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Abstract: Conventional farming practices can lead to soil degradation and a decline in productivity.
Regenerative agriculture (RA) is purported by advocates as a solution to these issues that focuses on
soil health and carbon sequestration. The fundamental principles of RA are to keep the soil covered,
minimise soil disturbance, preserve living roots in the soil year round, increase species diversity,
integrate livestock, and limit or eliminate the use of synthetic compounds (such as herbicides and
fertilisers). The overall objectives are to rejuvenate the soil and land and provide environmental,
economic, and social benefits to the wider community. Despite the purported benefits of RA, a vast
majority of growers are reluctant to adopt these practices due to a lack of empirical evidence on the
claimed benefits and profitability. We examined the reported benefits and mechanisms associated
with RA against available scientific data. The literature suggests that agricultural practices such as
minimum tillage, residue retention, and cover cropping can improve soil carbon, crop yield, and
soil health in certain climatic zones and soil types. Excessive use of synthetic chemicals can lead to
biodiversity loss and ecosystem degradation. Combining livestock with cropping and agroforestry in
the same landscape can increase soil carbon and provide several co-benefits. However, the benefits of
RA practices can vary among different agroecosystems and may not necessarily be applicable across
multiple agroecological regions. Our recommendation is to implement rigorous long-term farming
system trials to compare conventional and RA practices in order to build knowledge on the benefits
and mechanisms associated with RA on regional scales. This will provide growers and policy-makers
with an evidence base from which to make informed decisions about adopting RA practices to realise
their social and economic benefits and achieve resilience against climate change.

Keywords: soil health; regenerative agriculture; soil carbon; microbial function

1. Introduction

Regenerative agriculture (RA) is a farming strategy that uses natural processes to
increase biological activity, enhance soil health, improve nutrient cycling, restore landscape
function, and produce food and fibre, while preserving or increasing farm profitability. The
strategy is based on a set of guiding principles, and practitioners use a variety of tactics that
integrate biological and ecological processes with the objective of increasing production
and restoring landscape functionality.

The objective of RA is not to restore the native pre-agriculture ecology and biological
function, but rather to leverage ecological processes in nature within an agricultural system
to improve farming system health. The term “regenerative agriculture” was first coined by
Gabel [1], then Rodale [2] further developed the concept of regenerative organic farming to
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include some options that encompass a holistic approach with a focus on environmental
and social improvements without the use of chemical fertilisers and pesticides. Since
then, several definitions of RA have been put forward by various researchers. Francis
et al. [3] proposed that RA emphasises the use of resources found on the farm while
restricting the use of synthetic inputs. Project Drawdown [4] uses the term to refer to
annual cropping systems that include at least four of six sustainable practices without
the system being organic. Sherwood and Uphoff [5] and Rhodes [6] proposed that RA
is a system built on biological principles that seeks to enhance both productivity and
environmental management. Conversely, systems that reduce soil fertility, carbon storage,
and biodiversity are considered as degenerative agriculture.

In order to address these concerns, the Food and Agricultural Organisation (FAO)
proposed that the aim of RA is to go beyond the “do no harm” principles of sustainable
agriculture [7]. According to a SYSTEMIQ report, RA is one of the 10 transitions needed
to transform food and land use. In general, it includes approaches that regenerate soil,
reduce the use of synthetic pesticides and fertilisers, and have a positive impact on the
environment [8]. RA is considered to achieve the target specified by United Nations
Sustainable Development Goal 2: “By 2030, ensure sustainable food production systems
and implement resilient agricultural practices that increase productivity and production,
that help maintain ecosystems, that strengthen capacity for adaptation to climate change,
extreme weather, drought, flooding and other disasters and that progressively improve
land and soil quality”.

Despite there being various descriptions of RA, there is no agreed definition, which
poses considerable challenges for researchers, farmers, agriculture advisors, policy-makers,
and consumers in understanding and applying RA concepts. Recently, researchers and
policy-makers have attempted to define regenerative agriculture to guide future research
and policy development. Based upon a qualitative analysis of 28 studies, Schreefel et al. [9]
proposed a provisional definition of RA as “an approach to farming that uses soil conserva-
tion as the entry point to regenerate and contribute to multiple provisioning, regulating and
supporting services, with the objective that this will enhance not only the environmental,
but also the social and economic dimensions of sustainable food production”. By contrast,
Newton et al. [10] using a meta-analysis approach found that many RA definitions were
either process- or outcome-based or, in a few instances, a combination of both. Hence, they
proposed that “individual users of the term ‘regenerative agriculture’ to define broadly for
their own purposes and contexts”.

Five principles that guide the approach are as follows: (1) minimise soil disturbance,
(2) keep the soil covered year-round, (3) keep live plants and roots in the soil for as long as
possible, (4) incorporate biodiversity, and (5) integrate animals. Advocates and practitioners
of RA argue that these methods will prevent soil erosion and depletion, actively build
soil, provide appropriate crop nutrients with minimum external inputs, produce healthy,
high-yielding crops with few weeds and pests, limit greenhouse gas emissions, increase
farmers’ financial returns, and improve human health (Figure 1). However, such claims
have been widely criticised, and the general consensus is that they are not supported by
rigorous empirical science [11].

RA practitioners use a number of methodologies that combine biological and ecological
systems to increase productivity and restore landscape function. The overarching goal is to
capitalise on natural processes, including by doing the following:

1. Capturing soil carbon through the photosynthesis of high-biomass-producing plants.
2. Improving symbiotic soil microbiota–plant interactions.
3. Using biological systems to enhance soil structure and water retention.
4. Including livestock, with an anticipated positive impact on ecosystem services.

There is no universal approach; instead, these practices must be tailored to the specific
farming and climatic environment in which they are used. Factors such as precipitation,
temperature, soil type, farm enterprise mix, markets, and individual preferences must be
addressed before implementing an RA system. Furthermore, RA is not organic farming
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and is not a prescriptive agricultural method. Rather, it is based on core concepts that assist
individuals in implementing a variety of techniques on their properties in order to achieve
the desired outcomes. Many of the practices used by RA farmers are well-established “good
farming” practices that conventional farmers also use. Some RA practices overlap with
other forms of sustainable agriculture practices, such as conservation agriculture, organic
farming, low-input farming, climate smart agriculture, and carbon farming.
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Figure 1. RA (Regenerative Agriculture) principles, practices, and purported benefits and mecha-
nisms to improve soil health.

Significance of Regenerative Agriculture to Western Australian Farming Systems

Australian drylands comprise approximately 372 million ha of agricultural land,
encompassing grazing and cropping, and most of the cropping zones have a semi-arid
climate. Soils are predominantly coarse textured with inherently low soil carbon. Land
degradation is a major issue facing Australian agriculture; two-thirds of agricultural land is
already degraded due to erosion, declining soil fertility, salinity, acidification, and declining
rainfall [12]. Australia is the world’s driest inhabited continent, thus it is important to
quickly develop and implement strategies to prevent further land degradation and restore
soil health. Otherwise, these issues could lead to an increased propensity for desertification.

Among grains, wheat is the dominant commodity in Australia, with an annual pro-
duction of 25 million tons, followed by barley and canola (https://www.aegic.org.au/
australian-grain-production-a-snapshot/ Australian Export Grains Innovation Centre, ac-
cessed on 20 September 2022). Western Australian grain production today is predominantly
a system of continuous high-input, high-output cropping. There are many emerging issues
associated with this approach; in particular, farm profitability is declining due to reduced
seasonal rainfall in the major grain-growing regions, posing financial risks if crop failure
occurs. Declining soil fertility, herbicide/pesticide resistance, consumer concerns about
the use of glyphosate and other environmental issues, plateauing grain production, and
increasing competition from other international export markets, particularly in the Black
Sea region, are some of the other challenges for the grain industry [13]. In the face of these
challenges, Australian growers will need to embrace new opportunities to sustain the prof-
itability of grain production. Farmers are responding to these challenges in different ways.
For instance, some farmers are shifting their focus from maximising yield to maximising
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profit, and some are moving towards lower-risk systems or diversification of cash crops.
The farmer-led effort for the adoption of RA principles and practices is another example of
a shift in focus towards reduced cashflow risk and increased returns. Several cost-effective
farming practices are already in use that would be consistent with RA principles. Three
main anticipated outcomes of RA are assumed: the agricultural ecosystem will regenerate,
landscape functions will improve, and farming will remain profitable.

Despite the perceived benefits of RA, wide-scale adoption has not been achieved on a
global scale. Barriers to adoption include biophysical, cultural, social, institutional, and
economical concerns, and the major barrier is the lack of regionally specific knowledge,
science-based evidence, and bio-economic models for transitioning from conventional
systems to RA. The aims of the current review were (1) to examine the purported outcomes
of RA against the current scientific evidence, and (2) to identify knowledge gaps for
future research. Two broadly reported benefits are that RA helps to sequester and/or
retain carbon in the soil and improves soil biology. Based on literature searches for peer-
reviewed scientific evidence on the benefits of RA, almost no scientific studies have been
conducted directly in the context of RA. However, there are numerous peer-reviewed
scientific publications on individual RA practices reporting their influence on soil carbon
and soil biology. Therefore, the focus of the review shifted to looking at the scientific
evidence (local and overseas studies) on RA practices that affect soil carbon build-up and
improve soil health.

2. Potential Benefits of RA for Soil Health

Soil health has been defined as the ability of soil to continue to function as a vital
living system within ecosystem and land-use boundaries, thereby sustaining biological
productivity, maintaining air and water quality, and promoting plant, animal, and hu-
man health [14,15]. More recently, the Intergovernmental Technical Panel on Soils (ITPS)
defined soil health as “the ability of the soil to sustain the productivity, diversity, and
environmental services of terrestrial ecosystems” [16]. The health of soil is attributed to
its desirable physical (texture, water holding capacity), chemical (pH, soil organic matter
(SOM), and biological (microbial diversity, N mineralisation, and soil respiration) properties
that support healthy productive crops. Soil is considered a living and complex ecosystem
harbouring a wide array of both micro- and macrobiota that regulate its properties. The
intensification of agriculture with modern technology has deteriorated the capacity of soil
to maintain its functions, affecting long-term productivity and causing a loss of ecosys-
tem services [17–19]. Improving soil health by increasing organic matter and boosting its
fertility and productivity is the primary focus of RA.

2.1. Increased Soil Carbon

Soil is considered to be an active storage pool of C due to its capacity to store three times
more carbon than the atmosphere [20]. One of the primary causes of soil degradation is the
loss of soil organic carbon (SOC). SOC has been shown to improve soil structure, fertility,
nutrient availability, aeration, water infiltration, and water-holding capacity [21]. Recently,
it is also being considered as a solution for mitigating climate change [22]. According to
the “4 per 1000” initiative launched by the French government at the 21st COP, an annual
increment of 0.4% SOC in the first 30–40 cm of soil in all land uses could absorb a significant
amount of CO2 emitted due to human activities, with the co-benefits of improving soil
health and food security. To meet this goal, stakeholders are encouraged to implement
management practices that enhance SOC sequestration.

