Geographical Distribution and Influencing Factors of Intangible Cultural Heritage in the Three Gorges Reservoir Area

Xiangqiang Li 1,2,*, Mengqi Yang 3, Liangfu Long 4, Muxing Liu 1,2,*, Haimeng Liu 1 and Jingyi Liu 1

1 College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
2 Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Wuhan 430079, China
3 Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China
4 Department of Tourist Management, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China
* Correspondence: liumuxing@mail.ccnu.edu.cn

Abstract: Intangible cultural heritage (ICH) represents the outstanding crystallization of human civilization and it has received extensive attention from scholars in various countries. Studying the spatial distribution and influencing factors of ICH in the Three Gorges Reservoir Area can help to improve the protection and utilization of ICH. Using quantitative statistical analysis methods, GIS spatial analysis methods, and Geodetector, we analyzed the level structure (provincial and national levels), category structure (ten categories), and spatial distribution of 509 national and provincial ICH items in the Three Gorges Reservoir Area and then explored their influencing factors. We concluded that: (1) The structural characteristics of ICH vary significantly, and the level structure is dominated by provincial ICH items; the category structure is complete and mainly includes traditional skill and traditional music. (2) The spatial distribution of ICH in the Three Gorges Reservoir Area is dense in the west and sparse in the east, with a pattern of “one main core, three major cores, and two minor cores”. There are large differences in the degree of concentration of ICH at the county level; different categories of ICH have different distribution densities and concentration areas. Yuzhong District, Shizhu County, and Wanzhou District are dense areas of distribution for different categories of ICH. (3) The influences of different factors on the spatial distribution of ICH in the Three Gorges Reservoir Area vary greatly. Socioeconomic and historical–cultural factors are more influential than natural geographic factors, among which economic development, culture, and ethnicity are the most influential, but the interaction between the two dimensions of natural geography and socioeconomic and historical culture has a more significant influence on the spatial distribution of ICH than single-dimensional factors. (4) Proposals for optimizing the spatial layout, protection, and development of ICH in the Three Gorges Reservoir Area are provided from the perspectives of culture and tourism integration and sustainable development.

Keywords: intangible cultural heritage; spatial distribution; influencing factors; Geodetector; Three Gorges Reservoir Area

1. Introduction

Culture represents the oldest accumulation of human social activity and displays the most innovative developments of human society. Chinese intangible cultural heritage (ICH) symbolizes the outstanding accumulation of Chinese history and culture, giving Chinese civilization a special identity symbol, and it is nurtured by Chinese ethnic groups through long-term social practice. ICH carries the key qualities of national culture and has important historical, social, artistic, and aesthetic values. It is important for promoting traditional culture, facilitating the inheritance of national spirit, maintaining cultural
identity, highlighting regional cultural characteristics, enhancing cultural confidence, and maintaining cultural authenticity. The Three Gorges Project has attracted worldwide attention; the construction of the reservoir has generated millions of immigrants at a level unprecedented in history. This huge population movement has brought significant changes to ICH, which depends on people. Exploring the influencing factors behind the spatial and temporal distribution of ICH is of great value for the strengthening of the protection and the utilization of ICH in the Three Gorges Reservoir Area.

Research on ICH in European countries started early. In the early stage, it mainly involved research on the concept of ICH and discussions of its connotations [1–4]. In the middle stage, it generally focused on the value of ICH and its protection [5–9]. In the more recent stage, it has largely focused on tourism development and the socioeconomic impact of ICH [10–14]; innovations in and the inheritance and authenticity of ICH [15–17]; cultural identity and community participation in ICH [18–20]; and reconstruction of and re-innovation in ICH [21]. Research has increasingly emphasized the important role of education in the inheritance and protection of ICH, demonstrating a significant transformation from the protection of “things” to the protection of “people” [22]. Since China’s Kunqu theater was declared one of the world’s first “representative works of human oral and intangible heritage” in 2001, there has been increasing research on ICH in China. Looking at previous studies, research on ICH mainly focuses on resource protection [23], interpretations of cultural heritage tourism [24], protection and inheritance [25], and the utilization of tourism [26]. With the introduction of geographic information technology in the study of the spatial distribution of ICH, many scholars have explored the spatial characteristics, influencing factors, and related effects of ICH at the national and provincial scales [27–30]. However, there are few studies on cross-administrative-region ICH, few articles that systematically analyze the structural characteristics of ICH, and few methods that can be used to explore the factors influencing ICH’s temporal and spatial distribution using Geodetector.

The Three Gorges Reservoir Area is an important boundary between the second and third levels of the Chinese ladder, and it is an important ecological barrier in the middle and upper reaches of the Yangtze River. It is inhabited by many ethnic minorities, being one of the important sources and intersections of Ba and Chu cultures, and demonstrates obvious complexity and spatial heterogeneity in terms of natural and human geography, as well as rich intangible cultural heritage. It is also the core area for the creation of the Yangtze River National Cultural Park. As the common “living memory” of human beings, ICH is the “living” expression of the special production and lifestyles, national characters, and national aesthetic habits of ethnic groups. The spatial distribution of ICH in the Three Gorges Reservoir Area reveals the spatial differences related to the outstanding cultures of the various ethnic groups, and it is of great significance to study the spatial and temporal differentiation of intangible cultural heritage and its influencing factors. At present, there are relatively few studies on ICH in the Three Gorges Reservoir Area, and they mainly focus on ICH classification [31], exploitation [32], and conservation strategies [33], as well as specific ICH items [34]. They do not cover the spatial distribution of ICH in the Three Gorges Reservoir Area or include the latest batches of ICH from the provincial and national preservation lists in the analysis, and the relationship between the spatial distribution of ICH and the influencing factors is not clearly articulated.

This study aimed to explore the coupling relationship between the spatial distribution of intangible cultural heritage and the geographic environment. Although there have been other studies on this topic, the contributions and innovations of this paper are as follows: (1) The natural geography and human and social environment of the Three Gorges Reservoir Area are typical but the ICH is rich, and there is a lack of research from a geographic perspective; this paper will fill this gap. (2) The number of studies that use Geodetector to analyze the factors influencing spatial distributions is increasing, but most studies mainly use Factor_detector, and fewer use Interaction_detector for their analyses. (3) Based on the category structure of the ICH, this study used mathematical statistics, GIS spatial analysis,
and Geodetector to explore the spatial differentiation of ICH items in the Three Gorges Reservoir Area and their coupling with geographically relevant elements (Figure 1). This paper reveals the spatial distribution of the excellent cultures of various ethnic groups, which is of great value for objectively understanding the whole process of the evolution of Three Gorges culture, promoting the protection and development of Three Gorges culture, and optimizing public policies for the protection and utilization of ICH. This research will provide a theoretical reference for the inheritance, protection, and development of ICH in the Three Gorges Reservoir Area and preliminary practical guidance for the creation of the Yangtze River National Cultural Park.

