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Abstract: Herein, we report single-wall carbon nanotubes (SWCNT)/poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT: PSS) loading on the transparency and conductivity of pure cotton
and systematically studied using a four-probe stack made of copper (Cu) which showed a surface
resistance of 0.08 Ω/cm. Moreover, the treated cotton cloth retained its maximum resistance even
after three months. Surface morphology was investigated by scanning electron microscopy (SEM) and
elemental structure analysis was performed by energy-dispersive X-ray (EDX), while the structural
analysis was performed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction
(XRD) techniques, confirming that there is a good dispersion of SWCNTs/PEDOT: PSS in the cotton
sample. The composite cotton/hydrogel polymer/composite cotton achieved a specific capacitance
of 212.16 F/g at 50 mV/s. Thermal properties were also investigated using thermogravimetric
analysis (TGA) and differential scale calorimetry (DSC). The low surface resistance and thermal
stability show that cotton fabric can be a promising candidate for smart wearable textiles and modern
circuitry applications.

Keywords: SWCNTs; PEDOT: PSS; resistance; conductive cotton; cotton fabric; smart wearable textile

1. Introduction

Smart wearable devices can be produced using flexible materials in the field of energy,
electronics, sensing, and healthcare products. These devices are prepared by incorporating
conductive nanostructures single-wall carbon nanotubes and multiwall carbon nanotubes
(SWCNTs and MWCNTs) and polymeric nanocomposites (PEDOT: PSS) on the surface of
flexible cotton. Smart conductive fabric is an active area of research nowadays due to its
growing applications in flexible electronics, wearable devices, and electronic sensors [1].
The fusion of cotton with conductive fillers makes composite cotton with exciting new
properties, such as pressure and fatigue sensors [2].

We treated pure cotton using a mixture of SWCNTs and PEDOT: PSS with the addition
of dimethyl sulfoxide (DMSO) as a catalyst to make the electrode and using the hydrogel as
an electrolyte [3]. As an electrode, composite cotton can be used to incubate nanostructured
energy materials such as SWCNTs and PEDOT: PSS. In order to convert pure cotton into
conductive cotton, the dipping method is an effective technique. Due to the strong π-bond
interaction between SWCNTs and PEDOT: PSS, the π-orbitals overlap to form “π-bonds”
due to SWCNTs being a good conductor and due to the non-positional electrons in the π-
orbitals [4]. SWCNTs are formed through graphene-like sp2 hybridization. These bonds are
stronger than the sp3 bonds found in diamonds and SWCNTs nanotubes are distinguished
by their unique strength [5].

The carbon atoms are bonded together through a C–C conduction, where the energy
difference between the 2s and 2p orbitals is less than the energy gain. To form the primary
structure, the orbitals can fuse in hybrid orbitals, where each carbon atom is bonded to four
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carbon neighbors [6]. The hexagonal lattice is the main step in the fusing of single-walled
nanotubes with pure cotton and PEDOT: PSS (Figure 1). Additionally, PEDOT: PSS reduces
the aggregation of SWCNTs and thus increases the ion pathways and significantly improves
the electron transfer efficiency in cotton [6].
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The key to flexible collapsible electrodes is to achieve flexibility and increase their
service life under repeated cyclic loading with certain stress. Extensibility refers to the
ability of stretchable flexible electrodes to maintain electrical conductivity under mechan-
ical deformation. In the field of supercapacitors, this is a research hotspot for preparing
materials with more flexibility and even extensibility. In mechanics, cotton is a good way to
achieve overall structural expansion. In addressing the presence of carbonaceous materials,
an easy and inexpensive preparation process that is compatible with various new materials
is a necessary step to achieve large-scale preparation. For charge storage mechanisms,
supercapacitors (SCs) are classified as double-layer electrolytic capacitors (EDLCs) and
pseudo-capacitors (PCs). It can contain EDLCs, activated carbon, graphene derivatives,
carbon nanotubes, carbon fabrics, etc., as electromagnetic materials (EMs), while computers
usually use conductive polymers such as polyaniline, polypyrole, polythiophene, polythio-
phene derivatives, etc., transition metal oxides, and transition metal nitrides, carbides, and
sulfides. Supercapacitors (SCs) have many advantages such as long cycle life, high energy
density, and low maintenance cost [7]. On the other hand, hydrogels have attracted the
attention of researchers in the field of energy storage systems, given that they are multiple
building blocks for the multiple uses of life. Hydrogels are interlocking 3D hydrated mesh
materials based on hydrophilic mechanical elasticity, reversibility, and tunability. Thus, the
complexities and diversity found in hydrogels populate various energy storage devices that
can be bent, stretched, compressed, as well as deformed into arbitrary different shapes [3].

