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Abstract: Gasoline is the primary fuel used in small cars, and the exhaust emissions from gasoline
combustion have a significant impact on the atmosphere. Efforts to clean up gasoline have therefore
focused primarily on reducing the olefin and sulfur content of gasoline, while maintaining as much of
the octane content as possible. With the aim of minimizing the loss of octane, this study investigated
various machine learning algorithms to identify the best self-fitness function. An improved octane
loss optimization model was developed, and the best octane loss calculation algorithm was identified.
Firstly, the operational and non-operational variables were separated in the data pre-processing
section, and the variables were then filtered using the random forest method and the grey correlation
degree, respectively. Secondly, octane loss prediction models were built using four different machine
learning techniques: back propagation (BP), radial basis function (RBF), ensemble learning represent-
ing extreme gradient boosting (XGboost) and support vector regression (SVR). The prediction results
show that the XGboost model is optimal. Finally, taking the minimum octane loss as the optimization
object and a sulfur content of less than 5µg/g as the constraint, an octane loss optimization model
was established. The XGboost prediction model trained above as the fitness function was substituted
into the genetic algorithm (GA), sparrow search algorithm (SSA), particle swarm optimization (PSO)
and the grey wolf optimization (GWO) algorithm, respectively. The optimization results of these
four types of algorithms were compared. The findings demonstrate that among the nine randomly
selected sample points, SSA outperforms all other three methods with respect to optimization stability
and slightly outperforms them with respect to optimization accuracy. For the RON loss, 252 out of
326 samples (about 77% of the samples) reached 30%, which is better than the optimization results
published in the previous literature.

Keywords: research octane number (RON) loss; sparrow search algorithm (SSA); extreme gradient
boosting (XGboost); optimization model; fitness function

1. Introduction

With the continuous development of the economy, the automobile industry has made
great progress. However, environmental pollution and energy shortage are becoming in-
creasingly serious. Of these, exhaust gases from petrol combustion have a significant impact
on atmospheric pollution, and it is essential to take strict measures. For the development of
the petroleum industry, the key is to reduce the sulfur and olefin content of gasoline while
maintaining as much octane as possible [1]. In the process of desulphurizing and reducing
olefins in fluid catalytic cracking (FCC) gasoline, previous techniques generally reduce the
octane number of gasoline [2]. If the octane number is increased by 1 unit, a very significant
profit can be made. Therefore, if the octane number loss can be effectively reduced during
desulfurization and olefin reduction, the economic benefits can be greatly improved.

During the fuel production process, due to the lack, low reliability or absence of
measuring instruments in the production facilities, some technological parameters related
to the initial quantitative information about operation of complex chemical engineering
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systems (CES) cannot be obtained. This makes it very difficult to develop mathemati-
cal models and to optimize and manage CES using traditional mathematical techniques.
Orazbayev et al. [3] used fuzzy mathematics to address the problem of uncertain initial
information and improve the efficiency of the catalytic reforming unit by building a system
model and optimizing the operating mode. The operating parameters of the catalytic
reforming unit were successfully optimized, and the product quality and output were
improved. Ospanov et al. [4] applied fuzzy mathematics methods to the control and opti-
mization of the benzene production process and adopted a decision analysis method to
develop a control scheme of technical objects to solve problems in a fuzzy environment. By
constructing a model and performing decision analysis, the control and optimization of
benzene production process were successfully realized.

