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Abstract: In this study, the effects of flow field types on the electrochemical properties of polymer elec-
trolyte membrane fuel cells (PEMFCs) humidified with NaCl solution are systematically investigated.
The parallel flow field and serpentine flow field were used to investigate the PEMFCs. Long-term
stability was evaluated for 20 h using chronoamperometry. Fuel cells with both parallel and ser-
pentine flow fields showed a decrease in performance because of the NaCl solution. Interestingly,
the PEMFC with the serpentine flow field showed significantly more severe degradation during
long-term stability evaluation compared to the fuel cell with the parallel flow field. Electrochemical
impedance spectroscopy analysis showed that a significant increase in faradaic resistance caused
the degradation of the performance. After long-term stability examinations, regenerations of fuel
cells were performed with deionized water at a constant voltage (0.4 V). After the regeneration, the
performance of the fuel cells with the serpentine flow field was improved more (52.96%) than the
PEMFC with the parallel flow field (1.22%).

Keywords: polymer electrolyte membrane fuel cells; NaCl; mist generator; seawater; electrochemical
impedance spectroscopy; regeneration

1. Introduction

Fuel cells are known as one of the most efficient energy conversion devices since they
directly convert the chemical energy of fuel into electrical energy [1]. Among various
types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are commercialized
due to their high energy density, fast start-up/shut-down, and low operating temperature
(<100 ◦C) [1–4]. PEMFCs are widely adopted as the primary power sources of fuel cell
electric vehicles, ships, and drones because of their strong points, especially the low
operation temperature [5–9].

Fuel cells are composed of many components [1,10,11]. Among the components, bi-
polar plates have a unique flow field. The flow field of the bipolar plate is a passage for
the proper distribution of fuel, air, and H2O [1,12,13]. Furthermore, the flow field serves
to remove products of electrochemical reactions (H2O) produced through electrochemical
reactions at the triple phase boundaries (TPBs) of fuel cells [14–16]. Therefore, the design
of the flow field is considered one of the most crucial factors for the improvement of the
performance and durability of fuel cells [17–19]. Among various flow field patterns, the
most commonly used types are the serpentine flow field and the parallel flow field [20].
The single-channel serpentine flow field can effectively remove products based on a high-
pressure difference between the gas inlet and the outlet [21,22]. However, the parallel flow
field can distribute concentrations of materials more evenly compared to other types of flow
fields [1,23,24]. In addition, the design of the flow field should consider the appropriate
H2O distribution inside the fuel cell. In general, H2O is supplied to fuel cells by the
humidification of gases and generation by electrochemical reactions [1]. Externally supplied
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water is significantly crucial for the performance of the Nafion® electrolytes [1]. Hydrogen
ions (H+) move through the ionomer, from the anode to the cathode, with water [1,25]. The
transfer of the H2O to the ionomer effectively increases proton conductivity and current
density. However, when excess H2O is supplied in the aerosol state, it easily changes
to the droplet state in the fuel cell [26]. The droplets, i.e., liquid H2O, interrupt the gas
supply through the gas diffusion layer (GDL) and the catalyst layer (CL) [27,28]. Therefore,
the performance of fuel cells is due to a restricted supply of reactants and the removal of
products. However, the ion conductivity and durability of the electrolytes decrease when
moisture is insufficient, i.e., the ionomer dries [29]. Thus, appropriate humidification is
critical for the polymer electrolyte membrane fuel cells.

As we mentioned above, the flow field is significantly important for the electrochemical
properties of fuel cells. Additionally, the effects of the flow field related to the material
distribution are substantially more important for the fuel cell used in marine environments
due to the inherent impurities of seawater. When air is supplied to the fuel cell stack in
marine environments, the NaCl solution in the air can be supplied. In addition, there are
some reports that NaCl exists as a solution in the marine environment [30]. Na and Cl,
which are one of the most abundant materials in seawater, are reported to be the main
causes of performance degradation in PEMFCs [31]. Mikkola et al. reported that the proton
conductivity of electrolytes decreased because Na+ is transported in place of H+ in the
ionomers [32]. In addition, TPBs are reduced at the electrode of PEMFCs because of the
absorption of Cl- on the Pt catalysts [33]. In addition, Cl− affects PEMFC components such
as the GDL and the separator [34]. L. Veleva et al. revealed that the cause of corrosion in
copper specimens exposed to the marine environment was Cl [35]. In summary, impurities,
including NaCl in seawater, can degrade the electrochemical properties of PEMFCs. In
more detail, the supplied seawater mist, i.e., NaCl solution, moves through the flow field
and then affects the electrochemical properties of fuel cells.