In this work, the conductive cotton fabric has been prepared by the dip-coating method
of SWCNTs/PEDOT: PSS which was treated in the presence of dimethyl sulfoxide (DMSO)
to destabilize the ripple of the cotton fibers, allowing better incorporation of SWCNTs and
cotton fibers, followed by heating for 1 h at 100 ◦C. SEM, EDX, XRD, FTIR, and TGA were
used to characterize the SWCNTs/PEDOT: PSS coated cotton. The conductivity of the
materials was determined using a four-line probe method. The conductivity of the treated
cotton fabric was monitored for three months. A low-cost, highly flexible, and scalable
supercapacitor was assembled from a highly conductive stretchy composite cotton. By
incorporating cotton-based high-conducting single-walled carbon nanotubes (SWCNTs)
and PEDOT: PSS into the polymer hydrogel, we demonstrate that the capacitor has high
capacity, is flexible, and is based on environmentally friendly materials. Electrochemical
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studies were carried out using a sandwich natural polymer hydrogel as an electrolyte
between SWCNTs/PEDOT: PSS coated replica cotton electrodes.

2. Materials and Methods
2.1. Chemicals and Materials

A single-wall carbon nanotube (SWCNTs), with an individual diameter ~1.8 ± 0.3 nm,
an individual length > 5 µm, carbon purity > 98%, and BET surface area ~500 m2/g was
purchased with an initial flake size of 100 mesh from Sigma-Aldrich (308068-56-6). Poly
(3,4 methylenedioxy thiophene and poly (4-styrene sulfonate) (PEDOT: PSS) (483095-250G),
along with dimethyl sulfoxide (DMSO) (assay 99.9%), was also purchased from Sigma-
Aldrich (67-68-5). Pure cotton fabric with a weight of 100 g m−2 was purchased from
Egypt. Deionized water (DI) was used as a solvent, while sodium alginate (NaC6H7O6)
(Na-Alginate) (SA, chemically pure) (9005-38-3), Acrylamide (AAM) (79-06-1), and Sulfuric
Acid (H2SO4) (7664-93-9) to prepare the hydrogel was purchased from Sigma-Aldrich. The
chemical structure of all the materials used is shown in Figure 1.

2.2. SWCNTs/PEDOT:PSS Ink Fabrication

A total of 0.5 mL of DMSO was dissolved in deionized water with help and then
sonicated. An amount of 1.6 mg/mL concentration of SWNTs was then dispersed in the
solution and sonicated for 5 min. A total of 5 mL PEDOT: PSS was then added to the
solution as shown in Schematic Figure 2.
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2.3. SWCNTs/PEDOT: PSS Cotton Preparation Procedure

Pure cotton ~1–2 mm thick was dipped in ink solution of SWCNT/PEDOT: PSS. Due
to the high porosity and strong absorbency of cotton, the solution covers cotton quickly.
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The SWCNTs/PEDOT: PSS ink composite cotton was dried at 100 ◦C for an hour to remove
the water.