In terms of octane number prediction, Pasadakis et al. [5] identified components by
Fourier transform infrared spectroscopy and independent component analysis, correlated
the spectral variable X with the sample property Y and then calculated the octane number.
However, this method has high instruments requirements and is difficult to perform in
practice. The mean octane number was predicted by Liu et al. [6] through the establishment
of a multi-objective nonlinear optimization model with maximum RON loss reduction and
minimum operational risk. Wang et al. [7] used the partial least squares regression method
to fit the analysis of gasoline octane number. Due to the highly non-linear and coupling
relationship of the data, the prediction accuracy of this method cannot be guaranteed.
A new analytical framework for octane number prediction was proposed by Li et al. [8],
which used kernel principal component analysis (KPCA) to reduce the dimension of
variables in the fluid catalytic cracking (FCC) process, A new analytical framework for
octane number prediction was proposed by Li et al. [8], which used kernel principal
component analysis (KPCA) to reduce the dimension of variables in the fluid catalytic
cracking (FCC) process, support vector regression (SVR) to build the RON prediction model,
and particle swarm optimization (PSO) to select the optimal model parameter combination.
A RON predictive model that combines a random forest algorithm, a BP neural network
and a genetic algorithm has been proposed by Fu et al. [9] to meet the real needs of chemical
manufacturing. This method can be used to reduce overfitting and effectively predict octane
number and residual value. Furthermore, machine learning-based data mining methods
were widely used by some scholars [10–14], and these proposed models were superior to
the traditional methods in both accuracy and generalization and achieved better results in
predicting octane number.

Many multi-objective optimization problems (MaOPs) exist in real applications, often
with many decision variables. Although various methods have been proposed for the
solution of MaOPs, the performance of these algorithms degrades significantly as the
number of decision variables or objective functions increases. Yao et al. [15] proposed an
approach to solve large-scale MaOPs based on dimension reduction and knowledge-guided
evolutionary algorithms. With respect to octane number optimization, Cheng et al. [16]
proposed the hybrid gray wolf optimizer (HGWO) algorithm; by constraining the objective
function of minimizing the RON loss, the optimal value of the characteristic variable could
be obtained through continuous iteration. Cui et al. [17] effectively reduced the octane
prediction mean square error (MSE) by 5.79% using differential evolution-based parameter
optimization. The dragonfly algorithm (DA) was successfully applied to optimize the
octane number by Zhang et al. [18]. This combination model can balance the local search
and global search, and effectively prevent the algorithm from reaching the local optimal
solution. Guo et al. [19] proposed an effective method to reduce the octane number by
processing the target product with a multi-objective particle swarm optimization algorithm.
Based on the concept of substation engineering data space, Xu et al. The authors of [20]
studied the influence factors and developed a static total investment smart forecasting
model of substation engineering. To improve the prediction accuracy and convergence
speed of the neural network, the sparrow search algorithm (SSA) was used to optimize the
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parameters of the BP neural network. This proposed method provides a new idea for the
study of gasoline octane number optimization.

Although many scholars have conducted much research on octane number optimiza-
tion, there is still not enough data to prove which specific method is significant for octane
number optimization. In terms of variable dimension reduction, principal component
analysis has the disadvantages of being sensitive to outliers and not having many variables.
The clustering method has the disadvantages of being sensitive to noise points and outliers,
and has difficulty in determining the initial clustering center. In terms of prediction and
optimization, when using neural networks, XGBoost, and genetic algorithms, the prediction
and optimization effect of dynamic changes is often not good. In general, non-linear con-
straints on the actual sulfur content limit need to be considered for octane reduction models
in gasoline refining. Based on the related research [20], this paper introduces the sparrow
algorithm in the direction of gasoline octane prediction for the first time, and establishes the
gasoline octane loss optimization model, which is combined with the sparrow algorithm to
form a new algorithm. It can effectively improve the accuracy of gasoline octane prediction.

Firstly, the dimensions of the operational variables and non-operational variables were
reduced using random forests and grey correlation, respectively. Then, the octane predic-
tion results of back propagation (BP) [21], radial basis function (RBF) [22], extreme gradient
boosting (XGboost) [23] and support vector regression (SVR) [24] were compared to deter-
mine the optimal adaptive function. Finally, the traditional genetic algorithm (GA) [25], par-
ticle swarm optimization (PSO) [26,27] and grey wolf optimization algorithm (GWO) [28]
were compared with the sparrow search algorithm (SSA) [29] introduced in this study,
and the numerical optimization results were compared with the empirical data set and
other optimization results published in the related literature. The results show that, in
terms of optimization results and stability, the SSA algorithm is superior to the other
three algorithms.

The main contributions made by this paper are as follows: (1) A hybrid method was
proposed to filter the variables and reduce variable dimensions; (2) the machine learning
algorithm with the best prediction results was introduced into the optimization fitness func-
tion to realize the optimization calculation; (3) to solve the octane loss optimization model,
the problem of solving the minimum octane loss value was transformed into solving the
maximum octane product value; (4) the SSA algorithm was introduced into the nonlinear
optimization problem with higher stability than other traditional heuristic algorithms.

