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Abstract: Trustworthy and explainable structural health monitoring (SHM) of bridges is crucial
for ensuring the safe maintenance and operation of deficient structures. Unfortunately, existing
SHM methods pose various challenges that interweave cognitive, technical, and decision-making
processes. Recent development of emerging sensing devices and technologies enables intelligent
acquisition and processing of massive spatiotemporal data. However, such processes always involve
human-in-the-loop (HITL), which introduces redundancies and errors that lead to unreliable SHM
and service safety diagnosis of bridges. Comprehending human-cyber (HC) reliability issues during
SHM processes is necessary for ensuring the reliable SHM of bridges. This study aims at synthesizing
studies related to HC reliability for supporting the trustworthy and explainable SHM of bridges. The
authors use a bridge inspection case to lead a synthesis of studies that examined techniques relevant
to the identified HC reliability issues. This synthesis revealed challenges that impede the industry
from monitoring, predicting, and controlling HC reliability in bridges. In conclusion, a research road
map was provided for addressing the identified challenges.

Keywords: structural health monitoring; risk prognosis; human reliability; cyber reliability

1. Introduction

According to the report card for America’s infrastructure, the nation’s aging civil
infrastructures (CIs) (e.g., bridges) are deteriorating at an alarming rate, with overwhelm-
ing CI system failures warning of the coming national crisis. For example, 42 percent of
617,000 bridges within the United States were built more than 50 years ago, and 7.5 percent
of all bridges are in poor condition. Such aging CIs pose unique challenges to the inter-
woven human-in-the-loop (HITL) technical processes in civil infrastructure operation and
maintenance (CIS O&M). For example, bridge engineers are required to conduct routine
inspections to examine bridge conditions and ensure safe bridge operations. In addition,
various bridge users, stakeholders, and decision-makers could significantly influence op-
erational risks and performance of bridges. Rigorous inspection, maintenance planning,
and field considerations of bridge engineers determine the priority of maintenance op-
tions of CIs [1,2]. Engineers working on structural health monitoring (SHM) of bridges
should consider coupled infrastructure failures and quantify the risks in order to prioritize
maintenance and repair actions of CIs. Delayed reactions to vulnerable parts of CIs, incor-
rect judgment about the relative importance of maintenance options, miscommunications,
and improper cooperation can cause cascading failures within connected infrastructure
elements and systems.
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Traditional SHM of bridges is mainly conducted through visual inspection by bridge
engineers. Unfortunately, condition ratings for the same bridge structure provided by
different bridge engineers vary a lot due to different engineering backgrounds and field
experiences. The development and application of sensing and information technologies
(e.g., GNSS, LiDAR, etc.) bring opportunities to achieve reliable real-time situation aware-
ness and predictive data-driven systems control that could support the trustworthy and
explainable SHM of bridges. Still, human involvement when performing cognitive and
decision-making activities during massive spatiotemporal data processing and model sim-
ulation processes creates barriers for the reliable SHM of bridges [3]. Figure 1 illustrates
human-cyber interactive processes and reliability issues during SHM processes of bridges.
The human aspect involves the interactions between human, data, and digital models
for monitoring, predicting, and analyzing SHM and maintenance options based on the
conditions of bridges and network-level maintenance performance. This aspect refers to
the (1) human reliability that quantifies the risks of the cognition and decision-making
processes of workers during field inspection of bridges, and (2) data analysis reliability that
captures how human decisions about the selection and settings of data analysis methods
influence the accuracy, precision, and reliability of the information derived from raw data.
The cyber aspect involves information technologies that collect, process, store, and transmit
data and digital models for generating Digital Twins (DTs) of the physical infrastructure to
support engineers in monitoring health conditions of bridges and ensure safe bridge opera-
tions. This aspect involves three reliability concerns: (1) data reliability, that quantifies the data
quality issues (e.g., uncertainties caused by low-resolution images and missing data points);
(2) computation reliability issues, where computational processes applied to data and digital
models introduce uncertainties in the information derived from raw data and digital models;
(3) data storage, exchange, and transmission reliability issues, where information losses occur
due to improper data storing, format conversion, and transmission processes.
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The reliability theory provides theoretical tools for comprehending the safety and
efficiency of bridge inspection as a dynamic human-cyber system. Existing reliability
studies scattered around multiple disciplines and domains have the potential of collectively
addressing the vision shown in Figure 1. For example, due to the advantages of the appli-
cation of computer vision techniques, such as non-contact, long distance, fast, low cost and
labor, and low interference with the daily operation of the structure, the authors propose
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the use of computer vision techniques for local and global structural health monitoring. Ex-
isting studies of computer-vision-based SHM focus on the implementation and integration
of two-dimensional computer vision techniques to solve SHM challenges and the conver-
sion of three-dimensional problems into two-dimensional problems using implemented
projective geometry methods [4]. The rapid development of wireless technology has led to
a significant development in the integration of SHM systems with wireless sensor network
technology. SHM systems based on wireless sensor networks introduce a novel technology
that has the benefit of reducing the installation and maintenance compared to traditional
wired systems [5]. The advances in sensing technologies and data acquisition platforms
have led to a new era of big data, where a large amount of heterogeneous data is collected
by a variety of sensors. The increasing accessibility and diversity of data resources provide
new opportunities for SHM, while it remains challenging to aggregate information obtained
from multiple sensors to make robust decisions [6]. In addition, machine learning (ML) has
powerful computational and image processing capabilities in dealing with different aspects
of reinforced concrete bridges. Once the ML model is trained, the efficiency of prediction
is significantly improved. It surpasses the speed of traditional methods for structural
damage identification and strength prediction, achieving almost real-time performance [7].
Numerical simulations of the dynamic response of structures subjected to different types
of excitations are performed to assess the variability of the spectrum-driven approach in
terms of the type and location of the excitation source [8].

SHM studies have examined methods for monitoring the physical infrastructure
systems and assessing systems reliability [9,10]. Psychologists have explored cognitive
reliability issues in various contexts [11,12]. Studies in the human systems engineering
(HSE) domain have examined reliability issues related to manual data analysis [13–15],
interpersonal communications [16,17], and the vulnerabilities of collaborative data-driven
decision-making processes [18,19]. Some engineering studies examined the quality issues
of data and models used in various engineering applications [20–22]. Additional examples
that examine the reliability of cyberinfrastructure in engineered systems control are the
reliability assessment of computing workflows [23,24], data storage and compression
methods [25,26], and data exchange and transmission mechanisms [27,28].