2.4. Poly(acrylamide)/Na-Alginate

Next, 2 gm Na-alginate/100 mL water solution was added with heating and the
solution was stirred continuously on a magnetic stirrer at 50◦ C, and then 7 g of Acrylamide
(AAM) monomer was added to the solution. To initiate the polymerization reaction,
0.2 mL solution of H2SO4 was added to the solution and was shifted onto a plate. The
polymerization reaction was completed after 24 h. The final product was heat-treated for
1 h to remove any water content (Figure 3).
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2.5. Synthesis of Hydrogel Electrolytes

Poly(acrylamide)/Na-Alginate hydrogel electrolytes were developed by the free radi-
cal method. It is a fast and error-free method. The polymerization process was carried out in
stages. In the first stage, the hydrogel formed free radicals when exposed to heat by heating.
These free radicals generated more free radicals on the backbone of Poly(acrylamide) and
Na-Alginate. Long-chain polymers were formed in the second stage after drying the sample
in the oven through a hydrogel network Poly(acrylamide)/Na-Alginate via hydrogen bond-
ing. Finally, by H2SO4, the polymer chain is physically bonded to form a stable 3D network.
The hydrogel has good water absorption capacity due to hydrophilic amide groups and
has good strength. The hydrophilic nature is due to the -OH and -COOH groups. The
hydrogels were manufactured by adding different contents of Na-Alginate and Acrylamide
to reach the desired equilibrium. The formation of the double lattice hydrogel through the
cross-linking chains resulted from the repulsion of the negatively charged COO- groups on
the linear AAM chain in the networks which led to the expansion of the lattice structure
and the increase in the swell of deionized water. Figure 4 illustrates the mechanism of
synthesis of the Poly(acrylamide)/Na-Alginate synthesized electrolyte hydrogel.
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3. Characterization and Measurement

The surface morphology of pure and composite cotton was studied using scanning
electron microscopy (SEM, Quanta FEG 450) at an accelerating voltage of 5 kV. The samples
were coated with gold before SEM analysis. Moreover, energy-dispersive X-ray spec-
troscopy (EDX) was performed to investigate the elemental composition of pure and
composite cotton. In addition, Fourier transformation infrared spectroscopy (FTIR) and
X-ray diffraction (XRD) analyses were performed to study the structure and molecular
bond formation. XRD patterns were recorded using Cu Kα radiation (1.5406 Å) at a current
of 30 mA and voltage of 40 kV. Thermogravimetric analysis (TGA) was performed on pure
and composite cotton with TGA 1000 instruments, where samples were heated under nitro-
gen purification from 25 ◦C to 600 ◦C at a heating rate of 10 ◦C/min. The sheet resistance
of the composite cotton was measured using a four-line probe technique. To examine
the electrical properties of conductive cotton, the electrical resistance of the samples was
calculated from the I–V curves at 25 ◦C having 65% relative humidity [8]. The electrical
resistance of conductive cotton was calculated from the formula:

Rs = R (w/d) (1)

where R is the resistivity, Rs is the bulk resistivity of the fabric, w is the width of the sample
(2.5 cm), and d is the distance between the leads (0.35 cm) [9].

The cotton composed by SWCNTs/PEDOT: PSS has high electrical and mechanical
capabilities, so the composite cotton can be used as an electrode in supercapacitors. Con-
ductive composite cotton has been used in electrical circuits to light a light-emitting diode
(LED) as a supercapacitor.

3.1. Electrochemical Impedance Spectroscopy (EIS) Studies

The ionic conductivity of the composite cotton and the hydrogel was measured using
a Hioki 3532-50 LCR HiTESTER impedance spectroscopy over a frequency range of 10 to
106 Hz at a temperature of 25 ◦C. For this, the samples were kept in the sample holder. This
holder is fitted with stainless steel electrodes as a blocking electrode [6]. Bulk resistance
was measured from the complex impedance cut-off of the hydrogel electrolyte. The ionic
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conductivity (σ) of the supercapacitor was calculated from the measured area of the stapled
electrodes [A (cm2)]. The mass resistance of the supercapacitor of the composite was
studied according to the equation [10]:

ρ = R
A
l

(2)

3.2. Symmetric Supercapacitor Cell Fabrication and Supercapacitor Performance Studies

The composite cotton-based symmetric supercapacitor cell was fabricated by sand-
wiching the hydrogel electrolytes between the electron-coated SWCNTs/PEDOT:PSS and
the cells were subjected to CV and GCD with the interface of the Gamry 1000 potenti-
ated [11]. CV measurements were performed at a scanning rate of 20, 30, 40, 60, 70, 80, 90,
and 100 mV/sec in the 0–1 V potential window. The specific capacitance (Csp) of EDLC was
calculated from CV and GCD measurements using the following equation [12,13]:

Csp =
I∆t

m∆V
(3)

where the symbols Csp, I, t, m, and V represent the specific capacitance, I is current, t is the
discharge current, m is the mass of the material, and V is the voltage, respectively.

