) and calcium aluminate hydrate of C3ASH6 type.
[57] Amorphous structures and identified as cristobalite (SiO2).
[58] Amorphous structures and identified as quartz (SiO2), cristobalite (SiO2) and gibbsite (aluminum hydroxide—Al(OH)3).
[64] In both, amorphous and crystalline forms identified as cristobalite (SiO2) and Fluorite.
[65] Amorphous and identified as quartz and cristobalite (SiO2) seen on 2θ scale.

4. The Effect of RHA on the Fresh Properties of Concrete
4.1. Workability

Based on results of investigators, the workability of RHA, measured from both
the slump and compacting factor tests, decreased with an increase in the share of the
RHA [29,34,53,66–70]. The most likely explanation is that RHA is a porous material with
macro and mesopores inside and on the surface of the particles, resulting in a very large
specific surface area, which absorbs a certain amount of mixing water on its surface, result-
ing in a decrease in free water and a lower slump [26,29,34,61,69,70]. Hence, to achieve the
required workability, RHA containing mixes require more water, and this demand increases
as the RHA percentage of the mix increases. Another study makes a similar claim [71].
According to the authors of this study, using RHA increases the cementitious material’s
total specific surface area and porosity, which increases the mixture’s friction resistance and
discourages flow, resulting in a decrease in concrete slump and reduced workability.

4.2. Consistency and Setting Times

The consistency and setting times (initial and final) are important in concrete hydration
because they determine the rate of strength development. The findings of the studies
conducted by P. Kameshwar et al. [28] and A. A. Raheem and M. A. Kareem [46] showed
consistency and both initial and final setting times increasing with an increase in RHA to a
certain level, as shown in Figure 2 and Table 6.

As shown in Table 6, the consistency of the blended cement increased as the RHA
percentage replacement increased. The higher values of the consistency of the blended
cement compared to that of the control were attributed to the fineness of RHA.

A. A. Raheem and M. A. [46] concluded that the initial setting time decreases from a
5 to 11.25% RHA replacement level, increases by up to 15%, and then drops from a 15 to
25% RHA replacement level. Except for the blended cement with 11.25% and 25% RHA
replacement levels, the initial setting time for RHA blended cement is longer than the
control mix. Their low initial setting time values could be attributed to the low gypsum
and clinker content when compared to the control mix and other RHA replacement levels
considered. A similar result was also observed for the final setting time. This implies that
the setting time is sensitive to the gypsum content (whose major purpose is to retard the
setting time). The minimum initial setting time requirement (not less than 30 min) was met
by the blended cement with all the RHA replacement levels considered. The maximum
of 10 h (not exceeding 600 min) final setting time requirements set by the ASTM C-191
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standard is also satisfied, with the exception of the 15% RHA replacement that failed to
meet these requirements. Moreover, as the RHA content of the cement increases, so does its
surface area. As a result, the hydration process is slow, resulting in a longer setting time.
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Table 6. Setting times and consistency of RHA blended cements at various replacement levels [46].

Parameters
Percentage of RHA Replacement

0 5 7 11.25 15 20.25 25

Initial Setting Time (min) 175 280 220 135 440 210 118
Final Setting Time (min) 250 425 360 225 725 293 338
Consistency (%) 25 26.8 29.2 30 30.4 31.4 33.6

S. P. Bawankule and M. S. Balwani [69] address experimental studies on strength
characteristics of cement and cement with RHA, and find that the consistency test for
cement is less than that of cement with RHA, and the initial and final setting time of
cement with RHA is longer than that of cement mortar. Furthermore, S. K. Tulashie [24],
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N. K. Krishna et al. [31], and A. S. Gill and R. Siddique [50], confirm that the addition of
RHA up to the appropriate range increases the consistency and setting time.

The presence of RHA in the mix makes it to be finer than cement; hence, more water is
required for wetting the particles as the total specific surface of the particle increases. It was
also confirmed that it was necessary to increase the amount of chemical admixtures (unless
water-reducing) in the mixture containing RHA to obtain the same consistency with the
controlled mix [28,33,52,70,72].