Human-cyber (HC) reliability refers to the uncertainties that could arise during data
analysis processes while analyzing large amounts of data related to civil infrastructure
operation and decision processes. Such reliability demands more accurate and effective
human-cyber interactions to ensure the safety and efficiency of the CIS O&M [29]. However,
the lack of a systematic review of a wide range of HC reliability issues impedes SHM of
bridges and prevents researchers and professionals from effectively using existing theoreti-
cal and practical tools in resolving their difficulties related to HC reliability problems. The
overall goal of this literature review is to synthesize various literature scattered around mul-
tiple domains to form a coherent framework that can guide SHM researchers in identifying
similar HC reliability issues in relevant domains. Such identification of similar problems
will lead these researchers to find useful theoretical solutions and practical tools developed
in those domains. The following sections will first present an SHM case to demonstrate the
various HC reliability issues shown in Figure 1 using a bridge inspection case (Section 2).
The following two sections will then synthesize existing studies related to the two aspects
of HC reliability issues shown in Figure 1 (Sections 3 and 4). These two sections comment
on existing studies on each aspect of HC reliability issues and discuss the knowledge gaps
and challenges of transferring those studies to the SHM domain (Section 5). Finally, the last
section summarizes a research road map to approach these challenges and knowledge gaps
based on the specific challenges and knowledge gaps identified (Section 6).

2. Motivating Case: Human-Cyber Reliability Issues in Structural Health Monitoring
and Risk Prognosis of Bridges

Routine visual inspections are necessary for (1) discovering bridge defects, (2) provid-
ing bridge condition ratings, and (3) establishing guidance for necessary bridge mainte-
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nance and repairs. Trustworthy and explainable bridge inspection is crucial for extending
the service life of bridges and ensure operational safety within its service life. Such visual
inspections require engineers to conduct visual inspections at field, update the finite ele-
ment model based on the identified bridge defects and spatiotemporal changes, and predict
deterioration patterns based on the updated finite element model. Unfortunately, various
HC reliability issues and challenges exist that create barriers for achieving the reliable SHM
of bridges.

Figure 2 shows various human-cyber reliability issues during the SHM of bridges with
HITL. For example, even the same inspector could have variations in their performance of
identifying bridge defects comprehensively for producing reliable condition ratings due to
the inherent diversity and complexity of cognitive interaction between bridge inspectors
and field environments. Such variations usually cause conflict or the omission of bridge
defect information from being documented in historical bridge inspection records, which
could bring significant challenges for reliable bridge condition prediction. In addition,
updating bridge digital models based on information from multiple sources (e.g., images,
textural data, contact sensory data) requires (1) effective data processing workflows for
processing data in many formats, (2) information fusion methods for fusing data from
multiple data sources, and (3) model updating algorithms for updating the digital model
to reflect the true bridge condition. Unfortunately, reliability issues are inevitable while
establishing data processing workflows, selecting algorithms, and setting up parameters.
All such reliability issues could generate biases and errors that prevent bridge engineers
from having a comprehensive understanding of the true bridge condition.
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2.1. Human Reliability Issues

The human reliability aspect refers to the reliability issues during the interactions between
a human, the data, and digital models for monitoring, analyzing, and predicting bridge
conditions and making recommendations for reliable bridge maintenance and repairs.

Traditional visual inspection requires bridge engineers to visually look for bridge
defects during field inspections to diagnose bridge health condition. Performance issues
still exist when identifying critical bridge defects and predicting the underlying reasons,
even with well-designed qualitative inspection standards and procedures. For example,
experienced engineers tend to perform more consistently and reliably than less experienced
ones while looking for critical bridge defects and assigning condition ratings for bridge
elements. The “subjective” nature of bridge condition assessment conducted by bridge en-
gineers could hardly achieve reliable bridge condition assessment due to (1) the uniqueness
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of different structure types, (2) dynamic site conditions, (3) the availability of data and data
quality, and (4) the knowledge level and years of inspection experience of different bridge
engineers. Unfortunately, limited studies have examined the impacts of the human factors
of bridge engineers on the reliability of SHM results. Even experienced engineers have the
potential to fail to identify all critical defects during field inspections, which could cause
biases in bridge condition ratings. Another challenge is the lack of sufficient datasets that
document how the SHM of bridges is conducted by engineers with different background
and experiences. All such studies and datasets are vital for comprehending the processes
of field inspections, data analysis, and condition assessments conducted by experienced
bridge engineers.

This case aims to illustrate the HC reliability issues that could occur when bridge
engineers are conducting field inspections, data analysis, and condition assessments. For
capturing all such HC reliability issues, previous studies (as shown in Figure 3) have estab-
lished a game environment for simulating the process of bridge inspection with augmented
finite element analysis (FEA). In this inspection game, the established finite element model
(FEM) provides FEA simulation data under different loading conditions. In addition, in-
spection reports contain observed bridge defect information (e.g., cracks, locations, etc.) to
help the inspectors examine the bridge condition. During the inspection game, multiple
participants, including both experienced and inexperienced bridge engineers, are hired
to examine the bridge condition through FEA and searching information from the inspec-
tion reports. All cognitive behaviors during bridge inspection processes are logged and
analyzed. Using all such “virtual bridge inspection” log data can then help tracking the
behavioral pattern differences between experienced and inexperienced bridge engineers
when conducting bridge inspections. In addition, log mining of such inspection behavioral
data could help improve the teachability of a reliable bridge inspection process. In addi-
tion, the captured inspection behavioral patterns can be used as guidance for improving
the bridge inspection process. For example, Liu and Xiong examined the performance
differences of the SHM of a bridge between an inexperienced bridge engineer (on the right)
and an experienced bridge engineer (on the left); the experienced engineer had a much
more organized pattern when searching for bridge defects when inspecting a large span
continuous rigid frame bridge (e.g., more attention was been paid to the bottom slabs,
especially to the mid-span of every major span) [30,31].
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HC reliability issues still exist in remote sensing techniques and influence the data
quality for bridge inspection and management. Less experienced bridge engineers could
choose locations for imaging sensors where critical parts of the bridge are invisible to the
sensor, use the wrong imaging parameters that lead to lengthy data collection, or use sensors
that lack the required resolution for capturing critical bridge features. Engineers processing
the imagery data could use the wrong data processing algorithms that compromise the
accuracy of the information derived from images. A systematic review of HC reliability
issues related to using imaging technologies in bridge inspection and maintenance can
guide engineers to identify and monitor such issues. Moreover, such a review can help
bridge engineers identify relevant theoretical and technical methods for reducing the
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impacts of many HC issues on the reliability of bridge management decision making based
on remote sensory data.