Figure 1. The research framework for ICH. Source: the authors.

2. Literature Review

2.1. ICH, Innovation, and Sustainability

Since the adoption of the Convention for the Safeguarding of the Intangible Cultural Heritage at the 32nd General Conference of UNESCO in 2003, studying and safeguarding intangible cultural heritage have increasingly become topics of concern for the international community. With the advocacy of UNESCO, the promotion of the preservation of ICH has become an important way to promote cultural diversity [35]. ICH differs from cultural heritage in that it is a kind of intangible cultural heritage that has two main forms: one is the intangible cultural heritage inherited by individuals, such as stories, songs, epics, musical performances, and handicraft skills [36], which is closely integrated with the intellect of individuals and has distinctive individual characteristics; the other is the ICH inherited by communities, which has group participatory attributes and relies on a broader cultural space, such as festivals, temples, and folk beliefs. In the 21st century, scholars from various countries have entered into in-depth discussions on the concept and connotations of ICH [1–3], and these have been deepened. In addition, researchers have studied ICH from different perspectives, such as the value and conservation of ICH [5–9], cultural innovation and national soft power [37], cultural identity and community participation [18–20], and tourism development and the socioeconomic impact of ICH [10–14].

The creation of ICH is the result of innovation and, similarly, the revitalization of ICH requires innovation [38]. Many ICH items need to be passed on by individuals in the community, and individuals themselves are sociocultural beings. Creativity encompasses both personal and sociocultural aspects; therefore, creativity should be considered as a form of cultural participation [39], and the essence of innovation comes from the interaction between individuals and society. Culture is very important for ICH innovation, and the richer the cultural factors in ICH innovation are, the more significant its effects are.

Achieving the sustainable development of ICH through innovation is the long-term goal of ICH conservation. There are many ways to preserve ICH, such as the legal level, institutional level, industrial level, resident participation level, and publicity level, but tourism-led ICH preservation and regional development are undoubtedly important aspects [40]. Although ICH preservation strategies have become a major theme in ICH research and general practice, research on the adaptive use of ICH is also an important element in promoting the sustainable development of ICH.
To sum up, studying the people of different regions and the resulting regional cultures; identifying the natural, social, and cultural factors behind the formation of ICH in typical regions; and understanding the interactions and degrees of influence among these factors are important aspects of ICH conservation and sustainable development. Through innovation, we can revitalize the use of ICH, give full play to its positive effects, minimize its negative impacts, and promote the sustainable development of ICH conservation.

2.2. ICH and Geodetector

Geodetector is a new statistical method for detecting spatial heterogeneity and revealing the driving factors behind it. This method is free of linear assumptions [41] and has an elegant form and a clear natural meaning. Its basic idea is that the study area is assumed to be divided into sub-regions and that there is spatial heterogeneity if the sum of the variances for the sub-regions is smaller than the total regional variance. If the spatial distributions of the two variables converge, there is a statistical correlation between them [42]. Geodetector is widely used in many natural and social sciences. After analysis and comparison, it can be observed that the main fields where Geodetector is used include: land use [43], public health [41], regional economy and planning [44], tourism development [45], archaeological research [46], geological meteorology [47], the ecological environment [48], remote sensing [49], and computer networks [50]. Geodetector has been effectively proven to be a powerful tool for driver and factor analysis in the above cases. The application of Geodetector in the study of ICH is not widespread at present. Meng Lin et al. used Geodetector to reveal the factors influencing the spatial differentiation of ICH in Shandong province from the perspective of the human–land relationship [51], as the Yellow River basin spans three levels of the Chinese terrace and has obvious spatial heterogeneity. Several scholars have used Geodetector and interaction analyses of the factors affecting ICH’s spatial and temporal distribution in terms of both the natural environment and social–humanistic aspects [52,53]. In this study, we used Geodetector to identify the correlations between the factors influencing the spatial distribution of ICH items in the Three Gorges Reservoir Area in terms of three dimensions—natural geography, socioeconomics, and historical culture—in order to determine the interactions between different aspects, quantitatively analyze the interactions between pairs of factors, and, thus, better promote ICH conservation.

3. Research Methods and Data Sources

3.1. Research Methods

3.1.1. Average Nearest Neighbor Index

The NNI was used to determine the actual average distance between point elements within an average random distribution to reflect the sparsity of the distribution of ICH. First, based on the geographic location of each declared unit in the ICH geospatial database, the nearest neighbor distance between each unit point was calculated; second, the nearest neighbor index was calculated and the Z-value and P-value tests were performed using the mean nearest neighbor tool in the spatial statistics module of ArcGIS10.7 software. The Z-value indicates the multiple of the standard deviation and the P-value indicates the probability, both of which are associated with the standard normal distribution and jointly reflect the confidence level. If the Z-value is less than −2.58 or greater than +2.58 and the P-value is less than 0.01, the confidence level is greater than 99%. The calculation formula is as follows:

\[R = \frac{R}{R_c} \]

where \(R \) is the average distance between the actual nearest ICH points; and \(R_c \) is the average distance between ICH points when they are distributed in geographic space, which is calculated as \(R_c = \frac{1}{2 \sqrt{A/B}} \), where A refers to the number of ICH points and B refers to the area of the region. When \(R < 1 \), the spatial distribution category of the ICH points is aggregation; when \(R = 1 \), the spatial distribution category of the ICH points is
random; when $R > 1$, the spatial distribution category of the ICH points tends to be discrete or competitive.

3.1.2. Coefficient of Variation
The differences between ICH categories can be determined by using the coefficient of variation. The coefficient of variation, also known as the coefficient of dispersion, is expressed in statistics by using the ratio (relative value) of the standard deviation to the mean, and its value reflects the overall degree of difference in the spatial distribution of different categories of ICH in different geographical units. The calculation formula is as follows:

$$ CV = \frac{1}{\bar{Y}} \left[\frac{1}{m} \sum_{i=1}^{m} (y_i - \bar{Y})^2 \right] $$

(2)

where CV is the coefficient of variation, \bar{Y} represents the mean number of ICH items in m regions, and y_i represents the number of ICH items in category i. A larger value for the coefficient of variation (CV) indicates a greater dispersion of ICH categories and relatively significant regional differences; a smaller value indicates a lower dispersion of ICH categories and relatively balanced regional differences.