5. The Effect of RHA on the Mechanical Properties of Concrete
5.1. Compressive Strength

There have been studies that show the compressive strength of concrete, containing
RHA as a partial cement replacement, increases as the RHA content increases to a certain
level, as shown in Figure 3. According to the figure, there is a study (reference [51])
that claims the compressive strength of RHA-containing concrete is lower than normal
concrete without RHA. However, the compressive strength of concrete containing RHA
as a partial cement replacement increases to a certain optimal level in the remaining
studies [48,67,72]. The reason why reference [51] behaves differently is unclear; it could
be due to the adopted RHA property, which is controlled by its manufacturing process.
In fact, depending on the type of ingredients, the curing period, and other factors, RHA-
containing concrete can have a variety of properties. The addition of a superplasticizer
and nanoparticles, for example, improves the mechanical properties of RHA mixtures
in concrete [32,35,48,63,72,73]. According to [19,20], using nano-silica made from RHA,
and nano-silica with RHA, significantly improved the mechanical properties of high-
performance concrete. Indeed, their high specific surface area will provide a large number
of nucleation sites for the hydration reaction, refining the pore structure in the paste
and improving the weak bonding of the interfacial transition zone (ITZ) by enhancing
the pozzolanic reaction effect and filling effect, thereby improving concrete compressive
strength [71]. Table 7 presents the performance of RHA containing concrete in terms of
comprehensive strength under various conditions.
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The particle packing density, which fills the gaps between the particles, is known to
control the compressive strength of concrete. RHA with very fine particle size contributed
to the packing effect of the pores in the concrete, and enhanced the hydration reaction
and increased the compressive strength of the concrete [73–77]. The use of bulk RHA
particles, on the other hand, can result in a significant loss of strength. This is because the
presence of large pores in the bulk RHA particles causes a lack of C-S-H gel to fill voids,
resulting in a significant reduction in strength [73,78]. Another factor in the reduction
of comprehensive strength in containing RHA is the water to binder ratio. According to
E. Molaei Raisi et al. [52], as the water to binder ratio increased, the compressive strength
of the concrete specimen containing RHA decreased in comparison to the control concrete
specimen. They reported that the compressive strength of self-compacting concrete (SCC)
specimens containing 10% RHA decreased as the water to binder ratio increased from 0.38
to 0.68. Other studies have also found the same phenomenon [41,55,68].

Other factors, such as the activator used, the silica content, and specific surface area of
RHA, influence the comprehensive strength of concrete. According to K. Kaur et al. [65],
compression strength is directly proportional to molarity and the alkaline activator to binder
ratio, as the amount of NaOH promotes RHA solution and improves particle bonding.
RHA with a high specific surface area also has a positive effect on mortar strength. Though
the reactive silica content of RHA determines the strength of concrete, which accelerates
the hydration process, promotes pozzolanic reaction, and refines pore distribution [17], the
silica structure and particle size of RHA determine the optimal cement replacement level
rather than the overall silica content of RHA [61,72].

Table 7. Compressive strength of RHA blended cements at various replacement levels.

References Material/s and Method/s Result/s

[41]

- RHA with 0%, 5%, 10%, 15%, 20%, and 25%
in mass.

- Cured for 3, 7, 14, 21, 28, 56, 90, and 180 days.

- Compared to control concrete, the optimal
replacement percentage of ordinary Portland
cement with 5% RHA showed an increase
over control concrete.

- A further increase in RHA resulted in
decreased compressive strength.

[42]

- RHA with 0%, 2.5%, 5%, 7.5%, 10%, 12.5%,
and 15% by weight.

- Aluminum powder as an aerating agent was
used during blending at a rate of 0.5% by
weight of binder.

- The compressive strength increases up to
10% of RHA and begins to decrease at 12.5%.

[44]

- RHA with 0%, 5%, 7.5%, 10%, 12.5%, and
15% by weight.

- Cured for 7 and 28 days.
- Water cement ratio of 0.39.

- The strength of the concrete containing 7.5%
RHA was higher than that of the concrete
containing only Portland cement.

[45]

- 5, 6, and 7% RHA with the addition of fly ash
(FA) and silica fume (SF).

- The water cement ratio has been kept
constant as 0.29.

- Curing regimes of 7 and 28 days.
- Superplasticizer with measurements of 1.2%,

1.3%, and 1.4%.

- The compressive strength of normal concrete
is slightly higher than the FA, RHA, and SF
containing concrete.

[79]

- 15% RHA compared with normal C30
concrete.

- The water cement ratio has been kept
constant as 0.45.

- Curing regimes of 7, 14, and 28 days.

- Concrete containing cement that was
partially replaced by RHA yielded a higher
compressive strength than normal concrete.
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Table 7. Cont.

References Material/s and Method/s Result/s

[80]
- RHA with 0%, 10%, 20%, and 30% by weight.
- Cured for 7, 14, and 28 days.