The remaining sections are organized as follows: Section 2 presents the pre-processing
of the original data. Section 3 is a description of the methods used in this paper and the
overall modelling process. Section 4 presents the results obtained. Section 5 discusses the
results. Section 6 concludes the entire work and gives an outlook for future work.

2. Data Processing

The public dataset used in this paper is provided by the Sinopec Gaoqiao Petrochemical
real-time database (Honeywell PHD) and the LIMS experimental database [30]. The data of
operational variables were collected from April 2017 to May 2020, and were collected from
354 operational points. The data collection frequency was every 3 min from April 2017 to
September 2019, and every 6 min from October 2019 to May 2020. The raw material, product
and catalyst data were collected from the LIMS experimental database from April 2017
to May 2020. The octane number of raw material and product is an extremely important
variable for modeling, and the frequency of the data collection was twice a week.

The database contains 325 samples from a Chinese petrochemical company’s petrol
refining line. It contains 7 raw material variables, 4 adsorbent variables, 2 product variables
(these are non-operational variables) and 342 operational variables. In the process of
collecting original data, most of the data is in line with the actual situation. Meanwhile,
due to a series of adverse effects such as environmental mutations, some of the collected
data is not in line with the actual situation. There are two types of abnormal data in this
part: missing data and anomalous data. At the same time, the dimension of the data is too
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large, so, in order to remove redundant variables, it is necessary to reduce the dimension of
the data.

2.1. Processing of Missing Data

By finding and deleting missing data, the negative influence of missing data on the
gasoline octane prediction below can be eliminated. In the case of missing samples, the
processing method can be defined as follows:

nnone = 0, Sample complete
0 < nnone ≤ 10, Sample alternative mi
nnone > 10, Sample missing mj

(1)

in which nnone is the number of missing samples in a column, mi and mj represent the
sample that can be replaced and the sample that can be directly deleted, respectively. i
and j represent the serial number of the samples. If the number of missing samples in a
column nnone is 0, this column is not processed. If the number of missing samples in a
column nnone ∈ (0, 10), it is replaced by linear interpolation of two neighboring data. When
the number of missing samples nnone ∈ (10, +∞), the entire column is deleted.

2.2. Processing of Anomalous Data

Based on the elimination of the missing data, anomalous data hidden in the remaining
data are found and deleted, which can eliminate the negative impact of anomalous data on
the gasoline octane prediction below.

The Bessel formula [31] can be used to calculate the standard error σ for the anomalous
data. If the error of the data is not within the range of the Bessel formula, it can be identified
as anomalous data, and the relationship can be represented by:

σ = [
1

n− 1

n

∑
i=1

vi
2]

1/2

=


 n

∑
i=1

(
xi −

n

∑
i=1

xi/n

)2
/(n− 1)


1/2

(2)

where x is the arithmetical mean; vi is the residual error, vi = xi – x (i = 1, 2, . . . , n). When
the residual error vi (1 ≤ i ≤ n) of a measured value xi satisfies |vi| = |xi − x| > 3σ, xi is
considered to be an anomalous value with a large error value and should be eliminated.

2.3. Data Dimension Reduction

The number of data dimensions to be filtered is too large, while the sample size is too
small. In this paper, operational variables and non-operational variables were separated
and filtered, respectively. For operational variables, due to the small dimension of the
variables, the random forest method [32] was used for filtering, which can avoid overfitting.
For the non-operational variables, due to the large dimension, the grey correlation degree
method [33] combined with the Pearson correlation coefficient method [34] was used for
data filtering. At the same time, the proposed method was also compared with the simple
grey correlation degree to determine the better filtering method. The specific filtering
method is shown in Figure 1:
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Figure 1. Schematic representation of two variable filtering methods, where the orange and blue
spheres represent operational and non-operational variables, respectively. The upper rectangular box
(a) represents the hybrid filtering method, and the lower rectangular box (b) shows the method using
data filtered only by grey correlation analysis.