3.1.3. Kernel Density Estimation
The degree of spatial aggregation is generally measured using the kernel density method. In this study, we used the kernel density tool from the spatial analysis density toolset of ArcGIS10.7, and it was mainly used to calculate the densities of ICH items distributed in their surrounding domains within a unit area. The kernel density estimation method takes each ICH point element as the center of a circle and calculates the density value in a unit circle with a radius of 10 km to determine the spatial density variation for different categories of ICH. The calculation formula is as follows:

$$ f(x) = \frac{1}{nh} \sum_{i=1}^{n} k \left(\frac{x - X_i}{h} \right) $$

(3)

where $f(x)$ is the kernel density estimate of ICH, n is the 509 ICH sites, k is the kernel function, $h > 0$ is the broadband, and $(x - X_i)$ is the distance from the valuation point x to the event X_i. The larger the value of $f(x)$ is, the denser the distribution of ICH in the region is.

3.1.4. Geodetector
Geodetector is a new statistical method for detecting spatial heterogeneity and revealing the driving factors behind it. q-statistics can be used to measure spatial heterogeneity, detect explanatory factors, and analyze interactions between variables [42]. The calculation formula is as follows:

$$ q = \left(N \sigma^2 - \sum_{h=1}^{L} N_h \sigma_h^2 \right) / N \sigma^2 $$

(4)

where N and σ^2 are the sample size and the variance for the ICH, respectively; N_h and σ_h^2 are the sample size and variance for the hth class of influences; and L is the number of categories of the h influencing factors. q has a value range of [0, 1], and the larger the value is, the stronger the explanatory power of the indicator is for the spatial distribution of ICH; a lower value indicates the opposite.

3.2. Data Sources
ICH in the Three Gorges Reservoir Area was mainly analyzed based on national and provincial ICH data, which included formal and extended items. ICH items were counted by county and district. The data were obtained from the official websites of the Digital Museum of ICH of China, the People’s Government of Hubei Province, the
Department of Culture and Tourism of Hubei Province, and the People’s Government of
Chongqing Municipality and the Chongqing Municipal Culture and Tourism Development
Commission. Among the items, there were 40 national-level ICH items in five batches
from 2006 to 2021, 29 provincial-level ICH items in six batches from 2007 to 2020 for
the Hubei range, and 440 provincial-level ICH items in six batches from 2007 to 2019
for the Chongqing range. The ICH items were divided into ten categories in accordance
with the List of the Second Batch of Chinese National ICH: traditional skill, traditional
art, traditional sports, amusement and acrobatics, traditional dance, traditional theater,
traditional medicine, traditional music, folk literature, folklore, and quyi.

The working base-map was adopted from the 1:4,000,000 vector map in the National
Basic Geographic Information Database, and the Three Gorges Reservoir Area was obtained
by mosaicking, projection, and cropping in ArcGIS10.7 (Figure 2). The addresses of the
locations of the ICH items were based on the addresses of the protection units in their
declared areas, and the geographical coordinates of the application locations for the ICH
items in the Three Gorges Reservoir Area were extracted as point base-data using Baidu
Map software. The geographic information system software ArcGIS10.7 was used to
visually express the data, draw the spatial distribution map of ICH, and establish the
database of ICH in the Three Gorges Reservoir Area.

![Figure 2. The geographical location of the Three Gorges Reservoir Area and the research range. Source: the authors.](image)

4. Results and Analysis
4.1. Level Structure and Category Structure of the Three Gorges Reservoir Area ICH

4.1.1. Characteristics of the Level Structure

The ICH items in this study were national-level and provincial-level items, and the
Chongqing municipal-level ICH items were considered equivalent to provincial-level ICH
items. As indicated in Figure 3, the overall hierarchical structure showed that the level was
negatively correlated with the number—i.e., the higher the level, the lower the number of
ICH items, and national-level ICH items were lower in number—and this structure was
conducive to the successful declaration of low-level items as high-level items [28]. There
were 53 national-level ICH items in Chongqing, and the Chongqing section of the Three
Gorges Reservoir Area accounted for 52.83% of the city’s ICH, with this being the main
concentration of and representative territory for national-level ICH in Chongqing, as well as the core area for ICH tourism revitalization in Chongqing.

Figure 3. The level structure of ICH. Source: the authors.

In terms of the level structure of each county and district, Yuzhong District, Shizhu Tujia Autonomous County, Ba’nan District, Badong County, and Yiling District formed a more complete pyramid structure. The number of provincial-level ICH items in Xingshan County, Zigui County, Jiangbei District, Wuxi County, and Changshou District was low, and future work should focus on increasing the number of provincial-level ICH items. Beibei District, Dadukou District, Jiangjin District, Kaizhou District, Shapingba District, Wulong District, Changshou District, Yunyang County, and Zhong County had zero national-level ICH items and need to further increase efforts toward the protection and deep excavation of ICH items.

4.1.2. Category Structure Characteristics

Based on the categories of the national ICH list, the ICH resources in the Three Gorges Reservoir Area can be divided into ten categories, such as traditional skill, traditional music, folklore, etc. The results of the statistical analysis are shown in Figure 4. In general, the structure of the categories of ICH was significantly differentiated. This indicated that the unique traditional skill of squash making, Tujia family foot-hanging building-construction skills, Chongqing hot pot, Shu embroidery, bamboo carving, wood carving, Xingshan folk songs, Sichuan river horn-blowing, and other traditional skill, traditional music, and traditional art are diverse and fully explored. Traditional medicine, folk literature, folklore, and traditional dance were the second most popular items, and quyi, traditional sports, amusement and acrobatics, and traditional theater items, represented by Sichuan theater and shadow puppets, had the lowest numbers and need to be further explored. Among the national-level items, traditional music was the most popular, followed by quyi, folk literature, and traditional medicine. Among the provincial-level items, the number of traditional skill, traditional music, and traditional art items was more than 50, and these
were followed by traditional medicine, folklore, folk literature, and traditional dance items. The number of traditional sports, amusement and acrobatics, traditional theater and quyi items was less than 25.