- Compressive strength values increased
nominally when the RHA replacement level
in the concrete was increased up to 30%.

[81]
- RHA with 0%, 5%, 10%, 15%, 20%, and 30%.
- Cured for 7, 28, and 45 days.

- The strength development observed in the
control concrete between 7 days and 28 days
is slightly different from the strength
development observed in each of the trial
mix designs with RHA since some strength
has just been determined to be developed, as
indicated by the 45 days strength.

[82]

- Steel fiber content as 0%, 0.5%, 1%, & 1.5%.
- RHA with 0% and 10% by weight.
- Cured for 7 and 28 days.

- The compressive strength of RHA and steel
fiber containing concretes increases as the
percentage of density of the concrete
increases due to its tensile strength.

[83]

- 5%, 10%, 15%, and 20% of RHA
- Cured for 7, 28, and 60 days
- water to cement ratio of 0.39

- The comprehensive strength of concrete with
5% and 10% RHA replacement is greater than
that with 15% and 20% RHA replacement.

[84]
- RHA with 0%, 5%, and 10% by weight.
- Cured for 7 and 14 days.

- The compressive strength of concrete
increased gradually as the RHA percentage
increased; for 5% replacement, the strength
increased by 15%, while for 10% replacement,
the strength decreased.

5.2. Tensile Strength

Some studies claim that the tensile strength of RHA-containing concrete is lower than
that of the control mix, while others claim that it increases as the RHA content is increased
to a certain proportion. Tensile strength of concrete is controlled by several factors, similar
to comprehensive strength. The effect of RHA blended cements on concrete tensile strength
at various replacement levels and conditions is presented in Table 8.

The increase in tensile strength of mortar with RHA containing a high amount of
crystalline silica is better justified by the filler effect (physical) than by the pozzolanic effect
(chemical). After depletion of all amorphous silica by reacting with calcium hydroxide
(Ca(OH)2) to produce secondary C-S-H gel, the remaining crystalline silica behaves as a
filler resulting in an increased density of the mortar [73,85]. Like the compressive strength,
the reactive silica content, rather than the overall silica content, determines the tensile
strength of RHA-containing mortar. The optimal replacement level of cement by RHA
depends more on the silica structure and particle size than the overall silica content of
RHA [85]. RHA with a high specific surface area has a positive effect on mortar strength.

According to M. S. Meddah et al. [63], the increase in splitting tensile strength is due
to the pozzolanic reaction of pozzolan materials of nano-particles with 10% RHA, which
fills the capillary pores, densifies the concrete microstructure, and improves its strength
properties, as previously stated. In addition, good particle packing effect of RHA could
be the reason for the enhanced strength property [79]. This is because the particles filled
the gaps between themselves. Very fine particle size of rice husk ash contributed to the
packing effect of the pores in the concrete, thereby increasing the strength.

5.3. Flexural Strength

Flexural strength, like comprehensive and tensile strengths, of concrete containing
RHA as a cement partial replacement material, was influenced by a number of factors [15,86].
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Table 9 shows the effect of RHA-containing concrete on flexural strength at various replace-
ment levels and conditions.

Table 8. Tensile strength of RHA blended cements at various replacement levels.

References Material/s and Method/s Result/s

[42]

- RHA with 0%, 2.5%, 5%, 7.5%, 10%, 12.5%,
and 15% by weight.

- Aluminum powder as an aerating agent was
used during blending at a rate of 0.5% by
weight of binder.

- Curing regimes of 3, 7, and 28 days.

- The tensile strength increases to 10% of RHA
and begins to decline at 12.5%.

[79]

- 15% RHA compared with normal C30
concrete.

- The water cement ratio has been kept
constant as 0.45.

- Curing regimes of 7, 14, and 28 days.

- The tensile strength of RHA-containing
concrete was higher than that of nominal
concrete.

[82]

- Steel fiber content as 0%, 0.5%, 1%, & 1.5%.
- RHA with 0% and 10% by weight.
- Cured for 7 and 28 days.

- The tensile strength of RHA and steel
fiber-containing concrete increases due to its
high tensile strength.

Table 9. Flexural strength of RHA blended cements at various replacement levels.

References Material/s and Method/s Result/s

[42]

- 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15% of
RHA by weight.

- Aluminum powder as an aerating agent was
used during blending at a rate of 0.5% by
weight of binder.

- Cured for 3, 7, and 28 days.

- The test results display that the use of 10%
RHA as a partial alternative to cement in
aerated concrete is optimum.

[45]

- 5, 6, and 7% RHA with the addition of fly ash
and silica fume.