However, there are no systematic studies on the effects of the flow field on the elec-
trochemical characteristics of fuel cells humidified with NaCl solution to the best of the
author’s knowledge. Therefore, the effects of the flow field on the electrochemical charac-
terization of PEMFCs humidified with NaCl solutions were systematically investigated.
The performance and electrochemical impedance spectroscopy (EIS) of the fuel cells were
measured. In addition, the long-term stability of the fuel cells was assessed for 20 h be-
tween 0.3 and 0.7 V. After the end of the long-term durability evaluation, a study on the
regeneration of PEMFCs was conducted using deionized (DI) water.

2. Experiments

Figure 1 illustrates the piping and instrumentation drawing of the experimental setup.
In this study, a custom-made mist generator was prepared using an ultrasonic vibrator.
A mist of 3.5 wt.% NaCl solution was supplied using air blown by a mist generator. As
shown in Figure 1, the mist generator was located between the fuel cell and the mass
flow controller (MFC). The concentration of the NaCl solution was maintained at 3.5 wt.%,
which is the average concentration of seawater. Then, 150 sccm of dry H2 (Samjung energy,
Paju-si, Republic of Korea) was supplied to the anode side of the fuel cells, and 600 sccm of
humidified air (Samjung energy, Paju-si, Republic of Korea) was supplied to the cathode of
the fuel cells. The humidification of NaCl solution was conducted using a custom-made
mist generator. The regeneration was carried out using a bubbler with DI water.
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Figure 1. Schematics of the experimental setup.

Commercial membrane electrode assemblies (MEAs) were used (CNL MEA C Type,
CNL Energy, Seoul, Republic of Korea). The Pt loading of the MEA was 0.4 mg/cm2 for
both the anode and cathode, and the total active area was 5.06 cm2. Additionally, the GDL
was used (SGL, GDL 39 BB, Germany). Two graphite bipolar plates with a serpentine-type
flow field and a parallel-type flow field were employed. The flow path had a depth of
0.8 mm and a width of 1.0 mm.

An electrochemical property analysis of PEMFCs was conducted using a commercial
potentiostat (HCP-803, BioLogic, Seyssinet-Pariset, France) to measure the current density
(j)–voltage (V)–power density (P) curves, EIS, chronoamperometry, and constant voltage
mode (CV-mode). The EIS was measured at 0.5 V from the 0.2 MHz to 0.01 Hz frequency
range. Chronoamperometry mode periodically measured the current of the fuel cells at
0.7 and 0.3 V for 20 h to evaluate the long-term stability of the fuel cells. After the long-
term durability test with the custom-made mist generator, regeneration experiments were
conducted using a bubbler with DI water. For the regeneration experiment, the current of
fuel cells was measured with CV-mode at 0.4 V for 5 h. All experiments were conducted
at 25 ◦C.

3. Results and Discussion

Figure 2 presents the polarization curves of fuel cells humidified with NaCl solution
with different flow fields. Figure 2a shows the initial performance of PEMFCs humidified
with NaCl solution. As shown in Figure 2a, the initial performances of the fuel cells
were dependent on the flow field. The maximum power density of the PEMFCs with the
serpentine flow field was 419.5 mW/cm2, and the maximum power density of the parallel
flow field was 391.78 mW/cm2. We assumed that these results were caused by the different
flow fields rather than the NaCl solution [36–38]. As mentioned above, the effect of Na+,
i.e., replacing H+ in the ionomer, is related to ohmic resistance, which is generally shown
in an intermediate current region [28]. Moreover, the increase in activation resistance
related to a decrease in TPBs, which is caused by Cl, is typically shown in a low current
region [29]. However, in Figure 2a, the difference between the low current region and the
intermediate current region is negligible. Interestingly, the high current region shows a
discernible difference. It is generally known that it is more challenging to remove liquid
water in the parallel flow field structure than the serpentine flow field structure because of
pressure loss. In order to evaluate more detailed electrochemical behavior, the EIS of the
fuel cells was measured at 0.5 V. Figure 2b shows the Nyquist plots of the fuel cells. In the
EIS results, the ohmic resistance of the fuel cells is represented from the origin to the point
where the semicircle starts at the high-frequency area. Additionally, faradaic resistance is
represented by the size of the semicircle, which is generally shown from the intermediate
to low-frequency area [1]. The initial EIS results according to the flow field of the PEMFCs
humidified with NaCl solution are shown in Figure 2b. The ohmic resistance of the PEMFC
with the parallel flow field was measured at 0.117 Ω·cm2, and the faraday resistance was
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measured at 0.518 Ω·cm2. The ohmic resistance of the PEMFC with serpentine flow field
was measured as 0.128 Ω·cm2, and the faraday resistance was measured as 0.532 Ω·cm2.
There were negligible differences in both ohmic resistance and faradaic resistance in the
initial performance according to the design of the flow field.