The relationship of supercapacitor capacitance to the surface area is theoretically
expressed by using the following equation [14]:

ε

4πδ
=

C
A

(4)

where C is the capacitance, A is the surface area of the electrode, ε is the dielectric constant
of the electrolyte, and δ is the distance from the surface of the electrode to the center of the
ionic layer [15,16].

4. Results and Discussion
4.1. Morphology Study

Bio-dispersive X-ray spectroscopy characterization was performed using field-emission
scanning electron microscopy (SEM) because it provides detailed information about the
morphology of the composite cotton. The internal shape of the hydrogels was carried out
on pure cotton and composite cotton from SWCNT/PEDOT: PSS treated. The shape of the
lyophilized hydrogel and the hydrogel electrolyte were investigated through a scanning
electron microscope (SEM). The scanning electron microscopy images indicate that pure
cotton fibers have a smoother surface as shown in Figure 5A(a–c), while the micrographs
show cotton fiber samples covered with SWCNTs/PEDOT: PSS as seen in Figure 5A(d–f).
The carbon nanotubes are quite visible in the coating and are randomly scattered on the
surface of the cotton fibers. These nanotubes are interconnected to each other and frame a
thick system that allows for an exchange of current transmission along the surface. FESEM
pictures exhibited that SWCNT/PEDOT: PSS was effectively covered on the surface of
the cotton [16–19]. Transmission electron microscopy (TEM) at an accelerating voltage
of 200 kV was used to examine the powdery SWCNTs. Figure 6a–d shows single-walled
carbon nanotubes as a bundle. Single-walled carbon nanotubes (SWCNTs) are conceptually
characterized as a cylinder resting on a rolled graphene sheet. It is divided into one well
(Figure 6e).

The elemental purity of the samples was verified through EDX measurement. The
cotton samples displayed peaks at 0.277 kV and 0.525 kV, respectively, showing the presence
of carbon and oxygen as shown in Figure 7. From Figure 7, the EDX estimates for composite
cotton shows the presence of sulfur as evidenced by the presence of a peak at 2.307 kV
which is a component of DMSO.



Sustainability 2023, 15, 889 7 of 18

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

ensure a large amount of water content [14]. It can be seen that the addition of H2SO4 
enhanced the density of the polymer network by connecting the pores through the reac-
tion polymerization [20].  

 
Figure 5. FESEM images: (A) (a,b) original cotton microfibers, (d,e) the conductive microfibers 
concentrations of SWCNT/PEDOT: PSS, and (c,f) FESEM images showing the cross-section of pure 
and conductive microfibers at different concentrations of SWCNT/PEDOT: PSS, respectively. (B) 
Surface morphology images of the hydrogel. 

Figure 5. FESEM images: (A) (a,b) original cotton microfibers, (d,e) the conductive microfibers
concentrations of SWCNT/PEDOT: PSS, and (c,f) FESEM images showing the cross-section of
pure and conductive microfibers at different concentrations of SWCNT/PEDOT: PSS, respectively.
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Figure 5B shows the SEM morphology of the hydrogel, where it is seen that the
hydrogel exhibited a highly porous three-dimensional network in a regular structure with
uniform distribution. The large and uniform pore size is due to the successful formation
of a three-dimensional network interconnected with the monomer as well as due to the
result of heating the mixture at a constant rate. This highly interconnected network can
ensure a large amount of water content [14]. It can be seen that the addition of H2SO4
enhanced the density of the polymer network by connecting the pores through the reaction
polymerization [20].