- The water cement ratio has been kept
constant as 0.29.

- Cured for 7 and 28 days.
- Superplasticizer used with 1.2%, 1.3%, and

1.4%.

- The flexural strength of normal concrete is
slightly higher than the Fly Ash, RHA, and
Silica Fume containing concrete.

[63]

- 0% and 10% of RHA combined with different
replacement levels of Al2O3 nanoparticles
from 0% to 4%.

- Cured for 7, 28, and 90 days.
- w/c ratio of 0.41

- All 10% RHA modified cement concrete
mixes had exhibited appreciable strength
improvement ranging from 1% to 15%
compared to the control mixture.

[79]

- 15% RHA compared with normal C30
concrete.

- The water cement ratio has been kept
constant as 0.45.

- Cured for 7, 14, and 28 days.

- RHA containing concrete yielded greater
flexural strength than normal concrete.

[82]

- Steel fiber content as 0%, 0.5%, 1%, & 1.5%.
- RHA with 0% and 10% by weight.
- Cured for 7 and 28 days.

- The flexural strength of RHA and steel
fiber-containing concrete increases with the
percentage of density concrete increase in
due to its tensile strength.
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6. The Effect of RHA on the Durability Properties of Concrete
6.1. Water Absorption

P. Kameshwar et al. [28] conducted a water absorption test on concrete utilizing 20%
RHA in accordance with ASTM C642-13 and compared it to a control mix. Figure 4 depicts
the results. It can be noted that a significant reduction in water absorption of approximately
14% was observed in all stages of the test for RHA blended cement mortar compared to
the control mix. This could be attributed to the pore refinement because of the addition
of pozzolanic RHA, as well as an increase in packing density. As the specific surface area
of RHA after 30 min of grinding is around 56 m2/g (more than 230 times the specific
surface area of cement particles), a certain amount of mixing water is absorbed on its
surface. Furthermore, the RHA filler effect could have influenced the permeability and
water absorption properties of RHA blended cement mortars.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 30 
 

 

[79] 

- 15% RHA compared with normal C30 
concrete.  

- The water cement ratio has been kept 
constant as 0.45.  

- Cured for 7, 14, and 28 days. 

- RHA containing concrete 
yielded greater flexural 
strength than normal concrete. 

[82] 

- Steel fiber content as 0%, 0.5%, 1%, & 
1.5%. 

- RHA with 0% and 10% by weight. 
- Cured for 7 and 28 days. 

- The flexural strength of RHA 
and steel fiber-containing 
concrete increases with the 
percentage of density concrete 
increase in due to its tensile 
strength. 

6. The Effect of RHA on the Durability Properties of Concrete 
6.1. Water Absorption 

P. Kameshwar et al. [28] conducted a water absorption test on concrete utilizing 20% 
RHA in accordance with ASTM C642-13 and compared it to a control mix. Figure 4 depicts 
the results. It can be noted that a significant reduction in water absorption of 
approximately 14% was observed in all stages of the test for RHA blended cement mortar 
compared to the control mix. This could be attributed to the pore refinement because of 
the addition of pozzolanic RHA, as well as an increase in packing density. As the specific 
surface area of RHA after 30 min of grinding is around 56 m2/g (more than 230 times the 
specific surface area of cement particles), a certain amount of mixing water is absorbed on 
its surface. Furthermore, the RHA filler effect could have influenced the permeability and 
water absorption properties of RHA blended cement mortars. 

RHA 0% RHA 20%
0

1

2

3

4

5

6

7

W
AT

ER
 A

BS
O

R
PT

IO
N

 (%
)

MIX SAMPLES

 AFTER BOILING
 AFTER IMMERSION

 
Figure 4. Water absorption of control and 20% RHA blended cement mortar, adapted from [28]. 

P. Kameshwar et al. [28], also conducted the rate of water absorption of control and 
20% RHA replaced specimens as per ASTM C1585-13. The result confirms that the water 
absorption (I) increases linearly with respect to time. The water absorption of the control 
mortar and RHA-blended cement mortar were almost identical for the first 6 h. In contrast, 
when 20% RHA is added, the rate of secondary water absorption (slope of the second 
curve) is reduced to half its value. The trend in the change in water absorption rate with 
age is also consistent with the results of the strength activity index and compressive 
strength tests. In this case, the matrix of both RHA blended cement mortar and control 
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P. Kameshwar et al. [28], also conducted the rate of water absorption of control and
20% RHA replaced specimens as per ASTM C1585-13. The result confirms that the water
absorption (I) increases linearly with respect to time. The water absorption of the control
mortar and RHA-blended cement mortar were almost identical for the first 6 h. In contrast,
when 20% RHA is added, the rate of secondary water absorption (slope of the second
curve) is reduced to half its value. The trend in the change in water absorption rate
with age is also consistent with the results of the strength activity index and compressive
strength tests. In this case, the matrix of both RHA blended cement mortar and control
mortar has nearly the same internal pore structure at the early stages of hydration. As the
pozzolanic reaction progresses, pore refinement occurs, resulting in lower permeability and
less water absorption.