Long-term durability evaluation was performed after the characterization of the fuel
cells. The chronoamperometry method was applied for 20 h. The results of chronoamper-
ometry are shown in Figure 3. As shown in Figure 3, the current of the PEMFC with the
parallel flow field decreased from 1.124 to 0.604 A/cm2 (−0.52 A/cm2, 46.26%) at 0.3 V
and from 0.488 to 0.282 A/cm2 (−0.206 A/cm2, 42.21%) at 0.7 V, respectively. Interestingly,
the fluctuation of the performance, i.e., the current, was observed at the fuel cell with the
parallel flow field. We believe that this sudden fluctuation in the performance of the fuel
cell was caused by the liquid water in the parallel flow field. The accumulated liquid-water-
related performance fluctuation in PEMFCs has been reported in prior research [39–43]. As
previously mentioned, the parallel flow field has an inherent weak point in the removal of
liquid water [1]. Therefore, accumulated liquid water, generated during chronoamperome-
try measurement, blocked the supply of air, and then, the performance of the fuel cell was
suddenly decreased. On the contrary, when the liquid water was removed by the supplied
gas, the performance of the fuel cells was recovered, as shown in Figure 3.
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Figure 2. Initial electrochemical characteristics of PEMFCs with different flow fields. (a) Polarization
curves of fuel cells. (b) EIS results of fuel cells at 0.5 V.

Interestingly, significant performance deterioration was achieved at the fuel cell with
the serpentine flow field. The current of the fuel cell with the serpentine flow field de-
creased from 1.174 to 0.138 A/cm2 (−1.036 A/cm2, 88.25%) at 0.3 V and from 0.486 to
0.0466 A/cm2 (−0.439 A/cm2, 90.33%) at 0.7 V, respectively. The degradation rate of the
fuel cell with the parallel flow field was 2.11 A/cm2·h at 0.7 V and 2.31 A/cm2·h at 0.3 V.
respectively. Additionally, the degradation rate of the PEMFC with the serpentine flow
field was 4.52 A/cm2·h at 0.7 V and 4.41 A/cm2·h at 0.3 V, respectively.
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After the long-term durability evaluation, electrochemical characterizations were
conducted. The polarization curves of fuel cells with different flow fields are shown in
Figure 4a. The maximum power density of the PEMFC with the serpentine flow field was
reduced from 419.5 to 64.96 mW/cm2 (−354.54 mW/cm2, −84.51%). Furthermore, the
maximum power density of the fuel cell with the parallel flow field decreased from 391.78
to 270.71 mW/cm2 (−121.07 mW/cm2, −30.90%). As shown in Figure 4a, the effect of
NaCl solutions on electrochemical characterizations of the fuel cell with the serpentine flow
field was more fatal than with the parallel flow field. The Nyquist plots after the long-term
durability evaluation are shown in Figure 4b,c. The faradaic resistance of the fuel cells
increased more than the ohmic resistance in both the parallel and serpentine flow field cases
compared with the EIS results after the long-term durability evaluation with the EIS, as
shown in Figure 2b. In the case of the parallel flow field, the ohmic resistance increased by
0.017 Ω·cm2 (+14.5%) after the long-term durability evaluation, and the faradaic resistance
increased by 0.368 Ω·cm2 (+71.04%). Notably, the ohmic resistance of the PEMFC using
the serpentine flow field increased by 0.123 Ω·cm2 (+96.09%), and the faraday resistance
increased by 2.737 Ω·cm2 (+514.47%). It implies that when the air was supplied with a
NaCl solution for a long time, the faradaic resistance of the fuel cell was significantly
increased compared to the ohmic resistance. These results are similar to the result of prior
reports [29,33]. TPBs were decreased because of the humidification of the NaCl solution. In
addition, it was confirmed that the effects of the NaCl solution were more critical in the
serpentine flow field than in the parallel flow field.
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Figure 4. Electrochemical characterizations of PEMFCs with different flow fields. (a) Polarization
curves of fuel cells. Solid curves are the power density-voltage curves. (b) EIS results of fuel cells
with different flow fields. (c) Partial enlargement of Nyquist plots. Solid point shows the frequency
of the EIS.