Despite criticisms of the calculations and achievability of the initiative in terms of
mitigating climate change [23], there is broad consensus that even a small increase in
SOC could provide tremendous benefits by restoring soil health [24–26]. Moreover, there
is anecdotal evidence that the “4 per 1000” target could be achieved in arable crops in
the Mediterranean climate by using mitigation strategies including no/minimum tillage,
organic fertilisers, and stubble retention in coarse-textured soils [27]. Diminishing SOC
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stocks from terrestrial ecosystems are a major concern for declining agricultural production.
Management practices that increase SOC are recommended to optimise agricultural yields.
Increasing SOC up to 2% has been shown to increase yield in maize and wheat, and
may reduce reliance on N fertiliser [28,29]. Although soil carbon build-up is influenced
by regional climate and management practices [30], phenomena such as deforestation,
fire, land use conversion, and erosion are attributed to a loss of SOC. In particular, land
cultivation removes topsoil, destroys soil aggregate structure, and exposes SOC to oxidation,
affecting nutrient availability and soil physical properties [23,31–33]. Several cropping
practices implemented to maintain or increase SOC are discussed below.

2.1.1. Minimum/No Tillage

A key practice used by RA farmers is minimum or no tillage to minimise soil dis-
turbance. Among the other benefits of minimising disturbance to the soil, the practice is
aimed at allowing fungal hyphae to proliferate, thus enhancing nutrient cycling in the
soil. Soil disturbance due to extensive tillage causes carbon dioxide (CO2) fluxes to the
atmosphere and water resources [34]. Minimum or no tillage is widely adopted in some
countries not only as a cost-saving means, but also to provide benefits in areas prone to soil
and water erosion risk. Aside from these benefits, some experts believe that conservation
tillage methods can increase carbon sequestration, thereby mitigating the consequences of
global warming [35].

Minimum tillage combined with residue retention in a double-cropping system is
the most promising management strategy for increasing SOC stocks in croplands [36].
Increased SOC stock or concentration in the topsoil not only supports more productive
soil with increased biological activity, but also promotes resilience to harsh weather con-
ditions. Haddaway et al. (2017) [37] based upon a global metanalysis suggested that the
increased C stock under no tillage versus high tillage in the upper soil (0–30 cm) was
around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥10 years, while no effect was detected
in the full soil profile [38]. In contrast, SOC accumulation was found to be insignificant
with continuous cropping under zero tillage in a warm semi-arid temperate or sub-tropical
climate; however, slow accumulation of SOC was possible with the inclusion of perennial
pastures in rotation [39,40]. Increasing SOC with conservation tillage depends upon several
factors, including precipitation, soil depth, crop yield, stubble retention, and decomposition
rate [40].

Soil carbon is unlikely to increase with current farming practices in Southeast Australia
in the short-term [41]; however, incorporating legume leys into grasses could restore soil
organic matter (SOM) in the long-term due to increased root biomass [42]. Long-term tillage
practices produce more noticeable changes in SOC than short-term tillage practices [33,43].
Furthermore, SOM storage is modulated by the clay content of soil. Tillage practices reduce
carbon (C) stabilisation within microaggregates in clayey soils but have little effect in sandy
soils [44]. According to studies conducted in North America, soil disturbance caused by
tillage was the primary cause of SOC loss, and substantial SOC sequestration could be
achieved by switching from conventional to conservation tillage practices [45].

To improve soil biological properties, no-till (NT) farming has been proposed. Mar-
tinez et al. (2013) [46] discovered that soil chemical fertility increased under NT, with
higher levels of N, P, and K, when they compared selected soil properties in irrigated
Mediterranean no-till and conventional tillage (CT) systems. Compared to conventional
tillage, no-till sequestered more C. Increased SOC resulted in higher biological activity
under NT than CT. The increased productive capacity of NT soil has also been proposed in
terms of soil chemical properties. Powlson et al. [47], however, asserted that while no-till is
beneficial for soil quality, its role in mitigating climate change is greatly exaggerated.

Differences in SOC increase with tillage practices in different soil profiles have been
reported, which may be due to discrepancies in the methodologies used to determine
SOC. Soils were only sampled to a depth of 30 cm or less in almost all cases where con-
servation tillage was found to sequester C, even though crop roots often extended much
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deeper. Conservation tillage showed no consistent accrual of SOC in a few studies where
sampling extended deeper than 30 cm, with higher concentrations either near the surface
in conservation tillage or in deeper layers in conventional tillage. These disparities may
be due to differences in thermal and physical conditions caused by tillage, which affect
root growth and distribution. Another study that used gas exchange measurements on a
maize/soybean rotation for 2 years discovered no C sequestration in either conservation
or conventional tillage, suggesting that long-term studies and deeper soil sampling are
needed in order to improve the predictability of C sequestration potential with changes in
tillage practices [48].

No Tillage and Yield Improvement

Several studies have indicated a positive impact of no or minimum tillage on crop
yields and profitability, subject to regional agroclimatic conditions and crop and soil factors.
When compared to conventional tillage, NT reduced the global warming potential at acidic
soil sites, increased barley yield by 49%, and showed potential to reduce greenhouse gas
emissions (GHG) in dry climates, according to a meta-analysis of 740 paired measurements
from 90 peer-reviewed articles [49]. As a result of its potential to mitigate climate change
and improve crop yield, NT is recommended as an effective climate-smart agriculture
(CSA) management practice. However, various environmental and agronomic variables
alter the net effect of NT (compared to CT). Therefore, the agroecological context must be
taken into account when comparing different tillage techniques. In contrast, from a study
of historical wheat yield patterns under NT and CT, [50] concluded that the tillage system
had no effect on wheat yield and that Australian wheat varieties were not adapted to the
NT system.

On its own, no tillage is not considered beneficial in certain circumstances, especially
where stubble decomposes very quickly. Nouri et al. (2019) [51] demonstrated that long-
term incorporation of cover crops, particularly vetch, in conjunction with NT improved the
physical properties of soil, such as soil aggregation and moisture retention during dry spells.
A study conducted on deep sands in the central wheatbelt of Western Australia over a 7-year
period revealed that different tillage treatments had no effect on crop yields; however, soil
carbon and microbial function increased under CT and NT treatments in the top 0.10 and
0.05 m of soil, respectively [52]. Using data from 678 peer-reviewed publications, a global
meta-analysis assessed the impact of various crop and environmental variables on NT
relative to CT yields. The study found that the impact of NT on yield varied depending on
the region, with yield declining in tropical regions with maize-based systems and increasing
in moisture-limited arid regions [53]. A long-term tillage experiment demonstrated that,
in a semi-arid subtropical environment, it would take at least 20 years to achieve the full
soil benefits (physical, chemical, and biological) of an NT system [54]. When NT was used
instead of traditional tillage, yield increased by 47 and 28%, respectively, with and without
the use of N and Zn fertilisers.

The prevailing environmental conditions of a region have the greatest influence on
carbon sequestration and, as a result, crop yields. A recent global analysis of NT-induced
changes in soil C and crop yield based on 260 and 1970 paired studies, respectively, revealed
that compared to CT, conservation agriculture benefits arid regions the most by achieving
a win–win outcome of increased C sequestration and crop yield. In more humid areas,
only SOC gains are likely to occur, with no effect on crop yield, whereas in some colder
areas there will be a negative impact on both SOC and yield [55]. According to these
studies, adopting conservation management practices in Western Australia would result in
a win–win situation. Sun et al. [55], however, emphasised the need for more rigorous and
long-term studies evaluating the regional climate-related benefits of such practices.

Despite the variability in responses to the NT effect on increasing SOC, a substantial
amount of literature has demonstrated that SOC can potentially be increased using NT in
conjunction with crop residue retention and mixed rotation, with a plausible positive impact
on crop yield [56–58]. According to the literature, the addition of organic residues such as
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compost, biochar, and manure can result in significant SOC gains [59]. However, critics of
RA deny the validity of such claims and state that most of these studies lack the proper
methodology for measuring and verifying SOC changes [23]. With modern techniques
such as hyperspectral remote sensing, it may be possible to provide SOC predictions in
the future.

Scientific evidence from overseas and limited studies in Western Australia indicate
that C sequestration is possible in moderately degraded soils in warm arid zones by using
improved farming practices. Any system in which the input of biomass-C exceeds the loss
(due to decomposition, erosion, etc.) will result in soil organic carbon sequestration (Dr
Rattan Lal, The Ohio State University, Columbus, USA, personal communication, July 2020).
There is also inorganic carbon in arid and semi-arid regions. According to the published
literature, a significant increase in SOC is expected 6–10 years after a change in management
practices (NT and rotational complexity), with an equilibrium reached after 15–20 years
under constant weather conditions. Increased SOC can lead to a higher crop yield, which
can be attributed to increased plant available water holding capacity and N availability,
particularly in N-deficient soils. While a critical SOC threshold of 2% is established for
sustainable crop production in temperate regions and about 1% in tropical regions [60],
it would be worthwhile to investigate the minimum critical SOC threshold for cereals
and other rotational crops in Western Australia’s Mediterranean climate. Importantly,
management practices that boost SOC are site-specific. Furthermore, SOC loss from wind
erosion in dryland agriculture in the region necessitates research into farming practices
that can prevent such SOC loss. Identifying the best socioeconomically feasible practices
for increasing SOC storage in Western Australian soils will not only improve soil quality
and long-term productivity, but also aid in implementing the key principles of RA.

No-Tillage and Nitrous Oxide (N2O) Emissions

Despite the advantages of NT management practices for increasing SOC, there are
concerns that they result in higher N2O emissions. This is concerning, as even a small
concentration of this gas has a large effect on warming, which could offset the benefits of
an NT system [61,62]. Increased N2O with NT is attributed to a higher use of N fertilisers
causing denitrification, possibly due to low organic matter in combination with low oxygen
conditions and low soil pH and texture [63–65]. Changing from diverse perennial systems
with high SOM to an annual cropping system causes high N2O flux due to greater mineral-
isation and denitrification [66]. Conversely, some studies have predicted low emissions of
N2O from NT compared with CT systems in the longer term [67]. Management strategies
are required to mitigate the impact of N2O emissions from reduced- or no-till agriculture.
It is suggested that enhanced-efficiency nitrogen fertilisers be used to reduce N2O emis-
sions [68]. Plant diversity can also reduce N2O emissions in restored agricultural soils [69].
The type of cover crop used may also influence N2O emission rates. Leguminous crops, for
example, can increase crop productivity while having no effect on N2O emissions due to
their ability to fix atmospheric N [70]. Organic and inorganic fertilisers have been shown
to reduce nitrogen loss while increasing N accumulation in soils when used together [71].
Furthermore, matching N supply to crop demand, in conjunction with animal waste and
residue management, can reduce N2O emissions by 0.38 Tg N2O-N [72].