The studies by E. Mohseni et al. [32]; R. K. Sandhu and R. Siddique [70]; M. Zahedi et al. [87];
V. Saraswathy and H. W. Song [88]; V. Vishwakarma et al. [89]; and Y. Sombabu et al. [90]
confirm that there was a definite pattern of reduction in water absorption when RHA was
added to the cement matrix. This could be attributed to the pore refinement due to the
addition of pozzolanic RHA, as well as an increase in packing density. Other studies, such
as those conducted by S. A. Zareei et al. [48], and A. Siddika et al. [67], confirm that the
water absorption values of RHA concrete are lower than the control concrete, and increase
with an increasing w/c ratio, as seen in Figures 5 and 6.
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Figure 6. Water absorption vs. RHA content, adapted from [67].

L. Hu et al. [60] conducted a water absorption test on mortars containing combustion
treated RHA with the w/b ratios of 0.5 and 0.4 under two different curing conditions, the
detailed results of which are shown in Figure 7. Surprisingly, mortar containing treated
RHA absorbed more water than the control mortar with a w/b of 0.5. This could be
explained by the comparable pore size distribution. Whereas for mortars containing 15%
and 20% treated RHA, water absorption ratios were reduced by 1 and 4.5%, respectively,
compared to control mortar at a w/b of 0.5, indicating that permeability would be reduced
with the replacement of highly reactive RHA to promote hydration. Lowering the w/b
ratio of mortars from 0.5 to 0.4 resulted in a significant reduction in permeability and thus,
water absorption in treated RHA blended mortars compared to control mortar.
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The effect of different curing temperatures on water absorption is also shown in
Figure 7. As shown in Figure 7, both standard and high-temperature curing displayed
some variation in the water uptake results of the mortars at the w/b ratios of 0.5 and 0.4.
Firstly, when comparing high-temperature curing to conventional curing, there was an
overall decrease in water absorption in mortars with high-temperature curing. Secondly,
this declining phenomenon became more evident as the treated RHA dosages in blended
mortars increased, especially with a w/b of 0.5. Therefore, a suitable high temperature
during the initial curing phase was beneficial in order to reduce water absorption and
permeability, while the risk of thermal cracking in mortars mixed with treated RHA was
hardly increased.

M. Abdul Rahim et al. [59] also tested the water absorption of concrete containing
varying amounts of RHA (5%, 15%, and 25%). In comparison to the control mix, concrete
containing 5% had a higher water absorption resistance. However, it appears that as the
percentage of RHA replacement increases, so does the percentage of water absorption. The
higher the percentage of water absorption, the lower the compressive strength [91].

The author V. N. Kanthe et al. [92] demonstrate the relationship between particle
packing density and water absorption. The result demonstrates that as the packing density
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increases, the water absorption decreases with the coefficient of determination (R2) of 0.93.
It occurred because of dense particle packing and a reduction in pores. The correlation
regression analysis leads to the conclusion that particle-packing density influences the
water absorption capacity.

6.2. Chloride Resistance

F. A. Martinez Urtecho et al. [53] conducted a rapid chloride penetration test on
concretes containing 0, 5, 10, and 15% RHA. According to the test results, the control
concrete has a high and moderate classification of chloride ion penetrability. The concrete
with the highest percentage of RHA, on the other hand, has a low and very low classification,
with a difference of up to 75.9%. P. Kameshwar et al. [28] also determined the non-steady-
state diffusion coefficients, and results showed that the non-steady-state chloride migration
coefficient of RHA blended cement mortar was reduced by about 60% compared to the
control mix. The reduced non-steady-state chloride migration coefficient can also be
attributed to the refined pore structure of the RHA blended mortar specimens compared to
the control mortar, due to the pozzolanic reaction. Figure 8 shows the results of the rapid
chloride migration test.
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A study carried out by S. A. Zareei et al. [48] also confirmed that incorporating RHA
into cement contributes to low ratios of chloride ion penetrations of up to 928 Coulombs
by 25% RHA replacement, which is a fivefold reduction compared to the control mix,
as illustrated in Figure 9. This is because rice husk ash contains 85 to 95% by weight
amorphous silica. The drastic improvement in the permeability properties of concrete
containing 25% RHA (78% reduction in chloride permeability), results in a 26% reduction
in water permeability when compared to concrete without RHA.