The structure of the categories was as follows: (1) The number of traditional skill items was the largest with 169 items, accounting for 33.21% of the total. As the Three Gorges Reservoir Area was an important corridor for “Huguang Filling Sichuan” in history, a large number of foreign immigrants entered Sichuan, which promoted innovation in and development of traditional performing arts there. At the same time, the relatively stable environment of Sichuan and Chongqing also created conditions for the digestion and absorption of handicraft skills. (2) The number of traditional music, traditional art, and traditional medicine items was high, accounting for about 33.59% of the total. Multi-ethnic characteristics have led to the formation of diverse music and art traditions, and the development of traditional medicine has been facilitated by war, disease, and the abundant herbal resources. (3) The number of folk literature, folklore, traditional dance, quyi, traditional sports, amusement and acrobatics, and traditional theater items was relatively low, and the six categories together accounted for about 33.2% of the total. Folk literature and folklore had an advantage over several other technically demanding categories in terms of dissemination.

4.2. Spatial Distribution of ICH in the Three Gorges Reservoir Area

4.2.1. Spatial Distribution Pattern

After calculation in ArcGIS 10.7 software, the nearest neighbor index of the 509 ICH items in the Three Gorges Reservoir Area was found to be 0.26 with a 99% confidence level, indicating that the ICH shows a clustered distribution pattern.

In the distribution of categories, the average nearest neighbor index of each category of ICH showed obvious differences (Table 1). The closest proximity indices for traditional skill, traditional art, traditional music, folk literature, folklore, and quyi were all below 0.5, showing a strong spatial aggregation pattern; the closest proximity indices for traditional dance, traditional theater, and traditional medicine were between 0.59 and 0.77, with rela-
tively weak aggregation; the closest proximity index for traditional sports, amusement and acrobatics was 1.21, which was higher than 1, indicating the weakest aggregation pattern.

Table 1. The nearest neighbor indices for the ICH in the Three Gorges Reservoir Area. Source: the authors.

<table>
<thead>
<tr>
<th>Category</th>
<th>Items (pcs)</th>
<th>Percentage (%)</th>
<th>Nearest Neighbor Ratio</th>
<th>Distribution Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional skill</td>
<td>169</td>
<td>33.20</td>
<td>0.34</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Traditional art</td>
<td>58</td>
<td>11.39</td>
<td>0.45</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Traditional sports/amusement/acrobatics</td>
<td>22</td>
<td>4.32</td>
<td>1.21</td>
<td>Dispersed</td>
</tr>
<tr>
<td>Traditional dance</td>
<td>31</td>
<td>6.09</td>
<td>0.61</td>
<td>Weakly clustered</td>
</tr>
<tr>
<td>Traditional theater</td>
<td>21</td>
<td>4.13</td>
<td>0.77</td>
<td>Weakly clustered</td>
</tr>
<tr>
<td>Traditional medicine</td>
<td>36</td>
<td>7.07</td>
<td>0.59</td>
<td>Weakly clustered</td>
</tr>
<tr>
<td>Traditional music</td>
<td>77</td>
<td>15.13</td>
<td>0.3</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Folk literature</td>
<td>35</td>
<td>6.88</td>
<td>0.49</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Folklore</td>
<td>34</td>
<td>6.68</td>
<td>0.47</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Quyi</td>
<td>26</td>
<td>5.11</td>
<td>0.46</td>
<td>Strongly clustered</td>
</tr>
<tr>
<td>Total</td>
<td>509</td>
<td>100.00</td>
<td>0.26</td>
<td>Strongly clustered</td>
</tr>
</tbody>
</table>

4.2.2. Spatial Distribution Differences

(1) Inter-county differences in the numbers of ICH items

The spatial analysis of ICH was visualized in ArcGIS 10.7 using Quantities, following which the county distribution for ICH items in the Three Gorges Reservoir Area was obtained (Figure 5); darker colors in the county blocks in the figure indicate more ICH items. From Figure 5, it can be seen that the ICH items were distributed across all counties, but the distribution was uneven. Among the counties, Yuzhong District had the most concentrated distribution, followed by Jiulongpo District, Shizhu Tujia Autonomous County, Jiangjin District, Wulong District, Fengjie County, Wanzhou District, and Nan’an District, while Fuling District, Yubei District, Beibei District, Fengdu County, and Wushan County had more ICH items.

![Figure 5. County distribution of ICH items. Source: the authors.](image-url)
(2) Inter-county differences in the categories of ICH items

The degree of clustering of the different categories of ICH at the county level varied greatly (Figure 6), and it could be divided into three levels based on the magnitude of the categories’ coefficients of variation. The coefficients of variation for the traditional art and traditional music categories were the lowest, between 0 and 0.5, indicating low dispersion and large differences in spatial distribution. The coefficients of variation for the traditional art, folk literature, traditional dance, and folklore categories were the second highest, ranging from 0.5 to 1.0, indicating that the differences in spatial distribution were moderate compared to the other types of ICH. The coefficients of variation for the traditional medicine, traditional theater, traditional sports, amusement and acrobatics, and quyi categories were the highest, all exceeding 1, indicating that their dispersion was high and the differences in spatial distribution were small.

![Figure 6. Coefficients of variation of ICH categories. Source: the authors.](image)

4.2.3. Spatial Distribution Density

The spatial distribution of ICH in the Three Gorges Reservoir Area was dense in the west and sparse in the east, showing a pattern of “one main core, three major cores, and two minor cores” (Figure 7). The three main nuclei were Wanzhou District, Fengjie County, and Shizhu Tujia Autonomous County, which radiate out to Kaizhou District, Yunyang County, Wushan County, Fengdu County, and Zhong County. The two small nuclei were Wulong District and Fuling District, which are mostly located in the central part of Wulong District and the north-central part of Fuling District. The three main nuclei are located at the edge of the area and the lake. The number of ICH items at the edge of the Three Gorges Reservoir Area and in the Hubei section was low and the items showed a relatively even distribution.
The areas with more minority groups, such as Shizhu Tujia Autonomous County and Wanzhou District, were also densely distributed with ICH items. The core areas of the Three Gorges Reservoir Area, such as Wushan County and Zigui County, where civilization developed earlier, were also more concentrated with ICH items. This indicates that the distribution of ICH is positively correlated with the degree of human development, multi-ethnic intermingling, historical and cultural heritage, and population size.

Figure 7. Cont.
Figure 7. (a–k) Kernel density of different categories of ICH. Source: the authors.