To eliminate the influence of the quantity dimension, the data should be normal-
ized [35] after preprocessing, and the method can be expressed as follows:

xnorm =
x− xmin

s
(3)

in which xnorm is the normalized data, x is the variable data value, xmin is the minimum
value of the variable data, xmax is the maximum value, s is the difference of the sample
values, which is of the form s = xmax − xmin.

The results of random forest and grey correlation degree filtering are as follows:

H(x) = arg max
Y

n

∑
K=1

I(hi(x) = Y) (4)

G(x) = argmax(γi(x0, xi)) = argmax(
1
n

n

∑
k=1

γ(x0(k), xi(k))) (5)

where H(x) is the filtering decision result of the random forest method. hi(x) is the prediction
and filtering result of each decision tree classifier. Y is the filtering target. I(hi(x) = Y) is a
characteristic function. G(x) is the result of the grey correlation degree filtering decision.
γ(x0, xi) is the value of the grey correlation degree filtering. x0 is the target variable. xi is the
current variable; argmax is the maximum set of filtering values; x0 and xi are the elements
of the target and current variables.

The results of the grey correlation degree filtering are recorded as G0, and the results
of the mixed filtering variables are recorded as C0, with the elements in the C0 and G0 sets
kept equal.

The Pearson correlation coefficient can be used to evaluate the results of variable
filtering. It describes how close a relationship exists between two remote variables, in this
case to measure the linear correlation between variables X and Y. Its value lies between
(−1, 1) and is generally expressed by rxy, which can be calculated as follows [36]:

rxy =
(n∑ XY−∑ X∑ Y)√

[n∑ X2 − (∑ X)2][n∑ Y2 − (∑ Y)2]
(6)
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where n denotes the number of samples, X, Y represent the value of two variables. The
two variables are positively correlated if r > 0; if r = 0, it means that the two variables
are irrelevant; if r < 0, then there is a negative correlation between the two variables. The
stronger the correlation, the higher the absolute value of r. The correlation can be judged
according to the value interval, and it is considered that if the absolute value of r is between
(0.8, 1), it is a very strong correlation; if the absolute value of r is between (0.6, 0.8), it is a
strong correlation; if the absolute value of r is between (0.4, 0.6), it is a moderate correlation;
if the absolute value of r is between (0.2, 0.4), it is a weak correlation; if the absolute value
of r is less than 0.2, it is a very weak correlation or uncorrelation.

At the same time, the correlation degree rRON (product octane number) is defined as
the criteria for filtering variables. Its calculation formula is as follows:

rRON =
n

∑
i=1

rxi ·RON (7)

where n is the number of samples filtered. rxi·RON is the degree of correlation between this
variable and the product octane number, xi = {C0, G0}.

3. Method

After determining the main variables, four typical machine learning algorithms, BP
neural network, RBF neural network, XGBoost and the SVR algorithms, were used to
build the octane loss prediction models. The performance of these models was evaluated.
Combined with the octane loss optimization model proposed in this study, the XGBoost
prediction model was selected as the fitness function and substituted into the genetic algo-
rithm (GA), sparrow search algorithm (SSA), particle swarm optimization algorithm (PSO)
and the grey wolf optimization (GWO) algorithm, respectively, to optimize the octane
loss model.

3.1. Development of Octane Number Prediction Model

Using RON as the target variable, four machine learning algorithms, BP, RBF, XGBoost
and SVR, were used to establish machine learning models; these algorithms are introduced
below.

The BP network is based on the error backpropagation algorithm, which is the most
widely used algorithm. Each topology structure is realized in a fully connected way,
and the neurons in the same layer are disconnected from each other. Generally, there is
at least one hidden layer, and sigmoid is used as the activation function for downward
propagation. Radial basis function (RBF) network is a type of forward network based on
function approximation theory. The main difference between RBF and BP is the difference
in the activation function. The activation function of RBF is a radial basis function, and
the nodes of the hidden layer produce local responses to the input. Therefore, the hidden
layer is also known as the local perceptual network [37,38]. The linearly weighted sum
of the output of the neurons in the hidden layer is the output of the two network models
above. The prediction model is shown in Equation (8). Each layer of the neural network
consists of several neurons. As the signal is transmitted to each neuron, a new output signal
is transmitted to the next layer of neurons by transforming some form of the excitation
function. The topology diagrams of the two neural networks are shown in Figure 2.