4.2. X-ray Diffraction (XRD)

The structural and phase formation of the samples was studied using the X-ray diffrac-
tion method. The X-ray diffraction of pure cotton and SWCNT/PEDOT: PSS composite
cotton is shown in Figure 8. It can be seen from the XRD pattern that four noteworthy
peaks at the angular positions 2θ = 18◦, 22.6◦, 36.2◦, and 38◦ are observed. The peaks are
indexed to the Miller indices (110), (002), (040), and (211) and are ascribed to the spectral
reflections generated by pure cotton. Pure represents the structure of the main component
of cotton cellulose as seen in Figure 8a [21]. Moreover, the XRD pattern of the composite
cotton reveals the higher intensity patterns at the angular positions 2θ = 22◦ and 25.8◦,
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which are indexed as (222) and (120) and represent the characteristic peaks corresponding
to the SWCNTs/PEDOT: PSS.
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It was observed that the spectra of all samples, especially the cellulose-based ones,
showed some peaks in the region, which are ascribed due to the structural bending,
glycose binding, and ring deformation of C–O–H, C–C–H, C–O, C–C, and C–O–C groups
in cellulose and hemicellulose [22–24]. The peak observed around 37.5 in the cotton
samples is related to the crystallization of cellulose (C–C, C–O, and C–O bonds and ring
deformation). Pure cotton shows strongly capped X-ray peaks that confirm the high
stereoscopic organization of its fragments while the X-ray peak of pure cotton testing
is essentially more extensive. The peak located around 28◦ disappeared, which shows
the presence of a C=C bond in the composite cotton, and hence confirms the successful
composite formation of cotton with SWCNT/PEDOT: PSS as shown in Figure 8b. The
SWCNT/PEDOT: PSS composite cotton shows an improvement in the steric regularity of
the cellulose network due to the development of hydrogen bonds, which in turn increases
the length of the polymer chains. This indicates the good treatment of cotton by dipping it
in the solution [25,26].

4.3. Fourier Transform Infrared (FTIR) Spectroscopy

Figure 9 represents the FTIR spectra of pure and synthetic cotton from SWCNTs and
PEDOT: PSS. In the spectrum of pure cotton, the peaks at 1300, 1100, and 1058 cm−1 were
observed which represent the O–H vibration stretching [25,27]. IR bands at 1660 cm −1

represent the characteristics of the CH2 group, while the peaks at 1610 cm−1, 1543 cm−1,
1404 cm−1

, and 1240 cm−1, respectively, represent the C=C stretching vibration, the C–H
distortion at 750 and 710 cm−1, and the C–O stretching vibration at 1270, 1680, and
810 cm−1. Curve b in Figure 5 represents the composite cotton spectrum having three
major peaks at 1230 cm−1, 1185 cm−1, and 1030 cm−1, respectively, that represent the
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asymmetric stretching vibration of C–C and the stretching vibration of the O–H group [28].
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The peaks for composite cotton can be easily observed at 3480 cm−1 which represents
the O-H stretching vibration and the characteristic peak at 1656 cm−1 which represents
the C=C bond, with the shift of peak, and with the successful blending of cotton with
SWCNT/PEDOT: PSS [29]. Additionally, the composite cotton peak at 790 cm−1 represents
the C-H and O-H stretching vibration exhibited for composite cotton.

4.4. Thermogravimetric Analysis (TGA)

TGA analysis is an important tool to study the thermal stability and material degra-
dation pattern of pure and SWCNT/PEDOT: PSS coated composite cotton. The thermo-
gravimetric pattern for the prepared samples was performed in the temperature range
of 25–600 ◦C as shown in Figure 10a,b. The thermal diagram of pure cotton is shown in
Figure 10 (a), where we see three phases. The first phase of mass loss occurred in the
temperature range of 100–240 ◦C which is due to the presence of bound moisture and water
molecules. The second phase of weight loss can be seen at 260 ◦C due to the decomposition
of the oxygen-containing functional groups, such as hydroxyl (–OH) and epoxy (C–O–C)
which turn into molecules of gas (carbon dioxide and water vapor) [21]. The third stage of
weight loss can be seen at 400–600 ◦C. TGA analysis shows the high thermal stability and
decomposition of composite cotton. In Figure 10b, the decomposition of the compound
cotton shows three stages, with the first stage ranging from 150 to 280 ◦C, where free water
is absorbed and mutual irrigation occurs, and the second stage at 372 ◦C, in which the
latter can be attributed to the slightly more fibrillation of the cellulose fibers during the
reaction (mainly during the ammonia hydrolysis phase), which leads to a higher surface
area release rate for the less thermally stable fibers. Thermal decomposition of these ma-
terials under flow oxygen can increase the rate of degradation and the third stage ranges
from 430 to 600 ◦C for the combined cotton presumably due to evaporation of decomposed
water and decomposition of surface functionalities, weight loss due to the combustion of
SWCNTs [30]. The weight loss rate of composite cotton was noted significantly lower than
that of pure cotton [15], which is due to the amount of oxygen-containing functional groups
of SWCNTs fibers, such as hydroxyl (OH) and epoxy (C–O–C) [22].
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4.5. Electrochemical Impedance Spectroscopy (EIS)