Different categories of ICH had different distribution densities and clustering areas. Traditional art and quyi ICH items were most densely distributed in Yuzhong District, Beibei District, and Wanzhou District. Traditional dance and folklore ICH items had tri-nuclear patterns, with Shizhu Tujia Autonomous County being the main nucleus for traditional dance, with Wanzhou District–Kaizhou District and Beibei District–Nan’an District as double sub-nuclei, and Jiangjin District–Jiujiangpo District being the main nucleus for folklore, with Fengdu County–Shizhu Tujia Autonomous County and Fengjie County–Wushan County as double sub-nuclei. In addition to the high-density distribution in the southwest, traditional medicine and traditional music were concentrated in Fuling District and Shizhu Tujia Autonomous County, while traditional music was relatively scattered and distributed across Wushan County, Xingshan County, Zigui County, and Yiling District in a band. Traditional performing arts were mainly concentrated in the southwest, with Yuzhong District and Yubei District as the core, and in Fuling District, Fengjie County, and Wulong District. Traditional sports, amusement and acrobatics were mainly distributed in a large belt crossing Jiangjin District, Yuzhong District, Nan’an District, and Yubei District and a small belt in Wanzhou District. In general, the densely populated southwestern part of the area, with Yuzhong District as the core, was the most densely distributed with different categories of ICH. The areas with more minority groups, such as Shizhu Tujia Autonomous County and Wanzhou District, were also densely distributed with ICH items. The core areas of the Three Gorges Reservoir Area, such as Wushan County and Zigui County, where civilization developed earlier, were also more concentrated with ICH items. This indicates that the distribution of ICH is positively correlated with the degree of human development, multi-ethnic intermingling, historical and cultural heritage, and population size.

5. Factors Influencing the Spatial Distribution of ICH in the Three Gorges Reservoir Area

ICH is living cultural heritage based on human beings that is deeply rooted in the natural and human geographic environment where it is formed. The variability in the spatial...
distribution of ICH is influenced by the cross-composite of natural geography, socioeconomics, and historical culture. Topography, river distributions, economies, populations, transportation, urbanization, ethnic composition, and history and culture are all important influencing factors [28,30]. In this study, by reviewing relevant studies on different ICH patterns and influencing factors and combining the actual situation in the Three Gorges Reservoir Area with expert references, we identified eight specific indicators (Table 2) from the three major dimensions of natural geography, socioeconomics, and historical culture that can be used to analyze the factors influencing the spatial distribution of ICH. Then, using the geographic detector method, the degrees of influence of the different dimensions and influencing factors on the formation of the spatial distribution of ICH and the interactions between the different dimensions were calculated.

Table 2. Factors influencing ICH and their determinant values. Source: the authors.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Indicator</th>
<th>Evaluation Indicator</th>
<th>Data Source</th>
<th>q-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural geography</td>
<td>Terrain and topography</td>
<td>Elevation</td>
<td>ArcGIS processing data</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>River distribution</td>
<td>Length of the water system</td>
<td>Official statistics</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>Economic development</td>
<td>Total GDP</td>
<td>Official statistics</td>
<td>0.474</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>Population</td>
<td>Number of residents</td>
<td>Official statistics</td>
<td>0.184</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td>Highway mileage, railroad mileage, inland waterway mileage</td>
<td>Official statistics</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>Urbanization</td>
<td>Resident population urbanization rate</td>
<td>Official statistics</td>
<td>0.246</td>
</tr>
<tr>
<td>Historical culture</td>
<td>Culture</td>
<td>Number of national and provincial historical and cultural cities, towns, and villages; national and provincial cultural relic protection units; Chinese traditional villages, museums, and cultural centers</td>
<td>Official statistics</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>Ethnicity</td>
<td>Number of ethnic minority populations</td>
<td>Official statistics</td>
<td>0.411</td>
</tr>
</tbody>
</table>

5.1. Analysis of Influencing Factors

The q-value results for the dimensions and indicators affecting the spatial distribution of ICH in the Three Gorges Reservoir Area were obtained using geographic probes (Table 2). Different dimensions and indicators had different degrees of influence on the differences in the spatial distribution of ICH. The influence of socioeconomic and historical culture was stronger than that of natural geography, which clearly indicates that ICH is living cultural heritage based on people and that human subjective initiative has an important role in the development and dissemination of ICH. Among the different indicators, economic development (0.474), culture (0.465), and ethnicity (0.411) were the three most influential. The level of economic development reflects the economic strength of the region, indicating that ICH is a higher level cultural pursuit that emerges after the economic conditions are mature and basic material needs are met, and it is an important part of national spiritual construction. Furthermore, culture and ethnicity both reflect the historical culture of the region, indicating that ICH is the long-term cultural heritage of the people. The influence of terrain and topography was the lowest (0.086), indicating that terrain and topography have less influence on the spatial distribution of ICH, which is in line with the fact that ICH in the Three Gorges Reservoir Area is mainly distributed in the plains along the rivers and less so in the high-altitude areas.

5.1.1. Natural Geographical Factors

(1) Terrain and topography

Topography is one of the elements that make up the natural environment; it influences the differentiation of the natural environment and is inextricably linked to the formation of regional culture. The Three Gorges Reservoir Area straddles the second and third terraces of China; its geomorphological features are mainly mountains and hills, and the development of its topography is dominated by the effect of flowing water. Flat and open terrain is conducive to human interaction and cultural exchange, while closed terrain is
not conducive to the flow of populations and cultural intermingling. The topography influences the formation and development of ICH through its effect on the flow of the population. As shown in Figure 8a, there were 142, 324, 39, 3, 1, and 0 ICH items at altitudes of 3–200 m, 201–500 m, 501–1000 m, 1001–2000 m, and 2001–2989 m, respectively, which shows that 91.55% of the ICH items were distributed in hilly plain areas with relatively flat terrain below 500m above sea level. The topography of these places is convenient, water is abundant, the climate is superior, and transportation is convenient; these features are conducive to exchange between and the integration of multiple cultures, so the ICH items were gathered in the low-altitude areas, decreasing through the “one main core, three major cores, and two minor cores”. Due to obstructions resulting from mountainous terrain, there is a certain resistance to cultural exchange and dissemination in Xingshan, Zigui, Badong, and Wuxi, so the numbers of ICH items were relatively low in these areas. The Mudong mountain song, Shigong bugle, Jianghe bugle, and Sanxia back two song are some of the ICH items that depend on local topographical conditions.