Figure 10 shows chloride penetration and the impact of adding 10% RHA mixed
with different concentrations of Alumina nanoparticles on the total charge passed at 7
and 28 days, as determined by M. S. Meddah et al. [63]. The authors adopted the RCPT
method to conduct the tests. When compared to the control mix, the combination of
RHA and Alumina nanoparticles considerably reduced chloride penetration at both 7 and
28 days of water curing. At 14 and 28 days, solo integration of 10% RHA resulted in total
charge reductions of 6.4 and 10.1 percent above the control mix, respectively. Combining
varying amounts of Alumina nanoparticles with 10% RHA has revealed greater efficiency
in reducing the chloride permeability of concrete than at single incorporation of RHA as a
partial replacement of Portland cement. The lower the chloride permeability of the concrete,
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the higher the concentration of nanoparticles Al2O3 in the sample. Nonetheless, Figure 10
demonstrates no decrease in chloride permeability, if not a slight gain, when the Alumina
nanoparticles content increased from 3% to 4%, and thus 3% could be considered as an
optimum amount of Alumina nanoparticles in the concrete mix.
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As shown in Figure 10, the reduction in chloride penetration for the RHA 10% with
Alumina nanoparticles blends was observed at 14 and 28 days when compared to the
control mixture. There is also no significant reduction in chloride permeability when the
Alumina nanoparticle content exceeds 3%. In fact, a combination of 10% RHA and Alumina
nanoparticles to produce modified cement concrete contributes greatly to the densification
of the concrete‘s microstructure. Densification is achieved by filling large capillary pores,
refining the pore network, and reducing overall pores and voids, thereby lowering the
chloride permeability of concrete.
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E. Mohseni et al. [32] conducted the penetration of chloride ions as per ASTM C1202-07
as shown in Figure 11. Based on the findings, the authors concluded that using both RHA
and TiO2 nanoparticles improves the chloride permeability of the mixtures. The charge
passed in the mixtures of RHA and NT (TiO2 nanoparticles) was lower than in the control
mixture. Charge levels were lowest in mixtures containing 15% RHA. This is due to the
extended pozzolanic reaction of the RHA mortar mix. Figure 11 also indicates that the
chloride ion permeability in the mortars with TiO2 nanoparticles decreased after 90 days
when compared to RHA mixtures. The key reason for this enhancement in durability is
that TiO2 nanoparticles improve the denser microstructure and reduce the pores; thereby
promoting resistance to chloride transport. The best result was achieved from a 15% RHA
+ 5% NT (TiO2 nanoparticles) mixture, which showed a 67% reduction in RCPT (Rapid
Chloride Permeability Test) value when compared to the plain sample. It is noteworthy
that all samples with TiO2 nanoparticles belong to the category of mortars with low to
moderate chloride permeability. The chloride binding capacity of the mortar affects the
rate of chloride penetration into the cement mortar. A portion of the chloride ions react
with the mortar matrix and become either physically or chemically bound, and this binding
reduces the rate of diffusion. It is worth noting that the cementing materials used in the
mortar control the chloride binding capacity.
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M. Zahedi et al. [87] and T. R. Praveenkumar and M. M. Vijayalakshmi [93] demon-
strated that adding RHA to concrete increases its resistance to chloride penetration. Ac-
cording to the authors, the decrease in the pore interconnectivity of mortars and pore water
solution has resulted in a decrease in the permeability of RHA mortar. Generally, speci-
mens incorporating RHA are classified as having moderate chloride permeability, while the
control sample is classified as having high chloride permeability [94–96]. The utilization of
nano-particles (nano SiO2 derived from RHA) can further improve the chloride penetration
resistance of concrete [20].

6.3. Corrosion Resistance

V. Kannan and K. Ganesan [33] investigated the possibility of steel corrosion in RHA-
containing self-compacting concrete (SCC), which is especially useful for comparing the
short-term corrosion resisting characteristics. By applying a constant voltage of 12 V
between the blade embedded in the concrete (the anode) and the perforated cylindrical
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stainless steel (the cathode) immersed in a 5% NaCl solution, the time required for the
initial crack to appear on the concrete specimens and the maximum anodic current flowing
at that time were recorded. The measurements show that the control mix has the earliest
initial cracking (336 h) and the highest anodic current (26 mA), followed by 15% RHA
blended SCC (792 h and 7 mA). According to these findings, all of the blended SCC mixes
outperformed the control mix in terms of resistance to NaCl migration through the concrete
medium, making them corrosion resistant.