2.2. Cyber Reliability Issues

Cyber reliability issues refer to the reliability of the processes that use various data and
information sources to form information models, such as digital as-built models of bridge
structures. In bridge inspection, numerical models (i.e., finite element models) of bridges
are usually established using design drawings, and remote sensory images are useful for
engineers to examine bridge deteriorations under different loading conditions [32]. Using
deformations, defects, and other spatiotemporal data collected from bridge inspection
reports and structural health monitoring systems could help estimate and update the
parameters of finite element models based on as-built bridge conditions. Bridge engineers
can then use the updated digital model to run simulations of bridges under various
scenarios and discover bridge deterioration patterns and failure modes.

The algorithm plays an important role in the process of model updating. Various
algorithms form data processing workflows for producing FEM models augmented by en-
vironmental conditions to support bridge maintenance planning. These algorithms could
introduce various errors into the derived information and influence the accuracy, timeliness,
comprehensiveness, and detail-level of bridge information models. Data storage and exchange
processes could introduce additional technical problems that influence the quality of bridge
inspection models. Comprehending how various parameters in data processing workflows
can influence information models’ quality is challenging due to the exponentially large search
space of data processing workflows. The next paragraph uses a data processing workflow for
supporting the updating of an FEM model based on field data.

The FEM updating process uses observed geometric, visual, and sensory information to
update the parameter of a model until the FEM simulation results finely agree with the physical
conditions of the bridge (Figure 4) [33,34]. These parameters in the digital models of bridges
need updates to reflect physical conditions and predict deterioration trends. Comprehending
how all these data processing algorithms and their parameters influence the quality of the
FEM is critical for efficient diagnosis of bridge conditions based on digital models and field
data. The challenge to identifying a reliable data processing workflow for producing a reliable
FEM is that the combination explosion of hundreds of data processing parameters makes the
search space of data processing workflows exponentially large [35,36].
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3. Human Reliability Analysis and Team Cognition for Trustworthy and Explainable
Structural Health Monitoring and Risk Prognosis of Bridges

This section synthesizes studies that examine human reliability issues during the SHM
of bridges. The authors found 322 related studies in the literature ranging from 2010 to
2022 on Web of Science search engines (search criteria—Topic: “human reliability” and
“operation”) (see Figure 5). Among all these studies, Table 1 lists five highly cited papers
that have examined human reliability issues in various aspects.
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Table 1. Top five cited papers related to human reliability.

Title Objectives

Modeling and Evaluating the Resilience of
Critical Electrical Power Infrastructure to
Extreme Weather Events [37]

This study established a framework for
comprehending the impact of human
responses on power systems resilience during
severe weather events.

A fuzzy causal relational mapping and rough
set-based model for context-specific human
error rate estimation [38]

This study established a fuzzy rule-based causal
relational mapping approach for deriving
human error rates under different contexts.

Prediction of human error probabilities in a
critical marine engineering operation on-board
chemical tanker ship: The case of ship
bunkering [39]

This study presents a Shipboard Operation
Human Reliability Analysis (SOHRA) method
for predicting human errors during
bunkering operations.

A modified human reliability analysis for cargo
operation in single point mooring (SPM)
off-shore units [40]

This study established a framework for a
human error assessment and reduction
technique (HEART) with human uncertainties
in decision-making.

A methodological extension to human
reliability analysis for cargo tank cleaning
operation on board chemical tanker ships [41]

This study developed a method for
augmenting human reliability analysis in
examining human reliability impacts on cargo
tank cleaning operations.

Human reliability issues need two levels of studies: individual level and team level.
Both levels have three types of reliability issues: (1) perception reliability, which is related
to the data collection and sensing performance of human individuals and teams when
engaging with the physical environments; (2) cognition reliability, which is related to the
decision-making performances of human individuals and teams based on the available
information of the workspace and people’s domain knowledge, expertise, and prior work-
ing experiences; and (3) response reliability, which is related to the specific actions of
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and cooperation between human individuals while working on the assigned activities.
This section synthesizes studies that examine multiple interactions between human, data,
and digital models for monitoring, predicting, and analyzing SHM options based on the
health conditions of bridges. Two aspects include the individual-level human reliability
(Section 3.1) and the team-level human reliability (Section 3.2).

3.1. Human Reliability (Individual Level)

Human reliability research examines the perception, cognition, and response relia-
bilities of human individuals at the individual level. Table 2 lists human factor studies
exploring how various cognitive factors, decision contexts, and individual capability influ-
ence SHM reliability in carrying out assigned activities.

Table 2. Human reliability (individual level) studies.

Perception Reliability—Reliability of the
sensed spatiotemporal information about the
self and environmental objects

Visual perception [42]; Auditory sense [43];
Taste sense [44]; Sense of smell [45]; Tactile and
somatosensory [46]

Cognition Reliability—Impact of the
self-sensed physical conditions of human
bodies and environmental conditions on the
decisions of human individuals and teams

Visual information [47,48]; Auditory
information [49]; Taste [50]; Smell [51]; Body
motions [52]; Temperature [53]; Space size
(confined space) [54]; Motion speeds [55];
Frequencies of changes [56];
Interruptions/Distractions [57,58]

Response Reliability—Impact of the
individual’s capability and team’s situational
awareness on the risks and efficiency of
collaborative operations of a team

Reaction time [59,60]; Time limits [61,62];
Physical demand [63,64]; The impact of the
environmental conditions (performance
shaping factors—PSFs) on the operational
performance of individual workers [65]

Overall, existing human factors studies conducted extensive exploration of the re-
liability of individual human workers. The major challenge is the lack of reliable brain
signal interpretation methods for recovering the meaningful mental processes of workers in
reaction to the human individual’s physical conditions and environmental conditions [66].
Most studies examined human individuals’ observed decisions and decision outcomes in
different physical human body conditions and environments. As conducting experiments
with human subjects in real working environments is extremely time-consuming, many
studies use simulators [67–69] and Virtual Reality (VR) games [70,71] to collect human
behavioral data in controlled environments. Such simulator experiments or VR games
allow human individuals to repeat similar processes in controlled virtual or simulator envi-
ronments. Limited studies were on reconstructing the contents of thinking processes based
on brain signals. Brain-Computer Interface (BCI) studies aim at recovering meaningful
thoughts based on brain signals. However, these BCIs could only recover simple control
commands for human individuals focusing on simple tasks in controlled environments [72].