The basic and important property of an electrode and an electrolyte to be used in
energy storage devices is ionic conductivity. The ionic conductivity of the composite cotton
and the hydrogel was measured by electrochemical impedance spectroscopy. Figure 11
shows a Nyquist diagram of the hydrogel electrolytes and the composite cotton. The
Nyquist plot consists of two regions, where the low-frequency region indicates the capac-
itive characteristics, and the high-frequency region indicates electrical equivalent series
resistance (ESR) [31]. A low ESR value is observed due to the rapid transport of charge
carriers at the electrolyte interface. Mobile ions are the charge carriers in the system that
control the overall electrical conductivity [32]. In these samples, the vertical lines parallel to
the imaginary axis at lower frequencies show the internal charge resistance within the elec-
trode and the electrolyte, the resistance of the active material of the composite cotton, the
interfacial resistance of electrolyte/hydrogel contact, and the collector current. We observe
a straight line vertical to the imaginary axis [33]. Despite this, the hydrogel did not show a
straight line perfectly parallel to the imaginal axis [34]. The ionic conductivity, σ (S cm−1),
of polymer gel electrolyte was estimated using a HIOKI 3532-50 LCR HiTESTER impedance
spectrophotometer at a frequency of 10 to 106 Hz [35]. Hydrogel and SWCNT/PEDOT:
PSS cotton achieved maximum ionic conductivity of 12.5 × 10 −3 and 13.8 × 10 −3 S/cm,
respectively. A stainless-steel sample holder with electrodes was used for analysis. The
bulk resistance was calculated from the slope of the complex impedance plots [36,37]. It
is noted from the Cole–Cole plots that the impedance values of the composite cotton are
lower than the pure hydrogel. The straight-line values suggest that the impedance values
are higher and beyond the measurement frequency range of our instrument [38,39].
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4.6. I–V Measurement

A four-line probe method was used to investigate an effective reduction in the compos-
ite cotton with SWCNT/PEDOT: PSS and to study the electrical properties of the composite
cotton. The sheet resistance is determined by the condition:

σ =
w

R.d
(5)

where w is the width (w = 2.5 cm) and d (d = 0.35 cm) is the separation between the
lines. In the pure cotton case, the resistance values are infinite, which means no electrical
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conductivity is observed or the pure cotton is insulating [40,41]. However, after processing
the SWCNT/PEDOT: PSS surface resistance and electrical conductivity, the surface sheet
resistance of the composite cotton, Rs = 0.08 Ω/cm, is obtained and is shown in Figure 12.
The reason for the good electrical conductivity of the composite cotton is due to the effective
bonding of the amino groups of the cotton with the carboxyl and hydroxyl groups in the
SWCNTs [22]. This can also be demonstrated by studying the thermal properties and
resistance stability. Moreover, it may be due to the effective chemical bonding between
different functional groups of SWCNT/PEDOT: PSS and cotton [21]. The high electrical
conductivity of the treated cotton also demonstrates the efficiency of the SWCNT/PEDOT:
PSS mixture on pure cotton and the effective use of the solvent DMSO [42]. Table 1 provides
details of the sheet resistance of the various composite cotton structures.
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Table 1. The obtained sheet resistance value is compared with previously published results.