Another major issue with NT is the overuse of herbicides for weed control, which
causes environmental pollution and resistant weeds, and threatens human health. It may
be possible to reduce herbicide use under no-till crop production by using an integrated
approach such as crop competitive enhancement, seed bank reduction technologies, crop
rotation and biological control [73–75].

2.1.2. Cover Crops

The second and third RA principles involve keeping soil covered and living roots
in the soil all year. One method is to incorporate cover crops into the farming system.
Cover crops are typically grown between main crops to cover and keep living plants on
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the soil during non-cash-cropping periods. This is accomplished by either planting cover
crops after harvest or under-seeding cash crops, typically grains, with perennial crops that
will then develop to maintain soil cover post-harvest into the following season. Cover
crops can be single species or multi-species blends. Despite the ease with which single
cover crop species can be managed, a mixture of species may provide all the benefits of
each species in the mix [76]. Multi-species cover crops, including legumes, are thought
to improve ecosystem functions such as biological nitrogen fixation, microbial diversity,
compaction reduction, attraction of beneficial insects, suppression of weeds, regulation of
soil temperature, and increased water infiltration. Cover crops, in addition to improving
soil fertility, aid in carbon sequestration, and their widespread adoption could reduce
agricultural GHG emissions by 10%, which is comparable to using no-till or other cropping
practices [77]. One of the key benefits of cover crops is enhanced microbial biomass through
the addition of extra SOM in soil [78]. However, it can take several years for soil carbon to
increase significantly [79,80]. A variety of cover crop responses to SOC accumulation have
been reported on a global scale in various agroclimatic regions. Cover cropping was shown
to increase surface storage of SOC in a temperate humid region of North America by the
use of cover crops six times in eight years, improving soil functionality, but profitability
was dependent on the type of production system used [81]. The mechanism of SOC storage
with cover crops remains unknown; it could be due to either below- or above-ground
biomass input or rhizodeposition.

Soil carbon accumulation with cover crops has been linked to soil texture, with an
increase in soil carbon more likely to occur in clay soils with cover crops. In Argentina,
studies have shown that cover crops grown on fine- and coarse-textured soils accumulate
more soil carbon [82]. While cover crops can help eroded soils with low C content accu-
mulate more carbon [83,84], the benefits are more visible with no tillage due to a slower
rate of residue decomposition than with conventional tillage [85]. A recent meta-analysis
of 131 global studies found that incorporating cover crops into the rotation significantly
improved SOC, with fine-textured soils showing the greatest increase; the increase was
greater in shallow soil (30 cm) than in subsurface soil (>30 cm). This increase in SOC
was associated with improvements in soil quality and mineralizable N and C, and was
influenced by the annual temperature, number of years after cover cropping began, initial
SOC concentration, and latitude [86].

Plant diversity is important in both natural and managed systems and is thought to be
essential for maintaining soil productivity. Crop diversification provides a multitude of
benefits, including increased crop productivity and biodiversity, suppression of pests and
pathogens, and improved water and soil quality [87]. Without the use of nitrogen fertilisers,
legume cover crops have a positive impact on the yield of the subsequent main crop [88].
A meta-analysis of 1001 paired observations from 121 papers found that species mixes
increased SOC content and stock by 6–8% more than monocultures [89]. The researchers
concluded that the functional groups within the mixtures had little effect on increasing
SOC but did have an effect on increasing microbial biomass carbon when compared to
monocultures. Crop rotation and mixed species cover crops combined with no tillage
restored degraded cropland and increased C stocks in tropical sandy soils in just five
years [90]. In contrast, recent modelling indicates that increasing the cover crop area by
30% could increase annual C stocks by 35 Tg within 50 years [91].

Furthermore, the mechanisms by which cover crops influence the yield of subsequent
crops can vary among cropping systems and environments and are thus poorly under-
stood [92,93]. Cover crops have been shown to have a negative effect on gross margins in
Western Australia’s low-rainfall environments [94]. Another concern is that cover crops
planted in the summer will consume all available moisture, which will be detrimental
to subsequent crops, especially if dry conditions prevail at the start of the season. How-
ever, yield improvement in corn and soybean has been reported after cover crops in a
dry year [95]. Similarly, increased yields of main crops after summer cover crops were
attributed to reduced compaction and soil temperature, and increased soil aggregate sta-
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bility, carbon, and nitrogen concentration and soil water content [96]. Conversely, a 10%
reduction in wheat yield has been reported following cover cropping [93]. Furthermore,
cover crops may harbour pests and diseases that infect subsequent crops, although there is
evidence that mustard cover crops have a biofumigation effect and can lessen the impact of
soil-borne pathogens [97,98]. In order to garner the benefits of this technology in dryland
agriculture, careful management and selection of cover crop species are required.

Due to high temperatures and a lack of summer rain, cover cropping is infeasible
in Western Australia’s north-central and north-eastern low-rainfall zones, whereas in the
south, where summers are relatively cooler, sowing cover crops may be opportunistic,
depending on the frequency and intensity of summer rain events. Growers must balance
profitability and long-term soil health benefits when incorporating cover crops into their
cropping programmes.

2.1.3. Stubble Retention

Retaining stubble after harvest has numerous advantages, including reduced soil ero-
sion and soil water run-off, returning nutrients to the soil, and increased carbon input and
water infiltration [99]. Wind erosion is a serious problem in Western Australia, particularly
in soils with fewer clay and silt particles, and can result in a 3% loss of carbon stocks up to a
1 m soil depth [100]. In general, stubble retention has a greater impact on C build-up when
combined with other management practices [101]. Plant diversity influences the formation
and accumulation of SOC through the decomposition and transformation of above- and
below-ground plant litters [102]. Furthermore, the amount of carbon sequestered is affected
by the quality of the residue C input (C:N ratio). Stubble with a higher C:N ratio decom-
poses slowly and thus adds more C to the soil, and vice versa. Horwath and Kuzyakov
(2018) [103] proposed that N is required for SOC sequestration. A 50-year study on vertisol
at the Hermitage in Queensland, Australia, found that stubble retention and N fertilisation
improved soil health and kept soil carbon levels stable [104]. The addition of N fertiliser
to a system combining stubble retention and no tillage improved soil aggregate forma-
tion, which influenced C sequestration [105,106] and microbial community structure [107],
whereas other studies found insignificant effects on SOC [108,109]. Burning stubble harms
physical, chemical, and biological properties, decreases SOM, and contributes to GHG
emissions [110]. Fifty percent of WA growers burn narrow windrows to control weeds, and
this practice has been shown to deplete C stocks [111]. Over a 19-year period, no tillage
combined with stubble retention yielded 2–5% SOC compared to 1.5% with tillage and
stubble burning [112].

Another way to improve soil biodiversity and SOC is to use residue as a surface
mulch [113]. The effect of incorporating stubble on carbon sequestration potential ranges
from large [114,115] to negligible [116] and is dependent on soil type. Clay soils with
incorporated stubble sequester more C than sandy soils. A few studies have found that
when no tillage was combined with stubble retention, crop yield and SOC stocks increased
significantly [117,118]. There is little information available on the impact of stubble reten-
tion on the yield of subsequent crops. Flower et al. (2017) [94] found that reducing cereal
residue by 40–66% had a beneficial effect on wheat yield in years with high levels of cereal
residue but a negative or no effect in years with low residue levels.

While stubble retention has been advocated to promote soil health, it can be detrimen-
tal in terms of spreading stubble-borne diseases that impact crop production. However, the
negative consequences can be mitigated by implementing integrated disease management
approaches.

2.1.4. Crop Rotation and Diversity

Crop rotation, also known as diversification, is a centuries-old practice that improves
yield and profit by providing nutritional benefits and breaking the pest–disease–weed cycle.
However, crop rotation as a practice reverted to monocultures in the middle of the last
century due to a heavy reliance on inorganic fertilisers and pesticides, improved crop vari-
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eties, and, in some cases, economic considerations. All of these eventually resulted in land
degradation and the loss of SOM [119]. Crop rotation is becoming increasingly recognised
for its potential to improve soil quality [120], crop yield, and water use efficiency [121].

Recent research has found that crop rotation improves soil functionality and SOC [122].
Blair and Crocker (2000) [123], in a long-term experiment in New South Wales Australia,
discovered that including some legume-based rotational crops increased the concentration
of labile carbon and potentially improved the soil structure. Another recent Australian
study in NSW revealed that SOC was generally higher in native or grazing fields compared
to cultivated fields, while precipitation and land management on specific farms may
have a role in SOC distribution [124]. The Mediterranean climate of Western Australia is
characterised by high summer temperatures, irregular rainfall, and low cloud cover. Such
circumstances will limit the soil’s ability to sequester carbon. Lopez-Bellido et al. [125],
in a 29-year long-term experiment in a rainfed Mediterranean climate, demonstrated that
no tillage combined with legume crop rotation was critical to improving soil fertility and
increasing both C levels and its rate of accumulation by soil. A global meta-analysis of
69 field experiments consisting of 276 paired experiments compared C sequestration rates
in response to reduced tillage intensity or increased rotation complexity. A shift from CT to
NT significantly increased C sequestration, with crop rotation adding even more C [126].
The SOC increase may be minimal or non-existent in the first 2–5 years following a change
in management practice, but that may be followed by a significant increase in the next
5–10 years [127,128].

Deep-rooted perennials may benefit from sequestering SOC at greater depths, es-
pecially in marginally productive soils. Over a 22-year period, a comparison of SOC
sequestration potential and stocks in tagasaste (a woody N-fixing perennial) and annual
crops in high rainfall zones of WA revealed that tagasaste had a higher C sequestration rate
and stock to a depth of 0.9 m [129]. In a study conducted in the Albany sand plain of West-
ern Australia, Hoyle et al. [130] reported that the actual SOC was consistently highest in
perennial pastures across all soil types. The main factors influencing SOC, which was higher
in annual pastures than in mixed or continuous cropping, were soil depth and rainfall. They
also noted that the topsoil surface under perennial pastures is already saturated with SOC,
and that even with a 30% decrease in rainfall in the future, any additional increase in SOC
storage capacity under mixed or continuous cropping would be in less than 0.1 m of the
soil surface. Cropping practices that include rotating with high-residue-producing crops,
as well as maintaining surface residue cover and reducing tillage, can significantly increase
SOC and N [131]. However, crop rotation had little effect on SOC in fertile soil of WA [111].
Pulse crops contribute significantly to biological nitrogen fixation, and as a result improve
SOC. However, the yield benefit of wheat and pulse crop rotation is more dependent on the
type of pulse crop in rotation than SOC, because some pulse crops produce comparatively
lower biomass and residue inputs [132].