Most human reliability analysis (HRA) studies originated from other industries, and
they are not specifically used in the construction industry. For tackling the above challenges,
the authors find suitable HRA methods by drawing on research from other fields. Some
scholars proposed a dynamic HRA approach-IDAC (cognition, decisions and executions in
crew context) model. The model was developed to probabilistically predict the response of
nuclear power plant (NPP) control room operators facing system anomalies for dynamic
probabilistic risk assessment (DPRA). IDAC considers operator cognitive response during
the process of mitigating consequences or/and bringing the system to a safe state during
an accident [73]. Figure 6 shows a keywords network related to HRA.
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There are also some experts who believe that the main causes of human errors are
different in different operation scenarios and therefore divide the power system operating
processes into three categories. Time-centered human reliability is quantified by using the
proportional hazard model (PHM), process-centered human reliability is analyzed by the
modified Cognitive Reliability and Error Analysis Method (CREAM), and human error
probability (HEP) is quantified by the human cognitive reliability method for the emergency-
centered scenario, respectively [74]. In these studies, scholars have found shortcomings in
the current CREAM model, which needs to consider and examine the interdependencies
among the common performance conditions simultaneously. Therefore, a hybrid HRA
model combined with CREAM has been proposed to overcome these drawbacks [75].

At the individual level, the human reliability analysis (HRA) framework created for
risk monitoring of nuclear power plant operations [76] covers all three aspects of human
reliability assessment: (a) cognition reliability, (b) decision reliability, and (c) execution
reliability. Certain HRA methods (e.g., Standardized Plant Analysis Risk Human Reliability
Analysis, SPAR-H) [65,77] could help to classify field incidents or accidents into diagno-
sis (perception, decision) failures and action (execution) failures. SPAR-H formulates a
framework about how various factors influence individual workers’ performance. All such
“performance shaping factors” (i.e., PSFs) can be human physical conditions, features of
the task or operational process design, or environmental conditions. The author found that
these PSFs are of three categories, as shown in Figure 7 [78]. Unfortunately, SPAR-H mostly
focuses on the performance of individual workers. Limited studies focused on extending
the human performance assessment framework of SPAR-H to teamwork performance
assessment. Additionally, SPAR-H considered human performance’s cognition aspect but
did not fully consider the changing contexts of task executions [79].

Some studies examined one or more of the three aspects of individual-level human
reliability in various engineering systems. Along the perception reliability direction, some
researchers investigated the visual perception reliability of field workers to design bet-
ter data visualization and wearable information systems for supporting filed condition
diagnoses [80,81]. The Cognitive Reliability and Error Analysis Method (CREAM) has
been a theoretical framework for integrating human individuals’ perception behaviors into
predicting human errors [82]. Some augmented reality (AR) devices have the potential to
integrate these visualization methods, designed with consideration of the visual perception
performance of human individuals [81,83]. Most of these studies examine advanced data vi-
sualization software or hardware design while claiming such systems should allow human
to better perceive data patterns [84,85]. The assumption is that better perceptions of visual
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information could help workers make appropriate decisions with improved awareness
of the information underlying those data patterns. Unfortunately, few studies conducted
extensive and quantitative user tests for quantifying the improvement of human perception
and decision performance with the augmentation of visualized information delivered
through mobile devices or immersive VR-AR environments
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Perception reliability issues of human individuals have other dimensions, such as temper-
ature and taste senses. However, the authors found that relatively fewer studies comprehend
humans’ sensing mechanisms and relevant reliability issues [86]. Some studies designed auto-
mated audio processing methods for augmenting human perception so that workers could
better hear task-relevant information or commands in complex and changing environments
with noisy backgrounds [87,88]. Few studies were on human individuals’ sensing reliability
of smelling and tasting [89,90]. Overall, most existing studies with engineering applications
were on vision and auditory senses. Integrated characterization of sensorial performances
(e.g., smells of different odor, tastes of different flavors, reactions to temperature changes, etc.)
in civil and infrastructure engineering workers is still in the infancy.

On the topic of cognition reliability, previous methods had limited discussion about
human individuals’ analysis and decision mechanisms based on the perceived information
and situation awareness. The challenge is how to measure human individuals’ mental
processes to reveal their cognitive and decision processes [91]. Some recent development
of EEG hardware and brain interface equipment provides some potential for monitoring
human thinking processes in controlled environments. Brain interface and EEG instru-
ments can help examine how various perceived information influences human individuals’
analytical capabilities [92]. Some researchers examined how 2D and 3D visualization
information influences firefighters’ navigation decisions and field operations during emer-
gency responses [93,94]. In the context of the SHM of bridges, this technology could
help researchers analyze how various external factors influence inspectors’ judgment and
decision-making processes, thereby improving the reliability of inspection results.

Reliability issues of human individuals are the focus of HRA methods. Most HRA
methods predict human errors based on task analysis without considering the dynamic
nature of structure engineers’ contexts and field workflows. Examples of such static HRA
methods include the SPAR-H HRA method [65]. Some HRA methods consider contexts
and dependency by considering the quantitative impacts of related events on human error
probabilities (HEP) in various contexts. Unfortunately, dependency modeling produces
an overall HEP for given tasks with known performance shaping factors (e.g., workload,
training, experiences, and task complexity). It does not systematically model the variations
of PSFs during complex field processes. PSFs can change when human individuals work
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in changing environments that might have events that interrupt their cognitive processes.
In most cases, a person’s capability and physical conditions can deteriorate and cause
significant PSF changes along with the SHM processes. None of the static HRA methods
could reliably handle PSF variations for achieving reliable predictions of HEP with full
consideration of SHM and maintenance events and environmental changes in the field [95].