As a representative of ensemble learning, the XGBoost algorithm model is effectively
improved based on the original gradient lifting decision tree GBDT [39]. It uses a training
set and a real sample to train a tree, and then uses that tree to predict a training set. The
“residual” obtained by subtracting the predicted value from the actual value is used to
continue training the next tree. The final output will be the sum of the outputs of each
training instance, thus improving the overall performance of the model. The objective
function is made up of a loss function and a regularization term, as shown in Equation (8).
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SVR [40] is a machine learning method. It is based on statistical learning theory and
the principle of structural risk minimization. The optimal classification hyperplane is
constructed by non-linear mapping of the input to a high-dimensional space. The loss
function is minimized to determine the relevant model by constructing a loss function
between the sample label and the predicted value of the model. The prediction model is
shown in Equation (8).

Based on the above four methods, the prediction models can be written as follows:

BP : yj = f (
Si
∑

i=1
ωkjri + bk)

RBF : yj =
n
∑

i=1
wijαi(x)− bi

XGBoost : yj = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk), where Ω( f ) =γT+ 1
2 λ‖ω‖2

SVR : yj =
n
∑

i=1
Wi ϕ(x) + bk

(8)

In Equation (8), for the BP and RBF methods: where yj is the output of the neurons, ri
is the node of the hidden layer, ωij is the connection weight of the neurons between the
hidden and output layers. bi is the connection threshold between the hidden and output
layers, f is the transfer function, αi(x) is the radial basis function. For the objective function
of XGBoost method, ŷi is the predicted value of the model, ӯi is the category label of sample
i, k is the number of trees, fk is the model of a tree k, T is the number of nodes of each leaf,
l(ŷi, ӯi) is the loss function, Ω(fk) is the regular elements, ω denotes the set consisting of the
scores of each leaf node, γ is the first regularization coefficient, namely the training error,
λ represents the second regularization coefficient, which is the sum of the complexity of
the trees. For the SVR method, where W is the weight vector, ϕ(x) is the implicit mapping
function, x is the sample feature vector in original space, bk is the bias term.

In the process of data prediction by using the above models, due to certain errors
between the predicted and actual value, the following two methods were adopted in this
study to measure the prediction accuracy: root mean square error (RMSE) and goodness of
fit (R2) [41], which can be expressed as:

RMSE =

√
1
m

m
∑

i=1
(yi − ŷi)

2

R2 = 1−

m
∑

i=1
(yi−ŷi)

2

m
∑

i=1
(yi−yi)

2

(9)
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where m and n are the number of samples to be taken, yi is the actual value, ӯi is the average
of the actual values, ŷi is the predicted value.

In this paper, BP, RBF, XGBoost and SVR were used to predict the octane number
of gasoline. Combined with the evaluation indexes, RMSE and R2, the method with the
highest prediction accuracy is determined. The model with the highest prediction accuracy
is then used as the fitness function of the improved optimization algorithm to calculate the
subsequent gasoline octane rating.

3.2. Establishment of Octane Number Loss Optimization Model

An improved model has been proposed in this section, which aims to accurately repre-
sent the octane loss of gasoline, the product octane number and the feedstock octane number,
in order to reduce the negative impact of calculation errors on the prediction results.

With the minimum RON loss as the target and a sulfur content of less than 5% as
the constraint condition, an optimization objective function has been established, which is
shown in Equation (10)

min RONloss(Xi)

s.t
{

S(Xi) ≤ 5 µg/g
minXi < Xi < maxXi, i = 1, 2, 3, · · · , n

(10)

where Xi is the decision variable, RONloss(Xi) is the loss quantity of RON. The RON loss
quantity can be expressed as the difference between RON raw materials and RON products,
which can be expressed as:

RONloss(Xi) = RONraw − RONproduct(Xi) (11)

where RONproduct(Xi) is the product RON, RONraw is the raw material RON, which is the
non-operational variable and can be used as a fixed value. Therefore, the objective function
can be transformed into:

min RONloss(Xi) = min[RONraw − RONproduct(Xi)]
= RONraw −max[RONproduct(Xi)]

(12)

The final optimization function can be obtained by further simplifying the above equation:
max RONproduct(Xi)

s.t
{

S(Xi) ≤ 5 µg/g
minXi < Xi < maxXi, i = 1, 2, 3, · · · , n

(13)

where RONproduct(Xi) and S(Xi) can be expressed as the product octane number and product
sulfur content fitted by the optimal model, respectively, which can be further expressed as:{

RONproduct(Xi) = g(x1, x2, x3, . . . , xi−1, xi)
S(Xi) = h(x1, x2, x3, . . . , xi−1, xi)

(14)

where g and h represent the optimal model mapping, and determining the optimal model
mapping can be expressed as:

RONproduct(Xi)
mapping−−−−→ max

{
R2

BP, R2
XGboost, R2

SVR, R2
RBF
}

S(Xi)
mapping−−−−→ max

{
R2

BP, R2
XGboost, R2

SVR, R2
RBF
} (15)

In the above formula, R2 indicates goodness of fit, R2 in the full set (test set + training
set) is used as the basis for selection, the model with the most accurate prediction (R2 is
closest to 1) among BP, XGBoost, SVR and RBF is selected as the mapping function.
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Finally, the magnitude of the RON loss η can be calculated using the following formula:

η =
(RONraw − RONproduct )− [RONraw − RONproduct(Xi)]

RONraw − RONproduct
× 100% (16)

where RONraw is the product octane number before optimization, RONproduct(Xi) is the
product octane number fitted by the optimum model, and RONproduct is the product octane
number after optimization. Therefore, the optimized improved octane calculation model
can be expressed as:


max RONproduct(Xi)

s.t
{

S(Xi) ≤ 5 µg/g
minXi < Xi < maxXi, i = 1, 2, 3, · · · , n

η =
(RONraw−RONproduct)−[RONraw−RONproduct(Xi)]

RONraw−RONproduct
× 100%

RONproduct(Xi)
mapping−−−−→ max

{
R2

BP, R2
XGboost, R2

SVR, R2
RBF
}

S(Xi)
mapping−−−−→ max

{
R2

BP, R2
XGboost, R2

SVR, R2
RBF
}

(17)

3.3. Improvement and Selection of the Optimization Algorithm

The final results of the model are greatly influenced by a number of sensitive pa-
rameters in the forecasting process. The optimal result can be achieved by adjusting
these sensitive parameters. For the solution of the optimization model, in addition to
comparing the traditional GA, PSO and GWO algorithms, this paper introduces a new
intelligent algorithm, SSA algorithm, for comparison, and proposes an optimal octane
number optimization scheme.

The SSA algorithm is a new intelligent algorithm that was proposed by Xue et al. [29]
in 2020, inspired by sparrow foraging and predation behavior. The method has been
gradually applied to unmanned aerial vehicle (UAV) route planning [42], servo system
identification and control [43] and random network configuration [44], which has achieved
good optimization results. Sparrows are social animals, so when the population is attacked
by predators, they will show strong resistance to predation. Thus, sparrows can therefore
be classified into three roles: producer, predator and scout [45].

Like other heuristics, it starts with a random population of sparrows and can expect n
sparrows in the D-dimensional search space [29]. The fitness value of a bird (target RON)
is expressed as follows:

Fx =


f [x1,1 x1,2 . . . x1,j]
f [x2,1 x2,2 . . . x2,j]

. . . . . . . . . . . .
f [xi,1 xi,2 . . . xi,j]

 (18)

where f is the individual fitness score. Producers are the more adaptable sparrows in
the population. They can forage in a wide range of areas and lead the whole population
in the right direction. During each iteration, the position of the producer is updated as
follows [42]:

Xt+1
i,j

=

{
Xt

i,j
e−

i
α·itm , i f : R2 < ST

Xt
i,j
+ G · L, i f : R2 ≥ ST

(19)

where t is the number of iterations at the current time. Xi,j represents the i-th sparrow’s
position information in the j-th dimension, α represents the random numbers in the range
of [0, 1], itm is the maximum iterations, G describes the normally distributed randomness, L
is a 1 × d matrix in which each element has a value of 1. In this case, R2 is the alarm value
ranging from [0, 1], ST is a safety threshold within [0.5, 1]. Predators also need to watch
the producers. If it finds that the producer has good food, it will immediately move closer
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to that position in order to compete for food, making itself a producer. The predator’s
position is updated as follows [43]:

Xt+1
i,j

=

 G · e
Xwt−Xt

i,j
i2 , i f : i > n

2

Xt+1
p +

∣∣∣Xt
i,j
− Xt+1

p

∣∣∣ · A+ · L, i f : i ≤ n
2

(20)

where Xp is the producer’s best position, Xwt is the current worst global position of the
producer, A is a 1 × d matrix with elements that are randomly assigned to be 1 or −1. A+

can be expressed as A+ = AT(AAT)−1. If a predator does not have access to a food-rich
location, it must expand its flight range to get more food. The adaptive function of the
sparrow algorithm can be expressed as follows:

Fit(x) = f (XGBoost(x)) (21)

where Fit(x) is fitness function, XGBoost(x) is the black box function of the model with the
highest prediction accuracy.

The GA algorithm was proposed in the 1970s and has become a relatively complete
evolutionary algorithm [25]. Based on biological natural selection and population evolution,
the algorithm exchanges chromosome information in the population through iterative
changes by selection, crossover and variation. Finally, a chromosome that satisfies the
optimization requirements is generated, and the search process is adaptively controlled to
obtain the best solution.

The product octane number and raw material octane number are coded by the genetic
algorithm to realize the one-to-one correspondence between population and individual.
Additionally, according to the gene coding method, a series of gene sequences are generated
to form the corresponding individuals, and a certain number are generated to form the
initial population. In addition, it is also necessary to use fitness function, through the
roulette algorithm and the optimal individual preservation of the selection operator to
carry out genetic iteration, to achieve the goal of minimum gasoline octane loss. The main
relations of the genetic algorithm are:

Ki,j =
imax
∑

i=1
RON ⇒ The coding process

Fit(x) = f (XGBoost(x))⇒ The fitness function
Pi =

Fit(xi)
m
∑

i=1
Fit(xi)

⇒ Iteration of genetics
(22)

where K represents the corresponding code, if j = 1, RON is RONraw; when j = 2, RON is
RONproduct. Fit(x) is the fitness function, XGBoost(x) is the black box function of the model
with the highest prediction accuracy, Pi is the probability of inheriting a new population.

The PSO algorithm [26,27] was proposed in the 1990s and was inspired by bird preda-
tion. When birds hunt, they usually look for the nearest area. Each particle in this algorithm
represents a potential solution, its movement speed determines its movement, and its speed
is dynamically adjusted with its own and other particles’ movement experience to achieve
particle optimization within a region. The relationship can be expressed as:{

vij(t + 1) = ω · vij(t) + c1r1[pij(t)− xij(t)] + c2r2[pgj(t)− xij(t)]
vij(t + 1) = xij(t) + vij(t + 1)

(23)
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where c1 and c2 are acceleration coefficients, r1 and r2 are random numbers in [0, 1],
pij(t) is the optimal position for searching the i-th particle swarm, v is the velocity, ω is the
control parameter of particle motion inertia, x(t) is the current position of the particle. The
inertia weight of PSO is linearly decreased, and the asynchronous linear method is used to
improve the learning factor and the inertia weight. Their relationship is as follows:

ω(k) = ω1 − (ω1 −ω2)
k
G{

c1 = c1min + k(c1max−c1min)
G

c2 = c2min + k(c2max−c2min)
G

(24)

where ω1 is the initial maximum inertia weight, ω2 is the final minimum inertia weight,
which in this paper is 0.4, k is the current number of iterations, G is the maximum iterated
number s, cimax and cimin are the maximum and minimum values for ci. Both crossover
probability and mutation probability are replaced by adaptive function, and the relationship
is the same as Equation (21).