Sanderman [133] examined the C sequestration potential of Australian soils and
concluded that while management practices such as enhanced rotation, no till, and stubble
retention clearly increased SOC compared to conventional practices, SOC stocks decreased
over time, implying that the practices likely mitigated C losses rather than sequestered
additional SOC.

2.1.5. Rotational Grazing

Another popular RA practice is to integrate livestock to improve soil health and
diversify the income stream, despite the fact that livestock farming is widely blamed
for contributing to methane emissions [134]. To increase SOC and improve soil health,
rotational grazing is preferred over continuous grazing [135–138]. Anecdotal evidence
suggests that rotational grazing may increase SOC in some grasslands, particularly in drier
and warmer climates. According to reports, pasture management practices can increase soil
carbon stocks [139,140]. However, in south-eastern Australia, a survey using paired-site
sampling found no difference in SOC stocks in different pasture and management practices,
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with the exception of higher SOC in improved pastures, which the authors attributed to
methodological issues [141]. Sanderman et al. [142] discovered that rotational grazing had
little effect on SOC in a subsequent study in Southern Australia. Rotational grazing of
pastures, however, increased SOC in the 0–40 cm layer by about 25% more than no-till
fields [134].

In terms of increasing soil carbon and retaining N stocks, adaptive multi-paddock
grazing outperforms conventional grazing [143]. Light to moderate grazing has been shown
to improve SOC and soil structure significantly more than heavy grazing [144,145]. The
effect of grazing intensity (GI) on extensively managed grasslands in various environments
is poorly understood. A meta-analysis of 83 studies from around the world found that
the impact of GI on SOC varied by climate zone and grass type, implying that grazing
intensity should be optimised based on the regional climate [146]. A combination of
improved grazing and biodiversity management practices can lead to a substantial amount
of accumulated SOC in soil [147]. Similarly, a recent large-scale survey conducted across six
continents demonstrated that the intricate connection between grazing intensity and climate
in drylands drives rates of carbon storage, organic matter deposition, and erosion [148].

2.2. SOM-Mediated Improvement of Soil Moisture/Water Uptake

SOM is well known for its functional benefits, including increased soil water holding
capacity (SWHC). However, reports on the role of SOC in increasing SWHC are inconsistent.
Some studies have found little effect [149,150] or no effect [151,152], while others have
found significant effects of increased SOC on soil WHC [153]. Most researchers associate
this property with soil texture. An increase in SOM was found to increase soil field capacity
(FC) more quickly in sand and silt loam croplands in the midwestern United States [154].
Based on a meta-analysis, Rawls et al. [155] proposed that sandy soils were more sensitive
to changes in SOM at a low organic carbon content. Increasing soil carbon was shown to
increase soil water retention in sandy soils and decrease it in clayey soils. Interestingly,
with high SOC, all soil types increased water retention as SOC increased.

Organic carbon has a favourable effect on soil water holding capacity, but the forms
of carbon responsible for this effect, as well as their synergistic behaviour with other soil
features, remain unknown [154]. According to Jong et al. [156], increased SOM/SOC is
associated with increased soil water content. At field capacity, 1% SOM added 1.5% more
moisture by volume [157,158]. Emerson and McGary [159] reported that a gram of extra
carbon resulted in a 50% increase in water due to the binding of soil particles with organic
carbon exudates from ectotrophic mycorrhiza, which resulted in a change in pore size and
water retention at 10 kPa suction.

According to a recent study, while an increase in available water holding capacity
(AWHC) was more prominent in sandy soils, a 1% increase in SOM increased AWHC by
up to 1.5% depending on soil texture and minerology [160]. Minasny and McBrateny [161]
concluded that increasing SOC had a minor effect on soil water retention, and a 1% increase
in SOC caused a 1.16% volumetric increase in water retention. Sandy soils were more
responsive to increased SOC, whereas clayey soils showed no effect. Some researchers
contend that increasing SOC through simple changes in management practices can increase
SWHC; however, such improvement is limited by soil type [162,163]. In sandy soil, for
example, a 1% increase in SOC had a significant impact on SWHC [164]. Currently, no
SOM threshold has been established due to diverse soils, different growing conditions
and management practices, and different types and levels of land degradation. However,
Oldfield et al. [165] recently defined an SOM threshold (up to 5%) associated with increased
wheat productivity under controlled greenhouse conditions, implying that developing
optimal SOM targets is critical for improving water retention and soil fertility.

A variety of factors influence soil water holding capacity, including soil bulk density,
infiltration rate, and crop residues. Soil aggregation, porosity, and infiltration rates can
be improved by soil fauna and retaining residues on the soil surface [166–168]. Calegari
et al. [169] demonstrated that better physical characteristics, conferred by crop rotation
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and no tillage, boosted soil water infiltration from 20 mm/h with conventional tillage to
45 mm/h with no tillage (soybean–wheat system). Increased water infiltration combined
with increased organic matter content has a positive impact on soil water storage, and
mixing organic matter with soil mineral content significantly improves the water holding
capacity of soil. More water can be stored, especially in topsoil, which has a higher organic
matter content. A 9-year study involving 17 long-term experiments found that adding
organic amendments improved available water and soil properties, and the quality of
organic C was an important factor [170]. Li et al. [171] recently studied the benefits of
earthworm casts on soil water retention and other properties and concluded that the use
of small earthworm particles improved soil water retention and decreased soil evapora-
tion. Earthworms were found to increase the percentage of water stable aggregates and
water holding capacity, but the amount varied depending on the earthworm species [172].
Another study found that combining corn straw with chemical fertiliser increased the
soil water storage capacity of aeolian sandy soil [173]. Reduced aggregate stability due to
decreased SOC can reduce soil water retention [174]. Cropping practices that increase soil
organic carbon increase the soil’s capacity to store moisture [175].

2.3. Increased Soil Biodiversity and Microbial Function

Soil biodiversity, which covers a wide range of living organisms, including microbes
and meso-, macro-, and megafauna, plays an important role in ecosystem functioning due
to their complex interactions [176,177]. RA practices emphasise improving the functionality
of soil microbes in order to reclaim degraded soil fertility (70% globally), grow the healthiest,
most nutritious food possible, and combat climate change [178]. The soil microbiota is
essential for organic matter breakdown, nutrient cycling, and soil fertilisation [19,179].
Soil microbes are also essential for the growth of a healthy soil structure. Soil resilience is
an excellent indicator of an ecosystem’s overall functioning. Soils with higher microbial
diversity are more resistant and resilient to disturbances than soils with lower microbial
diversity [180].

Prior to the development of next-generation sequencing techniques, the soil microbial
community was described as a “black box” [181–183]. Understanding the structure of
microbial communities is critical for unravelling microbe-driven biogeochemical cycles.
It is now widely acknowledged that functional diversity patterns, rather than taxonomic
richness, may allow more robust testing of biodiversity theories [184]. However, challenges
in characterising microbial function remain due to the lack of a suitable methodology for
distinguishing microbial functions, as most studies to date have focused on community
structure rather than function. New tools such as meta-transcriptomics/metabolomics will
improve our understanding of microbial functions in diverse ecosystems.

Microorganisms account for 80–90% of total soil metabolism and therefore are essential
in the biochemical transformation of organic matter and nutrient bioavailability [185]. In
temperate grasslands, 1–5% of C and N in soil is stored in living microbial biomass, which
is estimated to be 1–2 t ha−1 [180,186]. Plant-associated microbiota are well known for
their ability to mobilise nutrients that are not readily available to plants, such as inorganic
phosphate and iron, through solubilisation, mineralisation, or excretion via iron-chelating
siderophores [187].

Agricultural intensification is one of the leading causes of soil biodiversity loss and re-
duced food-web complexity among the various human-induced changes [188–190]. Several
soil microbiological parameters, such as microbial biomass carbon, extracellular enzymes,
fungi-to-bacteria ratio (F:B), and basal respiration rate, have been proposed as potential
indicators of soil quality [191]. Intensively managed farmed soils frequently have a lower
F:B biomass ratio compared to more extensively managed soils. This phenomenon is
thought to be due to tillage, high rates of fertilisation, and a lower C:N ratio favouring
bacteria [192,193]. Because fungi have a higher C:N ratio and produce complex enzymes to
break down lignin, they have greater potential to sequester carbon. Lower fungal biomass
and ratio are generally associated with lower soil C sequestration capacity [194,195].
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2.3.1. Role of Microbes in Stable Organic Carbon Fraction

It is widely assumed that plant-derived C accounts for the majority of stable carbon
fractions. Living microbial biomass accounts for 5% of SOC, resulting in a minimal con-
tribution to sequestered carbon [196,197]. Microbes, however, have been shown to play
an important role in sequestering C into stable soil C pools [198,199]. There is mounting
evidence that microbial necromass contributes significantly to soil stable organic carbon. A
recent meta-analysis of 148 peer-reviewed journal articles concluded that microbial necro-
mass contributes nearly half of the SOC in croplands, which is stimulated by temperature
and soil pH [200]. One of the parameters used in modelling long-term SOC storage is
microbial carbon use efficiency (CUE), with high and low CUE indicating the increased
and decreased C sequestration potential of soil, respectively [193]. Plant species richness
has been associated with rapid microbial development and turnover, resulting in more
necromass and higher SOC [201]. Kallenbach et al. [202] used a model soil system to
demonstrate that soil microbes produce stable and chemically varied SOM by utilising
simple C substrates. While the effect was more pronounced in soils with higher fungal
abundance, clay minerology had no effect on SOM accumulation and stabilisation. Micro-
bial necromass has been shown to contribute more than 50% of total SOC in temperate
agriculture topsoil, implying that good management practices that promote microbial
biomass are critical for maintaining healthy soils [203]. However, due to the limitations of
current SOM estimation methods, the relative contributions of plant- and microbe-derived
recalcitrant carbon fractions are debatable [204]. Microbial biomass and necromass appear
to be key factors in regulating soil carbon storage; however, the mechanism of necromass
carbon stabilising to stable soil carbon is not fully understood [205].

2.3.2. Nutrient Cycling and Acquisition

Microbial CUE is important to C cycling. Soil microbial community structure and
biodiversity have been linked to a variety of important functions in agricultural systems,
including plant productivity, C and N cycling regulation, and positive effects on livestock
production and yield [18,206,207]. C and nutrient cycling are heavily reliant on microbial
communities and are influenced by both biotic and abiotic factors, which can have either
positive or negative consequences [208,209]. Abiotic factors such as precipitation and soil
moisture can alter the bacteria–fungi ratio and decomposition of organic matter [210].