Some researchers started to capture PSF evolutions along various working processes
in different environments through computational simulations and simulator experiments.
Simultaneously, some fundamental challenges remain to integrate the simulation and
simulator data into traditional HRA methods. The main challenge is that conventional
HRA methods are not using detailed step-by-step analysis. Instead, conventional HRA
methods focus on general overall task analysis. Therefore, the detailed simulation models
could produce data incompatible with conventional HRA approaches [95–97]. In many
cases, the HEPs calculated based on detailed process models can overestimate the actual
human error rates. The integration of conventional HRA methods with detailed computer
simulations based on step-by-step human error assessment and computational simulations
requires further studies [95].

3.2. Human Reliability (Team Level)

At the team level, reliability research studies aim to examine: (1) What attributes of
communication and data exchange processes could help reliably quantify uncertainties
in the shared mental model critical for team situation awareness? (2) What properties of
changing workspaces, real-time states of workflows, and co-workers determine the team’s
performance and SHM and maintenance risks? These questions are not about the analysis
and communication reliability concerns mentioned above; instead, they focus on quan-
tifying how communication, site condition and decision optimization and prioritization
analysis, and information quality issues influence the efficiency and effectiveness of execut-
ing teamwork. Table 3 provides an overview of three categories of studies that examine the
team level reliability issues in three aspects: perception, cognition, and response.

Table 3. Human reliability (team level) studies.

Perception Reliability—Reliability of the
sensed spatiotemporal information about
the self and environmental objects

Visual communication: Gestures [98]; Flag [99];
Signs [100]; Auditory communication [101]; Motion
communication [102]; Somatosensory and visual and
auditory [103]

Cognition Reliability—Impact of the
self-sensed physical conditions of human
bodies and environmental conditions on
the decisions of human individuals
and teams

Motions and positions [104]; Voice [105]; Impact of
environmental conditions gained through team
communication and collaboration on the team
decisions; Relative motions [106,107]; Relative
differences between workspaces [108]; Speeds of
changes in remote workspaces [108]

Response Reliability—Impact of the
individual’s capability and team’s
situational awareness on the risks and
efficiency of team operations

Team reaction time [109];
Task independence [110,111]; The impact of
environmental conditions on team performance [112]

Table 3 shows that team level studies still need extensive investigations compared
with many active individual-level studies of human cognitive behaviors. Team cognition
reliability in dynamic environments is an emerging and challenging area [113]. The main
reason is that team decision and collaboration processes involve analyzing various teams’
compositions with different team members and combinations of various teamwork param-
eters that capture team dynamics [114]. Such complexity limits the studies investigating
team decision and execution reliability [115].

Figure 8 shows a keywords network related to team cognition. At the team level,
some researchers have developed frameworks for characterizing cognition, decision, and
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cooperation at the team level. Some studies examined the “shared mental model” that
defines the reliability of coordinating team collaborations through a shared situational
awareness of the team based on shared cognition, focusing on all team members’ static
knowledge structures. Such a shared situation awareness integrates multiple team members’
knowledge and memories [116]. One challenge is how to achieve a theoretically rigorous
resolution of conflicting facts obtained by different team members [117]. Some scholars
proposed a method for quantitively examining the neural synchronization between subjects
in the collaborative process through electroencephalogram (EEG) hyperscanning. The
authors assumed that the neural synchronization in EEGs changes with different team
performances and communication effectiveness [118].
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Cooke et al. conducted a series of studies to profile team performance [119]. They
mostly examined the communication network dynamics of various collaborating teams,
such as UAV controllers, aircraft/fighter pilots, and fight teams of soldiers. These studies
found that research on team cognition and teamwork performance should emphasize
team members’ interactions [120]. Moreover, the changing and dynamic context of these
interactions is critical for comprehending team cognition as a behavior of a group of
collaborating people [121]. As a result, measuring interactive team cognition (ITC) should
be at the team level with full consideration of various activities (e.g., communication and
decision-making) [122]. These studies pointed out that relatively little work has been
published along the dimension of dynamic decision reliability at the team level with full
consideration of team cognition processes and interactions between team members [120].

Some NASA-funded research projects examined long flight teams of astronauts to
understand how to establish technical environments to ensure astronaut teams’ reliable
long-term operation [123–125]. The current study was conducted to investigate the dy-
namics of team coordination using an extended version of the NDS method. The authors
compared three team conditions and the results showed that the experimental group exhib-
ited better team efficiency. The results indicate that future studies should explore synthetic
teams and examine the coordination dynamics within teams [126]. Those studies have
revealed many team parameters and factors, such as team members’ diverse training and
background knowledge and the dynamic history of team coordination patterns, that need
systematic characterization.

4. Cyber Reliability for Trustworthy and Explainable Structural Health Monitoring
and Risk Prognosis of Bridges

This section synthesizes studies that examine cyber reliability issues during SHM and
risk prognosis of bridges. The authors found 121 related studies in the literature ranging
from 2010 to 2022 on Web of Science search engines (search criteria—Topic: “data quality”



Sustainability 2023, 15, 6389 13 of 28

and “SHM”). Table 4 lists the five most cited studies that examine cyber reliability issues
and risk prognosis during SHM. Figure 9 shows the studies collected from the Web of
Science database. This section synthesizes studies that examine multiple technical aspects of
computer hardware and software systems that can produce uncertainties and errors while
processing and managing the data and information. These aspects include the reliability
of the data and information models (Section 4.1), computational processes that transform
data and information (Section 4.2), and the reliability of storing and exchanging data of
various formats (Section 4.3).

Table 4. Top five cited papers related to cyber reliability.

Title Objectives

Convolutional neural network-based data
anomaly detection method using multiple
information for structural health monitoring [127]

This study established an anomaly detection
method based on convolutional neural
networks that mimic human vision and
decision making.

Review of Bridge Structural Health Monitoring
Aided by Big Data and Artificial Intelligence:
From Condition Assessment to Damage
Detection [128]

This study has established a method that uses
big data (BD) and artificial intelligence (AI)
techniques to solve the data
interpretation problem.

Deep learning for data anomaly detection and
data compression of a long-span suspension
bridge [129]

This study has established a method for data
compression and reconstruction based on
deep learning.

Decentralized fault detection and isolation in
wireless structural health monitoring systems
using analytical redundancy [130]

This study has established a decentralized
approach for automatic sensor fault detection
and isolation for wireless SHM systems.