H. Wang et al. [57] examine the AC electrical resistance of steel bars in RHA cement
paste with curing ages ranging from a month to 12 months and the results are illustrated in
Figure 12. It can be seen from the figure that increasing the curing ages led to an increase
in the electrical resistance of the samples. When cured for one month, the RHA addition
had an increasing effect on the electrical resistance of steel bars in RHA cement paste
(except 5% RHA had a drop tendency in electrical resistance compared to the control mix).
Moreover, the AC electrical resistance results in Figure 12 show a lower value for samples
with 10% and 15% RHA in comparison to the reference sample (0% RHA) after four months
of curing. The most likely reason for this is that the addition of RHA could reduce electrical
polarization, resulting in lower electrical resistance. Therefore, specimens containing 10%
and 15% RHA are more corrosion resistant than samples with 0% RHA.
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Figure 13 depicts the variation of electrical resistance with increasing curing ages. It
can be seen that the increasing speed of specimens decreased in the order of 5%, 0%, 10%,
and 15%, confirming that specimens with RHA of more than 5% were less corroded.

T. Ali et al. [42] investigated the corrosion potential on aerated concrete containing
RHA. Figure 14 illustrates the corrosion potential results after 28 days of wet curing with
90 days of sodium chloride curing for control and rice husk ash aerated concrete. The
results demonstrate that 90% of the corrosion in the control mixture is active. In addition, as
the percentage of RHA in the aerated concrete mix increases, corrosion begins to decrease.
Other studies also reveal that the corrosion potential decreases as the proportion of RHA
increases [75,91,96]. RHA in reactive powder cement could also significantly improve the
corrosion resistance of steel bars [97].
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6.4. Sulphate Resistance

J. Kamau et al. [51] investigated the performance of concrete containing RHA in
sodium sulphate (Na2SO4), magnesium sulphate (MgSO4), and a mixture of the two. The
authors examined the elongation and strength deterioration in concrete with 7.5% and 30%
RHA replacement by the weight of cement. The results of expansion tests are illustrated in
Figure 15. It can be observed that that at 7.5% RHA replacement, RHA may be used with an
advantage over the control mix in MgSO4 environments, whereas at 30% RHA replacement,
RHA could be used with an advantage over the control mix in both Na2SO4 and MgSO4. The
authors also reported that RHA-containing concrete outperformed cement-only concrete in
all sulphate solutions, confirming their superior ability to resist surface degradation.
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There is another related study performed by T. Ali et al. [42] that focuses on aerated
concrete containing RHA. The authors investigated the resistance of RHA-containing
concrete samples to sulphate attack. They made seven different combinations (MIX1 to
MIX2). MIX1 is the controlling mix, containing 0% RHA. The others include RHA with a
2.5% increase. This means that MIX2 contains 2.5% RHA and MIX7 contains 15% RHA. The
sulphate resistance of concrete was determined by measuring specimen length variations.
As shown in Figure 16, the expansion of the aerated concrete without RHA (MIX1) is
significantly greater than the expansion of the aerated concrete with RHA (MIX2 to MIX7).
This confirms that as RHA dosage is increased, the samples become more resistant to
sulphate attack.

L. Hu et al. [98] examine the effect of sulphate attack on compressive strength losses.
The compressive strengths of pastes with different RHA addition dosages at 28 days with
standard curing before sulphate attack, at sulphate attack ages of 15, 90, and 120 days, are
shown in Figure 17. According to the findings, all of the specimens had comparable variable
characteristics. Samples had higher compressive strength after 15 days of sulphate attack



Sustainability 2023, 15, 137 21 of 26

compared to 28 days before sulphate attack. This strength enhancement was statistically
significant for the paste control, with an increase of 17.7%, compared to 6.3% growth in
a paste with 15% RHA. Almost all of the specimens at 90 days of sulphate attack lost
strength after the deterioration began. The most serious degradation appeared at 120 days,
when samples lost significant strength. At this age, the control mix sample was severely
damaged by sulphate attack, and it lost 65% of its initial strength before sulphate attack.
A mitigated damage was observed for paste containing 5% RHA, but a strength loss was
noticed, indicating that there was insufficient delay capability to sulphate attack. When the
RHA dosage was increased to 15%, the samples at 120 days showed a further reduction
in sulphate exposure damage. This suggests that a high dose of RHA will have a positive
effect on sulphate resistance improvement. Another study also reveals that the sulphate
resistance increases as the proportion of RHA increases [99].
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Figure 17. Sulphate attack on loss of compressive strength, adapted from [98]. 