The majority of nutrients in SOM are derived from mineralisation and become avail-
able to plants during decomposition [158]. Mycorrhizal fungi have been well recognised
for their role in C, N, and P cycling. Arbuscular mycorrhizal fungi (AMF) have been shown
to contribute significantly to Zn uptake in cereals, and the mycorrhizal pathway of Zn
uptake is dependent on plant species and available soil zinc [211]. Several Australian
studies, however, indicate that AMF contribute little to crop nutrition and productivity in
Australian cropping zones, possibly due to the low soil temperature (10 ◦C) in the southern
region [212]. The role of microbes in nutrient uptake is further discussed below. Conserva-
tion agricultural practices such as minimum tillage and mulching should be encouraged,
because they help to establish AMF communities and the associated agroecosystem ser-
vices, whereas inorganic fertilisation inhibits AMF colonisation. Mulching and minimum
tillage were found to increase maize root colonisation, which increased the uptake of more
P and N from the soil, resulting in better maize growth [213].

Nitrogen

Nitrogen is the most important macronutrient for food crop production. In croplands,
90–95% of N is bound to organic matter, with the remainder available as ammonium, nitrate,
or nitrite. N is a component of nucleic acids and proteins, and is involved in a variety of
plant metabolic processes. N deficiency in crops can result from losses due to leaching,
volatilisation, surface runoff, denitrification, and the plant canopy, although N is usually
supplied in sufficient quantities to compensate for such losses. Nitrogen mineralisation is a
complex process involving diverse microorganisms (bacteria, fungi, and actinomycetes)
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that produce nitrates from various substrates such as plant residues, humus, microbial
necromass, and manure. However, the rate of mineralisation varies depending on soil type,
SOM, crop residue type, microbial communities, and environmental and climatic factors in
different fields. Recently, it has been hypothesised that global soil microbial biomass, total
nitrogen, and mean annual precipitation all have a positive impact on N mineralisation,
indicating the importance of microbes in determining N availability [214].

1. N2-Fixing Bacteria

Biological nitrogen fixation (BNF) is the first step in the nitrogen cycle, in which a
special class of N-fixing bacteria convert atmospheric N2 into usable compounds. The
role of nitrogen-fixing organisms (rhizobia) in symbiosis with leguminous plants is well
understood. Biological nitrogen fixation is carried out by various groups of bacteria,
archaea, and some fungal and algal species [215]. A symbiotic relationship exists between
leguminous plants and N2-fixing bacteria in biological N2 fixation. Through photosynthesis,
legumes provide energy and carbon to rhizobia, and rhizobia provide nitrogen to hosts
in the form of ammonium [216]. Rhizobacteria colonise host plant roots by responding to
root exudates via chemotaxis. Grain and forage legumes are frequently used in sustainable
farming systems to correct N fertility issues if crop residues are incorporated into the
soil after harvest [217,218]. The environment has a significant impact on the efficiency
of biological N fixation. High temperature, water stress, and soil acidity/salinity all
have a negative impact on the BNF process. A recent meta-analysis found that elevated
temperature and precipitation affected BNF in mid- to high-altitude biomes in response
to nutrient enrichment [219]. To address the environmental concerns associated with
BNF efficiency, management practices such as no or minimal tillage and cover crops are
recommended [220,221].

2. Free-Living N2-Fixing Bacteria

There are some free-living organisms in the soil that fix nitrogen from the atmosphere.
The presence of free-living N2 fixation (FLNF) bacteria is dependent on the availability
of C from root exudates, which is required for the energy demands of N2 fixation [222].
While diazotrophs achieve nearly 80% of biological nitrogen fixation (BNF) in symbiosis
with legumes, free-living soil bacteria (e.g., Pseudomonas, Azospirillum, and Azotobacter)
can fix considerable amounts of nitrogen (0 to 60 kg N ha−1 year−1), particularly under
organic crop production [223]. In general, symbiotic nitrogen fixers fix more nitrogen than
free-living and associative nitrogen fixers [224].

FLNF bacteria are common in agricultural soils in Southern Australia. Populations are
generally higher in clay soils than sandy soils, and they predominate in cereal paddocks.
Significant N fixation occurs in areas of NSW with significant summer rainfall; however,
low summer soil moisture (such as in WA) limits FLNF populations [225]. In tropical forests,
free-living N fixation was found to be suppressed by N fertilisation and stimulated by Mo
fertilisation and P additions, implying that nutrient limitation of free-living N fixation is a
common phenomenon [226]. FLNF bacteria and phosphate-solubilizing bacteria isolated
from the cotton rhizosphere were found to increase cotton growth by producing plant-
growth-promoting hormones [227]. Gupta and Roper (2010) [228] concluded that the ability
of aggregates to provide protection against biocidal exposure within the soil matrix was
related to the survival of FLNF bacteria in different soils.

Kennedy et al. [229] reported that FLNF bacteria improved plant growth and yield in a
variety of Australian field crops by increasing N supply in the soil, consequently reducing
the need for fertiliser application. FLNF organisms have recently gained prominence in
arid climates due to their role in soil development. FLNF bacteria and some archaea species,
in particular, have been found to carry nifH genes from the rhizospheres of plants growing
in harsh conditions such as extreme water stress, extreme temperature, high salinity, and
low-nutrient deserts [230–232]. Recently, two strains of free-living diazotrophic bacteria
were isolated from salt-affected soils of Syria that may have potential for the development
of novel biotechnological products for dryland agriculture [233]. Some summer-active
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perennial grasses growing in low-fertility sandy soils in Southern Australia’s Mediterranean
region have been shown to support FLNF diazotrophs in the plant rhizosphere, leaves, and
roots, with N-fixing potential ranging from 0.5 to 4 mg N/kg/day [234].

Non-symbiotic nitrogen fixation is likely to be greater with the use of NT practices
than in cultivated soils due to the aggregate stability under no-till, which is required for
maintaining low oxygen tension and protecting against microcidal exposure [228,235,236].
Crop rotation and stubble retention are two other management strategies that can promote
non-symbiotic nitrogen fixation, whereas certain fungicides and herbicides, particularly
glyphosate, can harm non-symbiotic nitrogen-fixing bacteria. Certain crop cultivars are
genetically superior in their interactions with N-fixing bacteria [237]. The technology
for the use of non-symbiotic inoculations may become available in the future, and could
potentially reduce the input of synthetic fertilisers. Significant research is being conducted
to develop biological N fixation in cereals. Although N-fixing bacteria have been isolated
from some cereal crops, the amount of nitrogen obtained was insufficient to meet the needs
of the plant and did not match that obtained with chemical fertilisers [238]. Developing
cereal crops for nitrogen fixation requires a greater understanding of the microbial traits
that promote plant colonisation, persistence, and competitiveness.

Phosphorus (P)

Phosphorus (P) is an essential element for plant growth. As an important component
of phospholipids and nucleic acids, it plays a major role in various plant biochemical pro-
cesses, including energy transfer, photosynthesis, reproduction, and nodule development
in legumes. Despite P being abundant, P deficiency is common in soils all over the world
due to the low concentration of readily available P in the form of orthophosphate [239].
Plant–microorganism interactions enhance the uptake of available P or access to previously
unavailable P sources in P-deficient conditions. AMF, as well as a variety of bacteria and
fungi, can solubilise insoluble mineral phosphate complexes, including calcium phosphate
complexes. P-solubilizing bacteria and fungi account for 1–50% and 0.1–0.5%, respec-
tively, of the total microbial population in soil, thus P-solubilizing bacteria outnumber
P-solubilizing fungi by a factor of 2–150 [240–242].

The role of AMF in increasing P availability in plants is well established [243,244].
Mycorrhizal fungi have been shown to be responsible for up to 75% of plant P acquisition
on an annual basis [245]. Extensive research has been conducted on the solubilization of
mineral phosphates by microorganisms other than AMF, and the rate of mineralisation
varies depending on the soil type [246,247]. Several bacterial genera, including Pseudomonas,
Burkholderia, Bacillus, Rhizobia, and Micrococcus, have the capacity to solubilise inorganic
P [248]. Many soil fungi, such as Penicillium, Trichoderma, and Aspergillus, can solubilise
insoluble phosphates or help plants acquire P and are thus used in commercial formulations.
The mechanisms of microbial P solubilisation include chelation, organic acid production,
proton extrusion, exopolysaccharide production, and siderophore and enzyme production
and depend on the fungal isolates and types of P sources used [249,250]. Fungi are thought
to be more effective than bacteria at solubilising inorganic phosphate because they can
move more freely through the soil and release a variety of organic acids [251].

Potassium (K)

Potassium is the third essential element for plant growth and development. It regulates
several plant functions, in particular stomatal movement. It plays an important role in
pathogen suppression and drought tolerance. Because of its insoluble form, K is generally
unavailable to plants in most agricultural soils, resulting in K deficiency. Aside from
using K-based fertilisers, introducing certain microbes can facilitate K uptake through K
mineralisation. Several K-solubilizing bacterial (Bacillus, Acidothiobacillus, Pseudomonas, and
Burkholderia) and fungal (Aspergillus, Glomus, and Penicillium) genera have been shown to
solubilise K and make it available to plants [252].
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Sulphur (S)

The majority of sulphur in soil is bound to organic molecules, with only a small fraction
of total sulphur available for plant uptake in the form of inorganic sulphate. Consequently,
sulphur deficiency is commonly observed in crop species. Several bacteria, prokaryotes,
and fungi are known to oxidise elemental sulphur to form sulphates that can be readily
used by plants [253,254]. Some crop plants, such as canola, have high requirements for
sulphur. To alleviate sulphur deficiency in canola, some microbial formulations are applied
with elemental sulphur [255].

3. Pest, Pathogen, and Weed Control/Suppression

Crop pathogens/pests/weeds cause significant production and economic losses world-
wide. Climate change is likely to exacerbate the occurrence and severity of certain diseases
and pests, particularly those that thrive in warmer climates. Elevated temperature and CO2,
humidity, and nutritional status all have an impact on plant immune responses [256–259].
Certain agricultural practices, such as monocultures, promote pests and disease. To reduce
subsequent losses, integrated disease and pest management is frequently recommended.
Traditional plant disease/pest control using fungicides/insecticides is one of the recom-
mended strategies, but it has several limitations. Pesticide overuse in recent years has
resulted in pesticide resistance, in addition to pollution and negative effects on soil mi-
crobiota. Consequently, there is worldwide interest among researchers in developing
environmentally safe and sustainable disease control solutions.