Reliability analysis and damage detection in
high-speed naval craft based on structural
health monitoring data [131]

This study has established a method for
reliability analysis and damage detection of
high-speed ships (HSNC) using SHM data.
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4.1. Data and Model Reliability

Data and model reliability refers to the quality of data and information extracted
from the data to form information models, such as digital as-built models of structures
and facilities. Previous studies explored metrics for measuring the quality of various
data and information sources. Figure 10 shows a keywords network related to data and
model reliability.
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Table 5 indicates that data reliability issues have attracted more attention from the
domain of civil engineering. Some researchers examined the quality of 3D imagery data
in terms of accuracy, level of comprehensiveness, and detail [132,133]. Some researchers
define data quality metrics for quantifying the information losses and uncertainties caused
by missing data [134–143]. The data can be tabular data, multimedia data such as images
and audios, natural language reports, and sensory time series. Time series data usually
capture motions and vibrations of structures, people, vehicles, equipment, or other objects
of interest. Some datasets have metadata that specify the meanings and organization of the
data contents and data collection contexts. Any errors in those metadata could cause errors
in data analysis, interpretation, and data use in practice [144].

Table 5. Synthesis of example studies exploring various reliability issues of data and information models.

Category Example Studies of Reliability Issues

Data

Visual and Geometric Data Accuracy and level of detail of 3D imagery data reconstructed from photos
[145]; spatial resolutions of images [146]; temporal resolution of videos [147]

Reports Errors in field notes [148]; omitted structural defects in inspection reports [149]

Tabular Data Missing and anomalous values of locations, structural condition ratings in
the NBI database [148]

Relational
Database

Incorrect external keys for representing the related columns in two tables
and linking the information from two tables [150]; redundant information

items having inconsistent values at different parts of the database [151,152];
missing relationships between two tables while the link should exist for

linking common columns in two tables [153,154]

Sensory Data Errors or missing values in time series sensory data that measures structure
vibrations [155]

Metadata

Errors in the metadata for specifying the formats and organization of
datasets, such as the meaning of columns of numbers in a data file [144];

errors in the metadata for specifying the time and data collection
environments [156]; errors in the metadata for specifying the methods of

processing and transforming the data, such as a transformation matrix for
transforming point clouds to a global coordinate system [157]

Model
2D/3D Maps

Location errors of points [158]; length and direction errors of lines
representing paths on 2D or 3D maps [159]; level of detail of maps [160];

missing values in the properties of objects on 2D or 3D maps [161]

Semantic-Rich Digital Models Missing and additional objects [162]; dimensional and shape deviations
from actual dimensions [163,164]; wrong type information of objects [165]

These data-quality studies still have not yet addressed some challenges related to
quantifying the data and model reliability in engineering application contexts. Compared
with systematic quality quantification of structured data and images, one challenge is
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that relatively limited studies examined metrics for measuring the quality of audio, video,
and natural language reports (Taleb et al. 2018 [166]). Another gap is that limited studies
focused on characterizing unreliable metadata’s impacts on the data interpretation in
practice. Some researchers pointed out that misleading metadata could result in propagative
misunderstanding of the raw data and cause failures in data use [144].

Finally, compared with many studies on data reliability, fewer studies were on charac-
terizing the reliability of information models derived from data. Most studies discussed
sampling and statistical quality assessment and quality control (QA/QC) methods for
checking the information models against reality [167,168]. Unfortunately, those studies
have not yet addressed the following questions: (1) how to produce a context-related infor-
mation quality index that can quantify the confidence level of using specific digital models
against given engineering requirements [169]; (2) how to assess the impact of qualitative
information errors, such as missing objects or wrong properties of objects, in information
models on decision risks [170].

4.2. Computational Reliability

Computation reliability studies examine how computational processes of transforming
data and information introduce errors or uncertainties in the information derived from raw
data and digital models. Such studies are of two categories: (1) numeric error studies and
(2) workflow studies. Numeric error studies examine how digital computers’ discrete nature
produces numerical errors in representing numbers and how numeric errors influence data
and model transformation results’ reliability. Workflow studies examine the propagation
of numeric errors within deterministic or stochastic processes that transform data and
information models into useful information. Figure 11 illustrates most used keywords
related to computational reliability studies.
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Numeric errors are at the algorithm level for examining different numeric stability
problems due to cut-off errors or specific computation processes that magnify errors and
residuals into biases in the results [171]. Traditional numerical analysis methods examine
numeric errors and algorithm stability problems [172]. Many researchers reviewed vari-
ous numeric analysis studies and how algorithms produce varying results due to numeric
errors [172–175]. The major challenge lies in fundamental theories for capturing random nu-
merical errors with unknown factors underlying hardware and software designs [176–178].
For example, Kendall and Gall have explored the feasibility of modeling aleatoric and epis-
temic uncertainties through Bayesian deep learning models for computer vision tasks [176].
Different types of algorithmic processes have their areas and related topics for comprehend-
ing individual algorithms’ reliabilities, such as optimization and inverse calculations of
matrices. Some algorithmic processes pose significant challenges for researchers to fully
reveal the reliability and numeric errors associated with those algorithmic processes. For
example, Franco et al. claimed that some floating-point arithmetic-based algorithms of
machine learning, computer vision, and computer graphics heavily rely on numerical
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libraries for calculations. Significant challenges exist for accurately estimating numerical
errors based on the underlying numerical libraries [179]. In addition, algorithms for the
camera pose estimation based on three 2D/3D point correspondences always accumulate
numerical errors that jeopardize the accuracy [180].

Numeric analysis research examines numerical errors at the micro-level. In con-
trast, workflow level studies examine how numeric errors generated from each algorithm
within a workflow influence the following data processing algorithms. Relatively fewer
studies were on the characterization of data processing workflows in terms of error accu-
mulation and transformation [181]. Previous studies focused on individual algorithms’
characterization [182] or modeling uncertainty propagation through a pipeline of algo-
rithms connected by input-output relationships [176]. The challenge is to integrate indi-
vidual algorithms’ performance models into performance models of complex workflows.
Exploring the exponentially large solution spaces of all possible combinations of parameters
involved in multiple algorithms in the workflow is challenging.

At the workflow level, the exponentially growing complexity of investigating various
combinations of various algorithmic processes makes the tracking and characterization
of error propagation and accumulation challenging. The emerging theories of process
resilience and stochastic process vulnerability have produced new mathematical models for
characterizing workflows. “Anti-patterns” of workflows and systems dynamics studies also
produce methods for revealing process patterns that could cause unwanted accumulations
of errors and result in workflow failures due to small variations of data inputs or individual
data processing parameters [183,184].