Figure 8. (a–f) The distribution of ICH items and the response to geographical environmental elements. Source: the authors.
(2) River distribution

The Three Gorges Reservoir Area has a well-developed water system, with the mainstream of the Yangtze River running from east to west and many rivers, such as the Jialing River, Wu River, Qi River, Yulin River, Longxi River, Daning River, Qing River, Huangbai River, and Xiangxi River, merging with the Yangtze River, forming an asymmetrical and centripetal water system and laying a good foundation for people’s transportation, trade and commerce, and inhabitation and settlement. The distribution of ICH items was directed by the rivers, and they were especially gathered in the plains and hills along the mainstream of the Yangtze River. There were 259, 399, and 460 ICH items in the 1 km, 3 km, and 5 km buffer zones (Figure 8b) of the fifth grade and above rivers, accounting for 50.88%, 78.39%, and 90.37% of the items, respectively, indicating that river distribution (q value of 0.151) is an important factor influencing ICH patterns. The great rivers are the main source for the generation of culture and the nurturing of civilization. The Yangtze River, the longest river in China, is the mother of Three Gorges culture, and the formation of ICH items, such as river horns, dragon boats, and dragon dances, is inseparable from the Yangtze River water system.

5.1.2. Socioeconomic Factors

ICH is a product of human creation and is also inherited and protected by humans. Human socioeconomic behavior has a significant influence on ICH. The influence of socioeconomic dimensions on the spatial differentiation of ICH was ranked as follows: economic development (0.474) > urbanization (0.246) > population (0.184) > transportation (0.144), with economic development having the greatest influence on the spatial distribution of ICH. Economy and culture are complementary, and economic development forms a solid foundation for the protection of ICH, and areas with high levels of economic development are more likely to form clusters of ICH. For example, the southwestern part of the Three Gorges Reservoir Area, with Yuzhong District as the core, has the greatest economic strength and the largest concentration of ICH. Urbanization also had a significant influence on the spatial distribution of ICH because the process of urbanization is the process whereby populations become concentrated, accelerating the proliferation and transmission of ICH, which depends on people. The population had less influence on the spatial distribution of ICH, and transportation had the least influence.

(1) Economic development

The spatial distribution of ICH is the result of the coupling between people and places over thousands of years. Economic agglomeration has an important impact on the generation, spatial distribution, and flow of ICH, and the gross domestic product (GDP) is a significant indicator of economic development that was used to analyze the interrelationship between the economy and ICH (Figure 8c). Using the Three Gorges Reservoir Area ICH as the horizontal coordinate, the GDP value for each county as the vertical coordinate, and the number of ICH items and the mean GDP value as the middle line, a Boston Matrix analysis chart was generated (Figure 9). As shown in the figure, there were numerous ICH items and high GDP values in the first quadrant, which covered 8 districts, including Yuzhong District, Yubei District, Jiulongpo District, and Wanzhou District, and there were fewer items and low GDP values in the third quadrant, which covered 11 districts, including Yiling District, Kaizhou District, Zigui County, and Xingshan County, accounting for 73.08% of the counties. The reason is that, although the economic development of these counties has been relatively slow due to their location and other reasons, many ethnic minorities inhabit them, their cultural diversity is obvious, and greater numbers of ICH items have been generated from the intermingling of multiple ethnic groups.
Figure 9. Distribution of ICH and GDP. Source: the authors.

(2) Urbanization

The process of urbanization is the process of economic development and population agglomeration, and the level of urbanization can reflect the progress in social productivity and cultural science, as well as the transformation and upgrading of the industrial structure of the region. Areas with a high level of urbanization have a more developed tertiary industry, and more people engage in research on and the creation and inheritance of ICH. The urbanization rates for the resident population in the county-level areas of the Three Gorges Reservoir Area were divided into five levels from low to high—≤44%, 45–58%, 59–72%, 73–89%, and ≥90%—for which there were four, eight, five, three, and six county-level areas, respectively, with the average number of ICH items increasing from 13.25 to 24.83 (Table 3, Figure 8d). These figures conformed to the gradually increasing trend, although the fourth group’s mean and maximum values were slightly lower than those of the third group, and the higher standard deviation for the third group indicated that the ICH items in the counties and districts within this group differed more.

Table 3. County-level differences in the distribution of ICH (based on the 2020 urbanization rate). Source: the authors.

<table>
<thead>
<tr>
<th>Urbanization Rate (%)</th>
<th>Average Value (pcs)</th>
<th>Maximum Value (pcs)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤44</td>
<td>13.25</td>
<td>19</td>
<td>3.90</td>
</tr>
<tr>
<td>45–58</td>
<td>18.63</td>
<td>28</td>
<td>6.58</td>
</tr>
<tr>
<td>59–72</td>
<td>19.80</td>
<td>28</td>
<td>6.76</td>
</tr>
<tr>
<td>73–89</td>
<td>19.77</td>
<td>23</td>
<td>3.40</td>
</tr>
<tr>
<td>≥90</td>
<td>24.83</td>
<td>58</td>
<td>16.24</td>
</tr>
</tbody>
</table>
(3) Population

The core of ICH is people: ICH is living culture that is profoundly affected by changes in human social structure and the environment. The Three Gorges Project was completed in 2009 and the entire area was assigned to power generation in 2012, with as many as 1.2 million migrants before and after the project. Such large numbers of people have a direct impact on the preservation of ICH. The spatial distribution of ICH is closely related to the distribution of the population, and population density is a key indicator reflecting the distribution of a population. On the whole, the higher the population density was in the county-level areas of the Three Gorges Reservoir Area, the higher the average number of ICH items was (Table 4, Figure 8e). The population density in county-level areas in the Three Gorges Reservoir Area was divided into five classes from small to large—≤139 people/square kilometer, 140–434 people/square kilometer, 435–1622 people/square kilometer, 1623–6412 people/square kilometer, and ≥6413 people/square kilometer—for which there were five, ten, five, five, and one county-level areas, respectively, and the average number of ICH items increased from 17 to 58. The population density in the northeast, which has been more affected by the Three Gorges Project, was significantly lower than that in the southeast of the Three Gorges Reservoir Area.