Several soil-borne microbes, including bacteria and fungi, have been identified as pest
and disease suppressors. Microbial biological control agents protect crops from pathogens
through a variety of mechanisms, including competition, hyperparasitism, and antibiosis.
Several beneficial soil bacteria, fungi, viruses, and microfauna have been reported as
potential candidates for biological control and ecological balance restoration [260]. Babikova
et al. [261] discovered that mycorrhizal fungi, via their mycorrhizal network, can transmit
defence signals from aphid-attacked plants to unaffected plants, providing an early warning
to intact plants. Manipulating plant microbiomes to make plants more resilient to pests
and diseases has recently gained traction. However, because the research is still in its
early stages, a collaborative cross-disciplinary effort is required to develop and realise
the full potential of this technology in diverse farming systems. There is evidence that
management practices such as reduced tillage, intercropping, cover cropping, and the use
of organic fertilisers increase predatory and beneficial insects, thereby providing natural
pest control [262–265].

Weeds are a serious problem in WA farming systems, and chemical weed control
is heavily used. Weed control in no-till and other regenerative farming practices will be
extremely difficult unless new non-chemical methods are developed quickly. In Europe,
research is being conducted to find sustainable non-chemical solutions for weed control
in arable crops [266]. Chemical weed control is not only expensive, but it also has seri-
ous issues in terms of weed species developing resistant populations. Integrated weed
management (IWM), which combines physical, cultural, genetic, biological, and chemical
approaches, is the way forwards for long-term weed control.

Allelopathy is another approach that could be used to reduce weedicide use. Soil
microbes such as fungi, bacteria, viruses, and nematodes have the ability to reduce the
weed seed bank [267,268]. However, one of the major drawbacks of using microbes for
weed control is that the majority of microbes are pathogens common to both weeds and
crop plants. Furthermore, inconsistencies in field efficacy and product maintenance are
significant barriers to developing bio-herbicides [268]. Due to their early vigour, crop
varieties with enhanced weed-competitiveness traits have a chance of being developed.
Some wheat cultivars with such characteristics can help reduce weed populations and the
need for chemical applications [269–271]. Recently, a new technology for post-emergence
weed control in cereals has been developed by combining digital image analysis with
automatic harrowing intensity adjustment [272].
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4. Mechanisms Involved in Improved Microbial Functions
4.1. Liquid Carbon Pathway

Proponents of RA have suggested that the liquid carbon pathway (LCP) comprises
a 420 million-year-old symbiotic relationship between mycorrhizal fungi and 90% of all
plants. Plants produce excess carbohydrates (simple plant sugars), which they exude into
the soil to feed the fungi. In exchange, mycorrhizal fungi mine and transport nutrients and
water back to their host. AMF can gain access to nutrients and water that larger plant roots
cannot. The liquid carbon pathway is regarded as the primary mechanism of long-term
soil carbon sequestration. According to RA advocates, pasture soils with healthy LCP
associations increase the amount of carbon sequestered beneath the grass every year. Some
pastures are currently sequestering up to 32 tonnes of CO2 per hectare per year. This is
due to glomalin-related soil protein (GRSP), which is produced in the hyphal cell walls of
mycorrhizal fungi and acts as a carbon storehouse, influencing aggregate formation and
stabilisation and contributing to soil carbon sequestration [273,274]. Another study found
that roots and rhizodeposition products are highly efficient C sources for the formation of
particulate- and mineral-associated organic carbon [275]. This study also suggested that
SOC in degraded croplands can be effectively increased by including plants with higher C
allocation to below-ground biomass.

Our understanding of the importance of microbes in carbon sequestration is growing.
Liang et al. [199] proposed a microbial carbon pump (MCP), a conceptual framework for
demonstrating soil C storage mechanisms by microorganisms. According to this model,
microbes actively pump carbon into the soil via the metabolic processing and deposition
of microbial necromass into stable C fractions. Zhu et al. [276] recently demonstrated
that microbial necromass was the dominant contributor to recently accumulated SOC in
perennial energy crops, implying that diverse perennial crops are important in stimulating
soil MCP.

Root exudates play a key role in shaping microbial communities in the rhizosphere,
and the rate of root exudation is influenced by the presence of microbes in the rhizo-
sphere [277]. In young seedlings, the transfer of photosynthates to below-ground com-
ponents, including the rhizosphere and roots, ranges from 20–50% [278]. Using isotope
tracer studies, Villarino et al. [275] demonstrated that rhizodeposition was highly efficient
in the formation of mineral-associated organic carbon (46%) compared to below- and
above-ground plant inputs, whereas root biomass contributed 19% to the formation of
particulate organic matter (POC), suggesting that growing plants with higher exudation
may increase C stocks. Root exudates are also known to stimulate some soil-borne fungi
and can thus negatively impact plant production [279]. However, root exudates recruit
beneficial microorganisms that provide robust plant protection and counteract the negative
effects of pathogens [280,281].

4.2. Improved Uptake of Water

The highly branched hyphae of AMF are about 2 µm in diameter, can move through
soil particles less than 30 µm in diameter, and can access water in either an active or passive
manner [282]. AM fungi facilitate water uptake through a variety of mechanisms, including
changes in soil properties, stomatal conductance, and hydraulic conductance. However,
the role of hyphae in water uptake is still debated, with some studies supporting their
contribution and others claiming that they play a minor role [283]. Under limited moisture
conditions, the roots of AM plants can increase apoplastic water flow and switch between
different water transport pathways [284]. Kaya et al. [285] and Ruiz-Lozano and Aroca
(2010) [286] reported increased water use efficiency due to mycorrhiza. The number of
external hyphae and the frequency of root colonisation have been linked to water uptake
efficiency of AM fungi [287]. Kakouridis et al. [288] recently demonstrated that water
transport by AM fungi is extra cytoplasmic, and their results indicated that AM fungi
accounted for 46.2% of the water transpired by AM plants.
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4.2.1. Drought Tolerance

Declining rainfall due to climate change is having an adverse impact on crop pro-
ductivity world-wide. Breeding for drought tolerance is the key to reducing this impact;
however, breeding programs are complex and it may take several years before drought-
resistant/-tolerant crop varieties become commercially available. Furthermore, plant fitness
responses to drought have been linked to changes in below-ground microbial communities
rather than plant trait evolution [289]. There is growing interest in using plant-associated
microbial communities to manage various abiotic stresses in crops, including drought
tolerance. Drought causes the reshaping of plant-associated microbiomes, which benefits
plants by allowing them to better cope with moisture stress conditions [290].

Currently, studies are being conducted to assess the ability of plant-associated mi-
crobiomes to alleviate drought stress in agricultural crops [291]. Drought induced the
enrichment of Actinobacteria in a grassland biome, and these bacteria are more abun-
dant in the root endosphere than in the surrounding soil under drought conditions [292].
Plant growth promoting rhizobacteria (PGPR) have also been linked to increased drought
tolerance in plants under water stress conditions [293–296]. Drought-tolerant microbial
consortia (mixtures of beneficial bacteria and AM fungi) are likely to provide a solution to
drought stress in the face of climate change [297]. AM fungi have been shown to improve
plant drought tolerance by improving osmotic adjustments in the roots, thus increasing the
water potential of the leaves [298,299]. Drought tolerance in rice and maize by AM fungi
is attributed to the increased AMF colonisation and conversion of putrescine to γ amino
butyric acid, respectively [300,301].

4.2.2. Nutrient Uptake

The interaction of plant roots and soil microorganisms influences nutrient availabil-
ity and uptake [302–304]. Factors that improve P and N nutrient acquisition are highly
desirable for plant growth and development. Certain root characteristics, such as root
elongation, high root-to-shoot biomass, increased root branching and angle, root hair and
proteoid roots contribute to P uptake [305–307]. A rhizophagy cycle is proposed for nutrient
acquisition in plant roots by symbiotic bacteria and fungi, in which plant nutrients captured
by microbes are released into the roots via an oxidative process [308]. Root exudates are
essential for making P available to plants and increasing microbial activity [309].

Microbial-mediated plant growth has been attributed to hormonal signalling in plants,
outcompeting pathogenic strains and increasing the bioavailability of soil nutrients [310].
Several microbial processes depolymerise and mineralise organic N, P, and S, and release
their inorganic forms into the soil [245]. The flavonoid pathway, via root exudates, is
important in legume rhizobia-mediated N fixation [310]. Furthermore, flavonoids have
been linked to hyphal branching and, as a result, improved nutrient uptake by mycorrhizal
fungi [311,312]. According to some metagenomics studies, certain microbial genes are more
abundant in soils with lower fertiliser inputs [313]. However, little is known about which
specific microbial strains contribute significantly to plant nutrition and which do not.

Plant growth can be hindered by a lack of nutrients. Because the crops grown in WA
farming systems require high soil fertility, high doses of fertilisers are applied to meet their
nutritional demand. Nutrient uptake by plant roots in nutrient-deficient soil is generally
thought to be low [314] and is more pronounced in the rhizosphere than in the outside
zone [302].

4.2.3. Role of Soil Microbes in Enhanced Aggregates, Plant Growth, and Photosynthesis

Soil structure is central to crop management and sustainable crop production. Sand,
silt, and clay particles of varying sizes combine to form micro- (250 µm) and macro-
(>250 µm diameter) aggregates. It is surmised that soil microbes, including bacteria and
fungi, influence aggregate formation by producing extracellular polysaccharides that bind
soil particles [315]. Microbial community structure is thought to play an important role in
the formation of different aggregate types. Certain soil bacterial taxa (e.g., Rubrobacteria)
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have been shown to have a high correlation with macro-aggregates [316]. Two main
mechanisms by which fungi help form soil aggregates are suggested [317]. In the direct
mechanism, fungal hyphae entrap soil particles and force them together. In the indirect
mechanism, AM fungi produce glomalin and other fungi and bacteria produce mucilage
and polysaccharides that bind the soil particles to form aggregates. In a study by Tang
et al. [318], fungi were found to form large aggregates, and fungicide application reduced
aggregate stability hence confirming the role of fungi in aggregate formation. There is little
information on the mechanisms underlying root-exudate-mediated C dynamics and their
effects on root aggregation at different depths. Under artificial experimental conditions,
the addition of more exudates resulted in a shift in the microbial community in favour of
fungi that promoted macro-aggregates, with a notable effect in C-deficient soils [319]. Rillig
et al. [320] proposed that glomalin may play an important role in the hyphal-mediated
process of soil aggregate stabilisation for a water-stable aggregate size of 1–2 mm.

To improve plant growth under biotic and abiotic stress conditions, soil microbes use
a variety of molecular and physiological mechanisms. PGPR facilitate plant growth by reg-
ulating various growth hormones or improving nutrient availability and acquisition. Such
beneficial effects are thought to be more pronounced in plants growing in poor soil condi-
tions [321]. To suppress crop pathogens, some PGPR produce volatile organic compounds
(VOCs) and other antimicrobial compounds, such as hydrogen cyanide (HCN) [322,323].
The inhibition of cytochrome c oxidase and other metalloenzymes involved in respiration
and other cellular processes is attributed to HCN’s toxicity in terms of suppressing plant
pathogens [324]. Endophytic microbes residing in plant roots influence plant growth by
sending chemical signals to above-ground plant parts [325].