Year Coated with Material Sheet Resistance Material Reference

2017 Graphene/PEDOT:PSS 25 Ω/Sq. (~1.6S/cm) Fabric [43]

2018 PEDOT:PSS 12.1 Ω/Sq. Cotton [44]

spray-Coated

2017 PEDOT:PSS 1.58 Ω/Sq Cotton [45]

With DMSO drop-casted

2013 PEDOT:PSS

With (MWCNT) 300–500 Ω/Sq Film [46]

2014 (PEDOT:PSS)

And hybrid 88 Ω/Sq at a Film [47]

2012 SWCNT-PEDOT:PSS 118 Ω/Sq at a Film [48]

-DMSO transmittance of 90.5%
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4.7. Cyclic Voltammetry (CV)

CV is the most common method to analyze the capacitive behavior of materials in en-
ergy storage devices. The electrochemical performance of the cotton-based supercapacitor
was measured with the symmetric configuration of the two electrodes where ~3 mm thick
hydrogel electrolytes were placed between the electrodes of the composite cotton. CV was
studied in the 0–1 V potential range while using a scanning rate between 20 mV/s and
100 mV/s and the CV curves obtained are shown in Figure 13.
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The composite cotton-based capacitor exhibited a large CV area and the specific
capacitance of 212.16 F/g at 50 mV/s and 310.4 F/g (energy density of 49.57 Wh/kg at a
power density of 100.08 W/kg) at 100 mA/g current density compared to AC/NHMA1/AC
due to the increase in ionic transport, which is due to the complete dissociation of SWCNT
in PEDOT: PSS solution within the synthesized cotton [39–43]. Figure 13b shows the
procedure for galvanic charge and discharge analysis at different current densities ranging
from 50 to 450 mA/g. All GCD curves for cells were identical, maintaining a high-power
triangular shape. Additionally, at a lower current density, the applied current is low, as the
EDLC takes a longer time to fully charge and discharge. The diffusion of ions through the
electrode material indicates the presence of the active substance. On the other hand, it is
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noted that with the increase in the current density, the applied current increases, and the
charging and discharging time decreases. The internal resistance produces a lower specific
capacitance due to the higher rate of charge transfer.

To achieve the high-power density of the cotton-based capacitor, the exact electro-
chemical performance of the positive and negative electrodes was tested using charge
transportation or matching as shown in Figure 14. The device boasted outstanding electro-
chemical performance and exhibited a high operating voltage of 9 V, with high durability
and flexibility. The proof-of-concept and the obtained results of the electrical conductivity
and other properties of the composite cotton showed that the materials can be a promis-
ing candidate with great potential in the usage of wearable fabric as mechanical sensors,
actuators, and modern circuitry designing [22,44–48], such as electromagnetic shielding,
flexible heating elements [42], and capacitor fabric superlative. In addition, the sample
was tested before and after the circuit was connected and the supercapacitor was charged
several times. It was observed that the electrochemical performance by measuring the
periodic voltage before and after connecting the symmetric supercapacitor to the circuit
several times did not differ much from before the connection, but rather maintained its
shape as shown in Figure 14a.
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5. Conclusions

We have successfully grown composite cotton with SWCNT/PEDOT: PSS solution.
XRD and FTIR analyses confirmed the formation of the composite structure. The morphol-
ogy study showed that the 3D porous network structure and initial mapping describe the
appropriate dispersion of SWCNT/PEDOT: PSS in pure cotton fibers. Thermal stability and
material degradation pattern of pure natural cotton and composite cotton were also studied.
TGA analysis and electrochemical impedance analysis also revealed that the presence of
SWCNT/PEDOT: PSS in the composite cotton electrode increased the ionic conductivity of
the cotton electrode when combined with the polymer hydrogel electrolyte. Using cyclic
voltammetry (CV) and galvanic discharge techniques, supercapacitors were fabricated
from cotton and polymer hydrogel electrolytes. Electrochemical studies showed that the
composite structure exhibits a large CV area and has a specific capacitance of 212.16 F/g
at 50 mV/s. The promising electrical properties of the composite materials can be used in
wearable electrical fabrics and in designing modern green electrical/electronic circuitry.

Author Contributions: All authors contributed to the study’s conception and design. Material
preparation, data collection, and analysis were performed by N.M.B. The first draft of the manuscript
was written by S.R. and K.R. supervised the experiment, data analysis, and writing of the draft.
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to the published version of the manuscript.
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