In brief, the knowledge gap about computational reliability exists at multiple levels
of manipulating data and information. Future studies should focus on those challeng-
ing algorithmic processes with highly uncertain numeric error generation behaviors and
process patterns that pose difficult-to-quantify behaviors of error escalation and process
failures. New process modeling and characterization theories, such as process pattern
discovery [185], process resilience, and systems dynamics models [186,187], will bring op-
portunities to overcome the difficulties associated with the characterization of the reliability
of various data processing workflows.

4.3. Data Storage, Exchange, and Transmission Reliability

Data storage, exchange, and transmission reliability research focuses on characterizing
data and information losses during storing, converting the formats of, and transmitting data
files containing various information. Such characterization investigates how data storage
and exchange mechanism design and hardware factors influence the data and information
losses and determine upper and lower bounds of such losses within specific hardware and
software environments [168,188]. Table 6 below provides a synthesis of example studies
that examine reliability issues related to data storage, exchange, and transmission. Figure 12
shows a keywords network related to data reliability.

Table 6. A summary of example studies investigating data storage, exchange, and transmission reliabilities.

Reliability Issues Example Studies

Data
Storage

Data and information losses due to
compression of data for saving storage space

Point cloud compression research for reducing point
cloud data sizes while keeping the geometric changes

captured in the point clouds [189]

Losses of data and information due to data
saving errors and hardware defects

Corrupted files or missing parts of files due to
problematic file saving processes for saving data of large

sizes or unique data structures, such as Gigabytes of
imagery datasets [190]

Losses of data and information due to decaying
hardware devices for storing the data files

Corrupted files or missing parts of files due to storage
unit failures under unfavorable environmental conditions

or decaying of storage media materials [191,192]



Sustainability 2023, 15, 6389 17 of 28

Table 6. Cont.

Reliability Issues Example Studies

Data
Exchange

Losses of data and information while
converting files between different formats

Mapping the same objects stored in different formats
based on properties of objects while accepting losses of
semantics associated with specific properties uniquely

stored in only one of the formats [193]

Losses of data and information while updating
the data schema

Mapping the entity definitions in different versions of a
schema for automated updating of building information

model files into files that use a new version of the
schema [194,195]

Data Transmission Losses of data and information due to
problems in communication protocols

Losses of data packets due to problems in data and file
transmission protocols, especially for transferring large

images and data files [196]
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Specifically, data storage reliability studies examine how to store large amounts of data
of different data types without causing information loss. Some studies quantify geometric
information losses due to 3D image compression using different algorithms [189]. Data
exchange reliability studies examine semantic losses while converting files into different
formats and reconstruct semantic relationships lost during format conversions. Such studies
focus on modeling information losses due to the transformation between different data
formats [197]. These studies also examined methods that identify similar objects across
different formats for enabling translation between data formats [193]. Data transmission
reliability studies investigate how to transmit and exchange data across different computing
devices or platforms without causing information loss [198,199].

Although the current studies about data storage, exchange, and transmission reliability
have significant contributions in their fields, a few gaps still exist. First, there are limited
studies on how errors in data storage, exchange, and transmission propagate along the
data analysis workflows and cause misleading results due to information losses introduced
by interconnected data management and transformation systems [200,201]. Second, non-
loss semantic data exchange needs a systematic investigation into semantic equivalence
and quantification of semantic information losses due to the lack of consideration of
changing contexts of the entity. In practice, many entities have changing meanings in
changing contexts, while the lack of context modeling can cause information losses and
misinterpretations of data [201].
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5. Human-Cyber Reliability for Trustworthy and Explainable Structural Health
Monitoring and Risk Prognosis of Bridges

Human-cyber (HC) reliability considers the reliability of data analysis with HITL.
The data analysis reliability dimension captures how various factors influence the quality
and reliability of information derived from the data to support decision-making. The data
analysis usually involves three sequential stages that gradually derive various information
from raw data sources (e.g., images, sensory time series, and inspection reports): (1) data
pre-processing, (2) data processing and (3) data interpretation. The data pre-processing
stage takes the raw datasets as inputs to transform raw datasets into structured or semi-
structured data that can serve as inputs for the data processing stage. The data processing
stage takes pre-processed datasets as inputs and extracts features or patterns corresponding
to certain objects or events captured in the data. The data interpretation stage derives
correlations between the features and data patterns extracted by data processing algorithms
and derives behavior and process information that represent how objects and events evolve
along the timeline so that engineers can obtain meaningful views of objects and events for
diagnosing the engineered systems or workspaces.

Table 7 defines these three stages of data analysis and shows how these three stages
have different reliability issues. This table shows that some previous studies examined how
various factors involved in data pre-processing, data processing, and data interpretation
influence the reliability of the processed results. The authors found that relatively more
studies are on the reliability issues related to data pre-processing and data analysis, while
limited studies were on the reliability of data interpretation. The reason is that data
interpretation work focuses on detecting and assessing various relationships between
individual features, objects, and events extracted from the data. Relationship detection
relies on the detection of features, objects, and events, which are necessary bases before
carrying out extensive relationship modeling and assessment [202,203]. As a result, data
scientists invest more efforts into extracting features, objects, and events from data first,
and then focus on relationship analysis. On the other hand, computational modeling
researchers started modeling various relationships from the knowledge representation
point of view without considering the challenges of extracting those relationships from
various data [204].

Table 7. Three stages of data analysis that derive information from raw data sources, and their
reliability issues.

Stage Inputs/Outputs Reliability Issues

Data Pre-Processing
(Prepare the raw data in formats that

are suitable for reliable feature
extraction and pattern recognition)

# Inputs: raw data (images, Excel tables,
field notes, and inspection reports).

# Outputs: cleaned and sub-sampled
data, linked or combined data (e.g.,
cleaned and registered laser scanning
point clouds).

# Losses of object or event details due
to improper data cleaning actions
and sampling rates [189,205].

# Errors in linking or combining
datasets due to improper selections
of corresponding objects or
properties for data linking and
integration [203,206].

Data Processing
(Extract features and data patterns

that are corresponding to objects and
changes captured in the

spatiotemporal patterns of features)

# Inputs: cleaned, sampled, and
linked/combined datasets.

# Outputs: Objects, object properties,
changes of objects (location and material
property changes of concrete elements)
and changing rates (moving speed).