Under physiological stress conditions, reactive oxygen species (ROS) damage the
photosynthetic capacity of crop plants. Several researchers are looking into the role of
microbes in enhancing photosynthesis under stress conditions. AM fungi were found
to inhibit chlorophyll loss in watermelon under water-stress conditions [326]. Likewise,
other endophytic genera, including Piriformospora and Trichoderma, have been reported
to reduce the loss of photosynthetic capacity of crop plants during salinity stress and
pathogen infection. Some phosphate-solubilising bacteria have been shown to increase
photosynthetic capacity in Cameline oleifera and rice [327,328].

5. Effect of Management Practices on Microbial Activity

Agriculture intensification reduces the functional groups of soil biota and jeopardises
soil functions, reducing agricultural productivity [329]. Conservation agricultural practices
such as crop rotation, manuring, reduced tillage, and cover crops improve or maintain
soil quality for sustainable crop production by regulating microbial communities [330,331].
Nutrient management and long crop rotations, however, may have a direct impact on
community structure and the associated ecosystem services across croplands [331].

Crop rotations that include cover crops and incorporate organic amendments improve
soil fertility by increasing soil C, N, and microbial biomass, benefiting agroecosystems in
the longer term. One of the most serious consequences of reduced crop rotation is the
loss of biodiversity. A meta-analysis of 122 studies on the effects of crop rotation on soil
biological properties found that rotation significantly increased the soil microbial biomass
C and N by 20.7 and 26.1%, respectively [78]. Some research has found that diversified crop
rotation improves plant resource use efficiency by increasing microbial functions [332].

When cover cropping is combined with other agricultural practices, the soil micro-
biome can become more robust [333]. Combining crop residues from mixed species and
monocultures with agricultural soil was shown to stimulate microbial diversity and func-
tion, and the nutrient content of the cover crops was indicated as the main driver of nutrient
release [334]. Diverse cover crops have been shown to increase microbial activity in sandy
soils, with a long-term positive impact on yield [335]. It has been demonstrated in several
studies that cover crops increase microbial biomass and enzyme activity [179,336–338].
However, Kim et al. [333] cautioned that the increased microbial activity could be due to in-
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creased microbial abundance or an increased per capita enzyme production rate. In contrast,
some studies found no strong relationship between species diversity and ecosystem func-
tions [339,340]. Because specific cover crop species can increase the abundance of particular
microbial groups [179], different combinations of species can be used to tailor the microbial
community composition in order to achieve the desired microbial functions [341]. Diversi-
fied catch crop mixtures were found to improve cropping system, C cycling efficiency and
have a positive impact on microbial abundance, activity, and diversity [342].

Retention of crop residues significantly increases soil microbial diversity and func-
tion [343]. In the low-fertility sandy–loam soils of WA, stubble retention increased microbial
biomass, function, and enzyme activity but had no effect on microbial diversity [344]. No-
tillage farming practices, combined with crop rotation and residue retention, have been
shown to increase microbial biomass and physiological diversity [345]. Soil microorganisms
regulate mineralisation and organic matter stability by producing a variety of extracellu-
lar enzymes [346]. Cropping practices have varying effects on soil enzyme production;
for example, enzyme activity can be increased with no tillage but be unaffected by crop
rotation in the short-term [347]. A few studies have found that the use of cover crops
increases microbial biomass, extracellular enzyme activity, and glomalin [348]. Continuous
application of inorganic fertilisers may be harmful to soil enzyme activity and biological
health in the long run [349]. Because of their low C/N ratio, legume cover crops provide a
significant amount of biologically fixed N to primary crops and decompose easily.

Increased microbial biomass and activity with various cropping practices has been
reported [350–354]. Microbial biomass in no-till soils contain more nutrients than microbial
biomass in conventionally tilled soils, implying greater nutrient cycling and fluxes through
microbial biomass without tilling [355].

In a Mediterranean climate, the combination of no tillage and liming has been shown
to increase mycorrhizal colonisation, N content, and biomass of a mixed oat and vetch
crop, possibly due to increased nutrient efficiency via crop–microbe interactions [356].
Reduced tillage, residue retention, and cropping promote higher microbial biomass, while
cover cropping has variable effects [357–360]. Tillage generally accelerates crop residue
decomposition and organic matter, resulting in decreased overall soil resource quality [359].

A higher fungi-to-bacteria biomass ratio has been linked to quantitative and quali-
tative improvements in SOM when no-till practices are used [361]. Furthermore, fungal-
dominated communities are expected to have a slower rate of C turnover than bacterial-
dominated communities due to their higher-efficiency C use. No-till farming systems
were found to have higher soil carbon and a higher fungi-to-bacteria ratio compared to
conventional farming systems [362]. The transition from direct drilled to conventional or
stubble-incorporated practices resulted in a significant decrease in organic C, total N, soil
water holding capacity, microbial biomass, and fungi-to-bacteria ratio respiration in the top
0–5 cm of red duplex soils in NSW [363].

5.1. Role of Biofertilisers and Biostimulants

Fertilisers are used in almost all cropping systems to meet the nutrient demands of
growing plants. There is increasing concern that excessive fertiliser use is contributing to
soil degradation, soil and water pollution, and GHG emissions. Global research efforts
are currently focused on developing microbial-based nutrient solutions that can replace
synthetic fertilisers and pesticides. Due to growing concerns about the health effects of
farm chemicals, the use of biofertilisers and biostimulants in agriculture has gained traction
in recent years. Furthermore, consumer demand for clean, safe, and nutrient-dense food
is increasing.

Plant biostimulants derived from natural materials are thought to be environmentally
friendly and innovative alternatives to chemicals/inorganic fertilisers for increasing crop
production by modifying physiological processes such as nutrient use efficiency and toler-
ance to abiotic and biotic stresses [364,365]. While there is no agreement on the definition
of “biostimulants”, the EU recently defined the term according to specific agricultural
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functions involving various natural compounds such as humic and fulvic acid, plant-
and animal-derived hydrolysates, seaweed extracts, silicon, and microorganisms such as
AM fungi and N-fixing bacteria [365}. The term “biological amendments” encompasses
biostimulants, organic amendments, biological inocula, and composts [366].

Beneficial microbes are of particular importance and will almost certainly play a sig-
nificant role in revolutionising agriculture over the next several decades. There is now a
significant resurgence of interest in developing microbial-based agricultural products, and
all of the major agribiotech companies are investing in the development of biological ap-
plications. According to a recent Meticulous Research report [367], the global biopesticide
market is expected to grow at a compound annual growth rate of 16.1% from 2019 to 2025,
reaching USD 10.24 billion. Significant research efforts are being directed towards develop-
ing environmentally friendly biocontrol strategies for crop disease and pest management.
There are also numerous scientific publications that describe the roles of various soil and
aerial microbes in promoting plant growth, facilitating/improving nutrient acquisition by
plants, and providing tolerance to moisture stress, salinity, and various pests and diseases.
The effectiveness of a biostimulant is determined by the type of biostimulant and the crop.
A recent greenhouse study reported that marine and fungal biostimulants increased grain
biomass and positively impacted grain protein in durum wheat [368].

There are around 21 commercially available rhizobacterial-based plant-growth-promoting
products for horticultural and field crops, including cereals, in various parts of the world [74].
In Australia, a biostimulant coating called FerticoatTM has recently been developed to
improve fertiliser use efficiency. This product can be mixed with UAN or applied with
granular fertiliser. Certain biostimulants have been shown to improve food nutritional
quality, especially in horticultural crops [369]. The use of an amino acid biostimulant was
reported to increase soybean yield and antioxidant potential [370]. Similarly, in winter
wheat, some amino-acid-based biostimulants have been shown to increase nutrient content,
particularly copper (31–50%), sodium (35–43%), calcium (4.3–7.9%), and molybdenum
(3.9–16%) [371]. Zinc foliar spray combined with the biostimulant fulvic acid increased
grain Zn content in wheat grains by 16% [372]. The demand for biostimulants will rise in
the future, but significant field-based research is required to test these products at multiple
scales and develop effective formulations for wide-scale adoption of this technology.

It is uncertain whether RA can supply appropriate plant nutrition while substituting
or reducing the need for synthetic inputs. However, research shows that some management
strategies, such as no-till, cover crops, crop rotation, and perennial crops, boost SOC,
microbial activity, and nutrient cycling. Soils with SOC as low as 1% contain considerable
amounts of nitrogen and other nutrients and may offer a sufficient supply if they become
accessible to plants. Furthermore, because of its high cation exchange capacity (CEC), SOC
improves soil nutrient retention [373].

5.2. Effect of Synthetic Inputs on Soil Microbial Activity

Some pesticides used for crop protection have an impact on soil chemical and biological
fertility, with numerous potential negative effects on soil microorganisms, including non-
target species [374–376]. Broad-spectrum fungicides are toxic to most fungi and result in a
decline in the beneficial types [377]. Some foliar fungicides reduce non-target microbial
community structure and functionality in the short-term [378]. The fungicides azoxystrobin
and pyraclostrobin were shown to reduce microbial richness and biodiversity [379,380].
Fungicide use may also have an effect on the foliar microbial community. According
to Katsoula et al. [381], repeated use of iprodione may affect both epiphytic and soil
microbial communities, potentially affecting the yield and quality of agricultural produce.
Repeated use of the fungicide chlorothalonil has been shown to have a detrimental effect on
microbial respiration, dehydrogenase activity, and microbial community structure under
greenhouse conditions [382]. Among the fungicides, carbendazim, mancozeb, captan,
metalaxyl, fludioxonil, thiram, and trifloxystrobin have been reported to decrease soil
microbial biomass and AMF [383–385]. Topsin, another fungicide, was found to reduce
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AMF colonisation and biomass production in Andropogon gerardii, a warm-season grass.
Despite a reduction in AMF colonisation, the biomass of a cool-season grass, Pascopyron
smithii, was not reduced [386].

There have been numerous reports of insecticides having a negative impact on soil
bacterial and fungal communities. Some insecticides, such as endosulfan, chloropyriphos,
and imidacloprid, have been shown to have a negative impact on soil microbes [387,388].
Herbicides, however, have contradictory effects on soil microbes. Glufosinate had no effect
on soil bacterial community structure and diversity when applied to glufosinate-tolerant
rapeseed plants [389]. Likewise, some herbicides did not have any adverse effects on non-
target microorganisms. In contrast, herbicides such as atrazine and metribuzin adversely
impact Bradyrhizobium populations [390].