After the characterizations, regeneration evaluations were carried out. For regenera-
tion, it is essential to remove the Na and Cl in fuel cells that adversely affect the PEMFCs.
Pure DI water was supplied to remove Na and Cl. The Pt catalyst, GDL, gasket, and flow
field were cleaned by supplying DI water to the cathode of the fuel cell. In addition, it was
operated for 5 h in the high current region (0.4 V) to use the water generated by electro-
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chemical reactions. The j-V-P curves of the regenerated PEMFCs are shown in Figure 5a.
Notably, there were differences in recovery according to the flow field of the fuel cells. The
maximum power density of the PEMFC using the parallel flow field was 274 mW/cm2

(+3.29 mW/cm2) after regeneration, which was recovered by 1.21%. However, the PEMFC
with the serpentine flow field achieved 52.96% recovered performance, from 64.95 to
99.4 mW/cm2 (+34.4 mW/cm2). The PEMFC with the serpentine flow field was recovered
around 3.5 times more than the PEMFC with the parallel flow field. Figure 5b shows
Nyquist plots of the PEMFC after the regeneration process measured at 0.5 V. Interestingly,
the ohmic resistance was not discernibly recovered; however, the faradaic resistance of the
fuel cell was significantly decreased, i.e., recovered. The faradaic resistance of the parallel
flow field was reduced to 0.786 Ω·cm2 (−0.1 Ω·cm2) from 0.886 Ω·cm2, recovering 7.46%.
Furthermore, the faradaic resistance of the serpentine flow field was recovered by 77.90%,
from 3.269 to 1.137 Ω·cm2 (−2.132 Ω·cm2). The faradaic resistance decreased in both the
parallel and serpentine flow fields with the DI water supply.
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Figure 5. Electrochemical performance of fuel cells after regeneration. (a) Polarization curves of fuel
cells with different flow fields after regeneration. Solid curves are the power density-voltage curves.
(b) Nyquist plots of fuel cells at 0.5 V with different flow fields after regeneration. Solid point shows
the frequency of the EIS.

Figure 6 summarizes the results of all experiments. Figure 6a shows the maximum
power density of the PEMFCs with different flow fields. As mentioned above, the per-
formance degradation because of the effects of the NaCl solution was significantly more
severe in the serpentine flow field than in the parallel flow field. After the long-term
durability evaluation, the maximum power density of all fuel cells decreased. The PEMFC
of the parallel flow field showed a 30.9% decreased performance after long-term stability.
However, in the case of the fuel cell with a serpentine flow field, performance decreased
by 84.52%. After long-term durability evaluation, regeneration was conducted with DI
water. As a result of the regeneration, the performance of the fuel cell with the parallel flow
field was recovered by 3.29 mW/cm2. However, the performance of the PEMFC with the
serpentine flow field was recovered by 34.4 mW/cm2.

A summary of the EIS analysis results is shown in Figure 6b. After long-term durability
evaluation, the faradaic resistances of the fuel cells were dramatically increased. Particularly,
the faradaic resistance of the PEMFC with the serpentine flow field was increased by almost
6 times. Interestingly, after the regeneration experiments, which were carried out at a
0.4 V constant voltage mode with DI water, the faradaic resistances of the fuel cells were
decreased. In particular, the faradaic resistance of the fuel cell with the serpentine flow
field decreased by 77.90%. Therefore, the performance of the fuel cell with the serpentine
flow field was increased to 99.4 from 64.95 mW/cm2.
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4. Conclusions

In this study, the effects of a NaCl solution on the electrochemical characteristics of
PEMFCs with different flow fields were systematically examined. A custom-made humid-
ification system was prepared and used to supply NaCl solution based on an ultrasonic
vibrator. Chronoamperometry was measured to evaluate the long-term durability of fuel
cells humidified with NaCl solution. After 20 h of long-term durability evaluations, the
performance of the fuel cells was significantly decreased. Interestingly, the performance of
the PEMFC with the serpentine flow field was crucially decreased (−84.51%) compared
with the performance of the fuel cell with the parallel flow field (−30.91%). In EIS analysis,
the faradaic resistance was severely increased in the fuel cell with the serpentine flow field.
After long-term examinations, regeneration experiments at 0.4 V were performed with
DI water for 5 h. After the regenerations, the performance of the fuel cells was recovered
because of the cleansing of Na and Cl from the fuel cell. Notably, the performance of
the fuel cell with the serpentine flow field recovered more effectively (+52.96%) than the
performance of the fuel cell with the parallel flow field (+1.22%) after regeneration because
of the significantly reduced faradaic resistance (−2.132 Ω·cm2 with the serpentine flow
field vs. −0.1 Ω·cm2 with the parallel flow field). We believe that the results of this study
will provide insights into the marine application of PEMFCs.
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