<table>
<thead>
<tr>
<th>Population Density (Persons/Square Kilometer)</th>
<th>Average Value (pcs)</th>
<th>Maximum Value (pcs)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤139</td>
<td>17.00</td>
<td>26</td>
<td>7.18</td>
</tr>
<tr>
<td>140–434</td>
<td>17.60</td>
<td>28</td>
<td>5.87</td>
</tr>
<tr>
<td>435–1622</td>
<td>19.80</td>
<td>28</td>
<td>5.71</td>
</tr>
<tr>
<td>1623–6412</td>
<td>18.20</td>
<td>29</td>
<td>7.25</td>
</tr>
<tr>
<td>≥6413</td>
<td>58</td>
<td>58</td>
<td>0</td>
</tr>
</tbody>
</table>

(4) Transportation

In the socioeconomic dimension, although transportation had the weakest effect on the distribution of ICH items (0.144), it had some influence on the diffusion and spread of ICH items. As can be seen from Figure 8f, areas with high road density also had higher numbers of ICH items. For example, Yuzhong District, Shapingba District, and Jiulongpo District, which have high road density, also had higher numbers of ICH items. Furthermore, Wanzhou District, which was rich with ICH items, is an important node in the Three Gorges Civilization Corridor where the Yangtze River waterway and ancient post roads intersect, and transportation plays an important role in the dissemination of ICH.

5.1.3. Historical and Cultural Factors

ICH is the manifestation of culture, and culture is the essential attribute of ICH. Regional culture has a strong influence on the spatial distribution of ICH. The long history, splendid culture, and diverse ethnic groups of the Three Gorges Reservoir Area have provided fertile ground for the growth of ICH, and the development of culture and the formation of ICH facilitate each other. The values for the influences of culture and ethnicity on the spatial distribution of ICH items in the Three Gorges Reservoir Area were 0.465 and 0.411, both of which were strong.

(1) Culture

The Three Gorges Reservoir Area has a unique natural environment; it is at the intersection of Ba and Chu cultures and is influenced by both, forming the unique Three Gorges culture. Three Gorges culture contains the unique living customs, religious beliefs, and production categories of the area, which are the basis of its ICH. For example, the myths and legends of the Three Gorges Reservoir Area, which have goddesses, herbs, and water management heroes as their themes and main lines, profoundly reflect its cultural core,
and the flavorful dishes characteristic of the Three Gorges area represent the crystallization of the inculturation of its culinary culture. The Three Gorges Reservoir Area has highly concentrated political, commercial, and cultural centers, with Yuzhong District, the area with the most densely populated ICH, being the political and cultural center of Chongqing and the area with the most concentrated cultural resources. Ba’nan District, formerly a thousand-year historical town, is the main birthplace of the Ba Kingdom and represents its heritage. Fengjie County is a landmark for Chinese poetry culture. Jiangjin District is the only historical and cultural city in Chongqing and the area with the most concentrated distribution of national historical and cultural towns.

(2) Ethnicity

Ethnicity is one of the basic characteristics of ICH, and the spatial distribution of ICH is closely related to the distribution of ethnic groups. The Three Gorges Reservoir Area is multi-ethnic and has a large population of nearly one million ethnic minorities, including Tujia, Miao, Dong, Mongolian, Hui, and Manchu groups. The Tujia are the most populous minority in the Three Gorges Reservoir Area, followed by the Miao, Hui, Manchu, Mongolian, Yi, Tibetan, and Dong groups, who mainly inhabit the southeastern part, including Shizhu, Badong, Wanzhou, Wulong, Zhongxian, Yunyang, Fengjie, and Wushan. First of all, there are many ethnic festivals and colorful folk cultures. There are many festivals and prominent examples of folklore, such as the Dragon Boat Festival, the Dragon Boat Race, Tujia Family New Year’s Eve, Tujia girls singing “weeping songs” when they get married, funeral “jumping” activities, the Miao’s Catching Autumn Festival, the Miao’s Flower-stomping Mountain Festival, the Tujia Wedding, the Daughter’s Meeting, Witch Culture, etc., which are rich in ethnic characteristics. The folklore related to housing is more local, such as the hanging foot tower of the Tujia and Miao. Secondly, most of the traditional sports, amusement and acrobatics directly reflect and embody the region’s production, lifestyles, and social customs or those of a certain ethnic group. Traditional sports have been developed by ethnic minorities, such as dragon boats, crossbow shooting, cueball, swinging, the Wanzhou escaping art, the Fengjie Kui Long art, Tujia up-hill ball, bamboo bell ball, foot horse ball, wrestling holding the waist, playing flying stick and qigong, the Miao up-knife mountain, dragon boat rowing, heavenly earth, Miao Ling ball, Lusheng dance and drumming, the Dong and Gelao snatching flower cannon, Mongolian wrestling, the horse dance, etc. These diverse forms of sports activities with distinctive local characteristics have been inherited as carriers of folk culture, developing along with the evolution of folk culture to this day. There is also traditional medicine, which includes Chinese herbal medicine, Tujia medicine, Miao medicine, etc. These are the gems of China’s pharmaceutical treasury. Therefore, ICH items from the folklore category were most obviously clustered in the southeast, and traditional sports, amusement and acrobatics were also more concentrated in the southeast of the Three Gorges Reservoir Area, where there are many ethnic minorities.

5.2. Interaction Analysis of Influencing Factors

To identify the interactions between different influencing factors, the interaction effects of the different influencing factors on the spatial distribution of ICH items in the Three Gorges Reservoir Area were obtained using Geodetector (Table 5). The types of interaction were divided into two-factor enhancement and nonlinear enhancement. The influences of the interactions between different influencing factors on the spatial distribution of ICH in the Three Gorges Reservoir Area differed to some extent, but the influences of the interactions between two-dimensional influencing factors were greater than those of one-dimensional influencing factors. The categories for the interactions between economic development and culture and ethnicity and between urbanization and culture were two-factor enhancement categories, and the rest of the interaction categories were nonlinear enhancement categories. The interaction between transportation and ethnicity was the strongest (0.98); convenient transportation is conducive to the spread of ICH items in minority areas. The interaction between river distribution and economic development was
the second strongest (0.90); the Yangtze River crosses the reservoir area from east to west, so areas along the river with high levels of economic development are more conducive to the survival and dissemination of ICH items. The spatial distribution of ICH items was weakly influenced by natural geography but, as a spatial carrier of ICH items, it is nevertheless a factor that cannot be ignored in the formation and development of ICH items, and the natural geographic pattern still has a long-term influence on the cultural development of a region.

Table 5. Interaction analysis of influencing factors. Source: the authors.