Intensive fertilisation is thought to harm soil microbes, and in particular AMF diver-
sity and abundance, and changes interactions between below- and above-ground plant
communities due to changes in soil chemical properties [391,392]. The effects of N fertili-
sation on AMF, however, are debatable. Some studies have found that large amounts of
N fertilisation have a suppressive effect on AMF [393,394], while others have found no
discernible impact on root colonisation or species diversity [395–398]. High levels of a ho-
mogeneous P supply have been shown to strongly suppress AMF colonisation, abundance,
and diversity [399,400]. N fertilisation has been linked to soil acidification, with serious
consequences for soil organisms [401].

Aside from fertilisation, many other factors, such as N and P availability ratios, [402,403],
soil pH [404,405], AMF species [406], soil organic matter content [407], and plant community
composition [408], can influence AMF communities in an ecosystem. P treatment was found
to briefly inhibit the formation of new arbuscules in AMF [409]. The long-term effects of N
and other inorganic fertilisers on plant- and soil-based fungal and bacterial communities are
being studied extensively. Nitrogen fertilisers, in particular, reduce the ability of rhizobia
to promote plant growth and alter the function of AM fungi by reducing their richness and
diversity [410–412]. Huang et al. [413] recently reported that the use of inorganic fertilisers
in grassland ecosystems over 150 years reduced the richness and diversity of both plant
and soil microbes, and, more importantly, decreased potential associations between plants
and functional microbes.

Pesticides have also been shown to inhibit a variety of soil biological processes
and enzymes, including hydrolases, oxidoreductases, urease, and dehydrogenase) [414].
Some fungicides temporarily inhibit the C-cycling activity of soil fungi [415]. Mancozeb,
chlorothalonil, thiram, and carbendazim are fungicides that inhibit nodulation and nitrogen
fixation [416]. Ridomil Gold, however, has been reported to increase N and P mineralisation.
A recent European study found that fungicide use and land-use intensification reduce the
natural nutrient uptake capacity of AM fungi [417].

6. Nutrient-Dense Food

RA practitioners claim that higher yields have resulted in decreased nutrients in
plants, and that adopting RA practices can improve the nutritional quality of food. Climate
change, particularly elevated CO2, can have a negative impact on the nutritional quality
of grain [418]. Nutritional security is critical to global food production and is inextricably
linked to human health. Soil quality and fertility have a large impact on nutrient levels
in food crops. Poor nutrient content in food has been linked to soil depletion of micro-
and macronutrients. Soil mineral content has been reported to be depleted by up to 85%
in several countries over the last century [419]. Mineral nutrients in fruits and vegetables
have been found to be significantly reduced [420,421].

Cunningham et al. (2001) [422] compared the nutrient contents of 44 types of Aus-
tralian vegetables and fruits and discovered no significant differences in mineral content
over time. In another study comparing historical plant and soil samples [423,424], it was
found that the decline in mineral content in wheat grains after 1960 was caused by changes
in wheat cultivars, whereas the mineral content of soil remained stable or increased due to
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the addition of mineral or organic fertilisers. McIntyre et al. [425] proposed that implement-
ing efficient farming systems could improve human nutrition and health. Alternatively,
crop species with higher micronutrient contents should be identified and used in breeding
programmes to improve the nutritional quality of food crops [426].

Although prevailing climatic conditions can influence food nutrient content, soil type
may play an important role in plant nutrient accumulation [427]. In the semi-arid region
of Saskatchewan, for example, low protein content in wheat under no till compared to
minimum tillage has been reported, whereas no significant difference was observed on
sandy loam soil [428]. To date, no scientific studies have been conducted to demonstrate
the role of the RA system in improving the nutrient density of arable crops. Certain
management strategies, such as the use of appropriate soil amendments and beneficial
microorganisms and legume-based crop rotation, are suggested to improve soil health and
food nitrogen content [429].

7. Climate Mitigation

According to RA practitioners, one of the co-benefits of RA is reduced greenhouse gas
emissions. Australian agriculture accounts for 14.6% of annual GHG emissions, including
methane and nitrous oxide from enteric fermentation of livestock/animals and cropping,
respectively. Increased temperature and potential soil erosion can reduce agricultural
productivity by 10–20% due to SOC loss [430]. Agricultural soils are thought to be a major
C sink, with potential C sequestration of 1.1–2.2 Pg C over the next 50 years [431]. The ability
of agricultural practices to mitigate climate change is attributed to SOC sequestration in soil
via photosynthesis. Carbon sequestration could potentially offset fossil fuel emissions by
5–15% on an annual basis, with croplands, grazing/range lands, degraded/deserted lands,
and irrigated soils having the highest sequestration potential [128]. C sequestration in soil
is aided by management practices such as the use of perennial forage crops, the elimination
of bare fallows, the cultivation of biofuel crops, improved nutrient management, reduced
tillage, and the production of high residues [108].

Tiefenbacher et al. [432] recently reviewed the potential C sequestration of agricultural
management practices in topsoil. Composting, no tillage, and cover crops have the highest
potential for sequestration. The C sequestration potential of mineral N fertilisers is almost
neutral, and bare fallow has negative potential due to the loss of carbon stocks. However,
the authors cautioned that the benefits of C sequestration must be validated under specific
soil and climatic conditions. Climate smart agricultural practices have been advocated
in order to increase crop yields, profitability, and resource efficiency and reduce GHG
emissions [433]. However, cultural, physical, and economic barriers must be overcome
before these practices can be widely adopted. Some researchers believe that the estimation
of climate change mitigation by agricultural practices is uncertain because it requires
complex and expensive quantification and monitoring technologies [434]. Hence, simple
on-farm monitoring tools must be developed [435]. Some analytical and predictive tools
have been used to estimate C stocks and sequestration potential [436–438].

The literature on the climate mitigation potential of fully regenerative farming is scarce.
In South Carolina, US, investigations revealed a significant increase in SOC at multiple
farms that switched from conventional fallowing to regenerative cover cropping practices
with limited chemical and N application [439]. Similarly, recent modelling indicates that
adopting RA practices could reduce GHG emissions by 14-27% in arable lands in the UK
within 30 years [440]. As mentioned in previous sections, some individual RA practices can
potentially sequester C in soils, but it is also possible that when these practices are used
holistically, they may have a synergistic effect on sequestering C.

Overall, the literature indicates that four-way interactions (plant–microbe–management
practices–environment) are the primary drivers of C sequestration, improved soil health,
and resilience in an agricultural biome (Figure 2). The scale of RA will be determined by
several factors, the most important of which are farmers’ well-being and financial feasibility.
The financial and social elements of RA are not included here since they are outside the
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scope of this review; however, separate studies on the topic have been published [441–443].
The exact level of RA uptake in different areas of the world is difficult to estimate because it
differs by location and country. Elements that make RA popular depend on the individual
farmer to a large extent, but can include low operating costs (due to reduced inputs),
perceived improved soil health, perceived increased soil organic carbon (and associated
benefits), producing more nutritious food, and probably a feel-good factor from farming in
a more sustainable manner. Another socioeconomic impediment in the uptake of RA is a
lack of technical competence and understanding of RA procedures, as well as government
policies, market access, and sufficient research on the benefits of RA. Governments, non-
governmental organisations, and research organisations can all play an important role in
promoting the adoption of regenerative agriculture by providing education and training,
enacting policies that support these practises, and assisting in the development of markets
for regeneratively grown products [444].
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It is acknowledged that switching to RA could result in lower yields in the first few
years, but the production losses may be offset by lower input costs. Farmers must be
able to generate income to sustain their livelihoods while transitioning to RA. Rattan Lal,
a distinguished soil scientist and World Food Prize winner, believes that “if farmers are
expected to do things that are useful to the global community and the world, incentivization
rather than penalty is the best option”.

8. Conclusions

RA is gaining traction in response to the challenges posed by climate change and
rising input costs. The adoption of climate smart agricultural approaches, including RA, is
proposed to reduce the impact of extreme weather events and combat GHG emissions. RA
is not a completely new farming system; rather, it incorporates features from established
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sustainable agricultural systems with the primary goal of restoring soil health in order
to revitalise degraded land and bring environmental, economic, and social benefits to a
broader community. Furthermore, the system could help in carbon sequestration if the
recommended management techniques are followed.

Due to the paucity of empirical research comparing the benefits of a completely
regenerated system against the traditional system, this review paints a complicated picture
to give an evidence base clearly outlining the pros and cons of implementing this technology.
This is due, in part, to the lack of a globally agreed definition of RA, which makes evaluating
the purported benefits challenging for researchers. However, there is strong scientific
evidence that the individual RA methods discussed in this review have the ability to
achieve outcomes such as restored soil health and, to lesser extent, higher yields. One of
the most important aspects of RA is improved SOC, which is critical for facilitating nutrient
cycling and sustaining both plants and soil inhabitants. The carbon pool in the soil is more
than three times higher than that in the atmosphere. Soil carbon has been significantly
depleted as a result of land use changes, notably agricultural management systems and
soil erosion. Climate change will also have an impact on global carbon reserves. There is
compelling scientific evidence that agricultural soils will serve as the largest carbon sink for
decades; however, the magnitude of the carbon sequestration capacity is mostly influenced
by regional climate and soil types. Combining regenerative farming approaches could
boost soil carbon sequestration capacity and soil quality.

SOM and SOC are major drivers of soil biodiversity, regulating a wide range of
biological processes in soil, and even a slight decrease in SOC can harm soil health by
impeding ecosystem functions. Management practices have a profound effect on shaping
microbial communities, thus influencing ecosystem services. Soil biodiversity loss in
intensively managed soils is well documented. Agricultural soils in Western Australia are
naturally low in SOC, and the potential threat to soil biodiversity is currently very high.
The literature shows that sustainable management practices increase microbial biomass,
activity, and soil functions. Despite the significant challenges in developing SOC in WA
drylands, particularly in areas with limited water availability, the literature suggests that, by
adjusting agronomic practices, there is potential for carbon sequestration and enrichment
of below-ground biodiversity.

Evidently, the scalability and successful implementation of RA systems will depend
on site-specific studies demonstrating their economic viability, as growers are more likely
to switch if there are no financial or environmental risks. Consumer demand for food that is
safe and produced using environmentally sustainable technologies is undeniably growing.
Researchers around the world are working to develop such technologies, and scientific
evidence is mounting that various RA practices can potentially help prevent soil degra-
dation, improve soil health, and produce nutritionally rich food in dryland agriculture.
However, researchers face a significant challenge in attracting adequate funding to under-
stand, evaluate, and unravel the complexity of RA systems. Extensive research is required
to develop regionally specific RA approaches. Soil biodiversity in different agro-ecological
zones is poorly understood including Western Australia. Long-term multi-disciplinary
research is needed to understand whether RA methods improve soil biological traits and
fertiliser efficiency, and thus reduce reliance on synthetic inputs. Government and industry
research support is critical to unlocking this potential and developing novel cost-effective
regenerative farming technology applicable to Mediterranean climatic conditions, as well
as extension programmes that not only increase RA acceptability and implementation but
ensure food and nutritional security.
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