7. Conclusions 
Based on the conducted comprehensive review of the properties of rice hulk ash and 

its effect as a partial replacement for cement on the properties of concrete, the following 
conclusions can be drawn. 
• RHA particle properties: The microstructure of RHA particles is typically irregular in 

shape, with porous structures on the surface, non-uniform in dispersion, and discrete 
widely. The chemical composition of RHA comprises a high amount of silica content, 
which is well above 70%, in some cases reaching up to 97%, that gives excellent 
pozzolanic properties. The silica is mainly present as an amorphous phase with 
Quartz (SiO2) and Cristobalite (SiO2). The pozzolanic reactivity of RHA is determined 
not only by its amorphous content, but also by its specific surface area and particle 
fineness, which can be improved by using controlled combustion and grinding. The 
finer RHA particles release more silica and have a better filler effect, resulting in 
higher pozzolanic reactivity. The pore structures of RHA varied, including small size 
pits and large connected pores, depending on the source of rice husk, calcination 
temperature, burning time, holding time, and so on. As a result, in addition to 
selecting the type of rice, a proper incineration and grinding process should be used 
to produce RHA that has higher pozzolanic reactivity and can be used effectively as 
a material for partial cement replacement of cement. 

• RHA on concrete properties: RHA has a strong potential to replace cement by up to 10% 
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significantly enhance the strength of concrete by providing a dense microstructure 
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Figure 17. Sulphate attack on loss of compressive strength, adapted from [98].
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7. Conclusions

Based on the conducted comprehensive review of the properties of rice hulk ash and
its effect as a partial replacement for cement on the properties of concrete, the following
conclusions can be drawn.

• RHA particle properties: The microstructure of RHA particles is typically irregular in
shape, with porous structures on the surface, non-uniform in dispersion, and discrete
widely. The chemical composition of RHA comprises a high amount of silica content,
which is well above 70%, in some cases reaching up to 97%, that gives excellent
pozzolanic properties. The silica is mainly present as an amorphous phase with
Quartz (SiO2) and Cristobalite (SiO2). The pozzolanic reactivity of RHA is determined
not only by its amorphous content, but also by its specific surface area and particle
fineness, which can be improved by using controlled combustion and grinding. The
finer RHA particles release more silica and have a better filler effect, resulting in higher
pozzolanic reactivity. The pore structures of RHA varied, including small size pits and
large connected pores, depending on the source of rice husk, calcination temperature,
burning time, holding time, and so on. As a result, in addition to selecting the type of
rice, a proper incineration and grinding process should be used to produce RHA that
has higher pozzolanic reactivity and can be used effectively as a material for partial
cement replacement of cement.

• RHA on concrete properties: RHA has a strong potential to replace cement by up to 10%
to 20% without compromising concrete performance in terms of workability, strength,
and durability. The workability of concrete generally decreases with increasing RHA
content. The pozzolanic reactivity and filler effect of RHA significantly enhance
the strength of concrete by providing a dense microstructure through the formation
of additional C-S-H gels. The densification of the concrete matrix also results in a
lower rate of water absorption and penetration of chemical ions into the concrete. As
the pozzolanic activity of RHA in concrete is influenced by a variety of factors, it is
necessary to establish a set of criteria within which they vary, so that those interested in
using RHA in concrete can obtain RHA with optimal properties in terms of influence
on concrete workability, strength, and durability. Indeed, more and more experimental
work under various scenarios is required to make this happen.

• RHA on concrete sustainability: RHA production uses less energy and emits fewer
greenhouse gases than cement. The use of RHA as a partial cement replacement in
concrete production could significantly reduce the carbon footprint of concrete. It
also contributes to the beneficial disposal of agricultural byproducts, thereby reducing
adverse environmental effects. Indeed, improving the pozzolanic properties of RHA
is critical to achieving greater sustainability in the concrete industry. It would allow
for a high proportion of cement to be replaced, resulting in green concrete, which
would ultimately contribute significantly to combating climate change, achieving the
Sustainable Development Goals (SDG13), and contributing to a circular economy in
the construction industry.
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