# Missing features or feature extraction
errors due to improper selection of
the parameters of feature extraction
algorithms [207,208].

# Errors in object/change detection
due to mismatches between feature
and pattern definitions and
features/patterns extracted from
the pre-processed data [209].
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Table 7. Cont.

Stage Inputs/Outputs Reliability Issues

Data Interpretation
(Analyze relationships between

objects and events to interpret the
correlated objects and events into

meaningful change information of the
facilities and workspaces)

# Inputs: cleaned, sampled, and
linked/combined datasets.

# Outputs: Various relationships (e.g.,
statistical and spatiotemporal
relationships) between objects and
changes of objects (location and material
property changes of concrete elements).

# Missing or errors in the detection of
existing relationships between
objects and changes due to
improper selection of statistical
methods [210].

# Improper setting of the parameters
that are not suitable for the
processed data and decision
contexts [211,212].

# Improper use of statistical metrics
in identifying statistically
significant relationships between
objects and changes [213].

Some recent research studies have started examining approaches for automatic gen-
erations of various relationships between objects and events from diverse datasets in the
domains of big data analytics [214], geospatial analysis [215], and data-driven simula-
tions [216]. Many semantic relationships, such as those representing safety rules between
specific types of objects in workspaces [193,214], contain subtle semantic information in
natural language documents or semantic rich digital models (e.g., Building Information
Models). Extracting material properties and other semantic information about objects
through integrated analysis of textual reports, images, and various sensory data is still
challenging [217–220].

6. Conclusions: A Research Road Map for Advancing Trustworthy and Explainable
Structural Health Monitoring and Risk Prognosis of Bridges

This review of HC reliability offers a comprehensive characterization of identified
knowledge gaps related to HC reliability issues. This section provides a summary of
all identified grand challenges and aims at helping researchers to recognize the various
demands of research activities for advancing the reliable structural health monitoring of
bridges. The following content shows a summary of the significant challenges and uses a
three-part coding system to label these challenges. The codes for each aspect or reliability
issue are also provided. Additionally, the “number” is an integer that is used to code the
challenges in the category in which the aspect and reliability issues were identified. For
example, challenge H.DA.1 is the challenge for the “Human” (code: H) aspect which is
associated with the reliability issue related to “Data Analysis Reliability” (code: DA) and is
the first challenge in the category (code: 1).

These challenges fall into the following five main areas. Data analysis reliability:
H.DA.1—Lack of methods for assessing the reliability of the rules and relationships gener-
ated automatically from multiple unstructured data sources. H.DA.2—Lack of methods for
reliable integrated analysis of images, audio, and unstructured documents. Operational
Reliability: H.O.1—Lack of methods for handling variations of performance shaping fac-
tors (PSFs) reliably for achieving accurate predictions of HEP with full consideration of
detailed working processes and environmental changes. H.O.2—Limited investigations
along the dimension of dynamic team decision reliability with full consideration of team
cognition processes and various interactions between team members. Data and Model
Reliability: C.DM.1—Lack of methods for characterizing the impacts of errors in natural
language reports and metadata on automatic document and data interpretation results
and related decisions based on such interpretations. C.DM.2—Lack of methods for gen-
erating the context-aware information quality index necessary for quantifying the risks
of using certain information models in given decision contexts with specific information
requirements and changing environments. Computational Reliability: C.CP.1—Lack of
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methods for characterizing the data processing workflows composed of multiple data and
information transformation algorithms with diverse numeric error generation and propa-
gation behaviors. Data Storage, Exchange, and Transmission Reliability: C.SET.1—Lack of
reliable application context and semantic mapping between different file formats to allow
reliable data exchange across different software used in different domains. C.SET.2—Lack
of methods for assessing both qualitative and quantitative error propagation along data
processing workflows composed of algorithms that handle diverse datasets to produce
decision information (e.g., deterioration status of a bridge based on reports, images, and
time series collected by contact sensors).

In response to the major challenges discussed in this phase, the authors give the
corresponding research line, which represents a route that encompasses various types
of scientific research efforts (e.g., data collection, data processing, and theoretical mod-
eling) aimed at addressing all the challenges discussed in the previous sections, while
understanding dynamic HC reliability issues to ensure bridge safety. The research line is
divided into the following three areas: data collection, data processing, and theoretical
modeling. Data Collection: (1) Collect large amounts of data (e.g., bridge condition data,
human behavior data, computer logs, human network interaction logs) in a controlled
laboratory environment or under field conditions. (2) Use the collected data to evaluate the
performance of bridges and behavior patterns of human individuals in different decision
contexts and environmental conditions. This proposal is intended to address issues H.O.2
and C.DM.2 above. Data Processing: (1) Establish data processing models for representing
data processing processes. (2) Develop and test data processing methods for integrated
analyses of multiple heterogeneous data sources. (3) Develop scientific workflow systems
that connect data processing algorithms into workflows to support the characterization of
various workflows. This proposal is intended to address issues H.O.2, H.DA.1, H.DA.2,
C.DM.1, C.DM.2, C.CP.1, C.SET.1, and C.SET.2 above. Theoretical Modeling: (1) Create
models based on collected data for predicting the deterioration trends of bridges in vari-
ous environments with various maintenance plans. (2) Create models based on collected
data for predicting the dynamic reliability of given teams in changing decision contexts.
(3) Create models based on collected data for predicting the impact of both qualitative
and numerical data errors on the reliability of the information derived from given data
processing workflows. This proposal is intended to address issues H.O.1, H.O.2, H.DA.1,
H.DA.2, C.DM.1, C.DM.2, C.CP.1, C.SET.1, and C.SET.2 above. The theoretical modeling
aspect of this research line illustrates the imperative and specific research activities that
the authors think would resolve the identified grand challenges and bridge the knowledge
gaps to ensure the security of civil infrastructures.

This paper synthesizes the literature towards a research vision of “Reliable Structural
Health Monitoring and Risk Prognosis of Bridges with Human-In-The-Loop”. The major
conclusion is that relevant research studies, knowledge, methods, and data from multiple
domains (e.g., human systems engineering, computer science, civil engineering, infrastruc-
ture systems, etc.) can contribute to such a vision for ensuring the reliable SHM of bridges.
At the same time, certain fundamental limitations still exist for future explorations. This pa-
per presents a review of the relevant literature to promote multi-disciplinary collaborations
and discussions of the limitations and challenges identified by the authors in this critical
review effort.
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