<table>
<thead>
<tr>
<th></th>
<th>Socioeconomics</th>
<th>Historical Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Economic Development</td>
<td>Population</td>
</tr>
<tr>
<td>Natural geography</td>
<td>Terrain and topography</td>
<td>0.51 (NE)</td>
</tr>
<tr>
<td></td>
<td>River distribution</td>
<td>0.90 (NE)</td>
</tr>
<tr>
<td>Historical culture</td>
<td>Culture</td>
<td>0.85 (BE)</td>
</tr>
<tr>
<td></td>
<td>Ethnicity</td>
<td>0.81 (BE)</td>
</tr>
</tbody>
</table>

1 NE, nonlinear enhancement; 2 BE, two-factor enhancement.

6. Discussion and Conclusions

6.1. Discussion

History is the source of a place, and culture is the foundation of a place. ICH is the ancient memory and living cultural gene of nations, reflecting their wisdom and spirit; it is an important mark of regional cultural identity and a “living fossil” of a place. According to the above findings, the ICH items in the Three Gorges Reservoir Area have an uneven spatial distribution, both as a whole and in various categories. This paper makes the following suggestions regarding the spatial layout and protection and development of ICH from the perspective of cultural tourism integration and sustainable development. First, the numbers, types, generation backgrounds, and development statuses of ICH items vary, and public policies should be optimized according to the geographical distribution of ICH items and their influencing factors. Classification protection policies should be formulated according to the types and levels of ICH items, and core, buffer, and fringe areas for the protection, inheritance, and utilization of ICH should be established according to the degree of geographical concentration of ICH items, with resources invested in the most influential socioeconomic and historical and cultural factors. This would help to improve the effectiveness of ICH policy and, at the same time, make up for the shortcomings of other factors, as well as promote the overall development of ICH. For example, the eastern region has a large number of ethnic cultures rich in ICH characteristics, but the economic development of the region is low and transportation is relatively limited, so investment in ICH items should be increased to improve the efficiency of ICH revitalization and enhance ICH’s community-forming capacity. The western region is economically developed, densely populated, and highly urbanized, so a long-term system to ensure the authenticity and integrity of ICH should be established to attenuate the impact of excessive commercialization and prevent the loss of ICH. Second, the cultural differences in the Three Gorges Reservoir Area are significant; therefore, in the development and utilization of ICH, the “soul” of the regional culture should be grasped, exchanges and cooperation should be strengthened, and the mainstream of the Yangtze River should be used to connect points and lines to promote collaborative development. The development of ICH should not only protect the natural environment but also the human environment, and it should guarantee the participation rights of community residents and protect the interests of communities. Third, because of its “immateriality”, ICH is different from other types of cultural heritage. It is easily influenced by external factors from its creation to its development, and it changes in the process of spreading outward. The Three Gorges Project has been crucial to the formation of the Three Gorges Reservoir Area and has profoundly influenced the natural
and social environment of the area, so it is necessary to strengthen research on the impact of the Three Gorges Project on the spatial distribution of ICH items. Fourthly, there is a natural origin for the systematic coupling between ICH and tourism. ICH enhances the cultural connotations of tourism, and tourism provides a production space for ICH; the collision between ICH and tourism produces an effective living heritage, and the vitality of ICH can be maintained through tourism revitalization. The integration of culture and tourism is an important direction for future ICH preservation.

6.2. Conclusions

The structural pattern of ICH varies significantly and the few high-ranking ICH items are mainly at the provincial level. The category structure is complete, with traditional skill, traditional music, traditional art, and traditional medicine being the main categories, while folk literature, folklore, traditional dance, quyi especially traditional sports, amusement and acrobatics, and traditional theater, need to be excavated and protected.

ICH in the Three Gorges Reservoir Area is clustered and distributed in a pattern of “one main nucleus, three major nuclei, and two minor nuclei” in the west and east, especially in the southwest and south-central parts of the reservoir area along the Yangtze River, which is closely related to the Yangtze River axis, historical and cultural traditions, multi-ethnic intermingling, and population clustering. The categories and quantities of ICH items vary greatly in their degree of clustering at the county level, with Yuzhong District and Nan’an District having the largest numbers of ICH items and the most spatially concentrated ICH items in the traditional art and traditional music categories. Different categories of ICH have different distribution densities: in general, Yuzhong District, Shizhu County, Wanzhou District, Wushan County, and Zigui County are densely distributed areas for different categories of ICH.

The spatial distribution of ICH in the Three Gorges Reservoir Area is closely related to the region’s natural, social, cultural, and related geographic factors, and the influences of different factors on the spatial distribution of ICH vary greatly. Socioeconomic and historical-cultural influences are stronger than that of natural geography: economic development, culture, and ethnicity have greater influences on the spatial distribution of ICH, while the influence of natural geography is relatively small. However, the influences of the interactions between different influencing factors on the spatial distribution of ICH items differ; the categories of interaction are two-factor enhancement and nonlinear enhancement, but the influences of the interactions between two-dimensional influencing factors are greater than the influences of single-dimensional factors.

Funding: This research was funded by the National Science Fund for Distinguished Young Scholars, grant number 42101239; the China Tourism Research Institute (Graduate) Merit Award Program Fund, grant number 202210; the Key Laboratory for Geographical Process Analysis and Simulation of Hubei Province, grant number 202203; the Guangzhou Basic Research Program, grant number 2022GZQN31; the Guangzhou Basic and Applied Research Project, grant number 202201010296; and the Guangdong Academy of Sciences, grant number 2022GDASZH–2022010105.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We express our gratitude to the anonymous reviewers and editors for their professional comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

3. Ahmad, Y. The scope and definitions of heritage: From tangible to intangible. *Int. J. Herit. Stud.* 2006, 12, 292–300. [CrossRef]
10. Masoud, H.; Mortazavi, M.; Farsani, N.T. A study on tourists’ tendency towards intangible cultural heritage as an attraction (case study: Isfahan, Iran). *City Cult. Soc.* 2019, 17, 54–60. [CrossRef]
14. Wei, Y.; Liu, H.; Park, K.S. Examining the structural relationships among heritage proximity, perceived impacts, attitude and residents’ support in intangible cultural heritage tourism. *Sustainability 2021*, 13, 8358. [CrossRef]
17. Su, X.; Li, X.; Kang, Y. A bibliometric analysis of research on intangible cultural heritage using CiteSpace. *Sage Open* 2019, 9, 215824019840119. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.