The grey wolf algorithm simulates the grey wolf’s unique hunting and scavenging
characteristics [28], completing the task through wolf cooperation. In general, the hunt is
completed by tracking, chasing and attacking. During the operation of the GWO algorithm,
with each iteration, the wolf’s location is constantly updated. It then selects the positions of
different wolves according to the fitness function, guides other wolves to move towards
the prey, and finds the prey after several iterations. The relationship is as follows:

Di = |r · Xi(t)− X(t)| ⇒ The distance function
Xi(t + 1) = |Xi(t)− Ai · Di| ⇒ The position function

Z = 1
n

n
∑

i=1
Xi(t + 1)⇒ The objective function

Fit(x) = f (XGBoost(x))⇒ The fitness function

(25)

where Di is the distance between the target object and track targets, t is the number of
iterations in progress, r and Ai are the coefficient vectors, Xi(t) is the position of the target
object, X(t) is the position of the target object being tracked, Z is the final position.

In this study, the traditional GA algorithm, the PSO algorithm and the GWO algorithm,
as well as the proposed SSA algorithm [46], were used to optimize the octane number. The
best prediction model trained in the previous section was used as the fitness function of the
above algorithms. The specific procedure is shown in Figure 3.

In this paper, GA, SSA, PSO and GWO methods are selected and combined with the
best methods in Section 3.1 to form optimization and improvement methods, respectively.
Combined with the improved optimization model described in Section 3.2, the gasoline oc-
tane number can be predicted. By comparing the prediction results of the four optimization
methods, the optimal method is selected.
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Figure 3. Flowchart of four different optimization methods for octane number models.

4. Results
4.1. Results of the Feature Parameter Selection

Part of the data after processing is shown in Table 1. The dimension m of the original
data is 355. 2 groups of abnormal data and 28 groups of missing data have been removed.
Following this, the data dimension m is 325 and the sample size n is 326.

Table 1. Part of the data after abnormal and missing processing while the data dimension m is 325
and the sample size n is 326.

pRON SC(µg/g) rRON Saturated
Hydrocarbon(v%) . . .

S-ZORB.FT_1504.
DACA.PV

S-ZORB.FT_1504.TO
TALIZERA.PV

S-ZORB.PC_1001
A.PV

1 89.22 188.00 90.60 53.23 . . . 1840.14 39,608,757 0.35

2 89.32 169.00 90.50 52.30 . . . 1641.73 39,389,299 0.35

3 89.32 177.00 90.70 52.30 . . . 1600.68 39,312,616.5 0.35

. . . . . . . . . . . . . . . . . . . . . . . . . . .

324 88.05 271.43 89.40 47.19 . . . −10,846.1 693,676.8 −119.53

325 88.12 266.00 89.40 46.72 . . . −12,373.3 569,836.8 −120.05

326 88.65 266.00 89.90 46.72 . . . −13,900.5 445,996.8 −120.56

Table 1 shows the data after processing, which includes 313 operational variables
and 12 non-operational variables. The random forest method was used to filter the non-
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operational variables that are closely related to the product RON, and the filtering results
are shown in Figure 4:
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by the random forest method, and the results were expressed as percentages.

As shown in Figure 4, four important variables are selected from 12 operational
variables. Raw material RON is the most important for product RON, ranking first among
all variables and accounting for 30.9%, followed by raw material saturated hydrocarbons,
raw sulfur content, and raw olefins, which can be identified as the main filtering results.
Regarding the grey correlation degree filtering, the results are presented in Table 2:

Table 2. Variable filtered by the grey correlation degree method.

Reference
Designator Variable Types Relevancy Reference Designator Variable Types Relevancy

pRON NOV 0.894 S-ZORB.TE_1105.PV OV 0.768
S-ZORB.FT_9403.PV OV 0.796 S-ZORB.TE_5006.DACA OV 0.767
S-ZORB.LC_1201.PV OV 0.789 S-ZORB.TE_1601.PV OV 0.766
S-ZORB.FC_1203.PV OV 0.784 S-ZORB.TE_5002.DACA OV 0.762
S-ZORB.FC_1201.PV OV 0.783 S-ZORB.FT_1003.PV OV 0.762

S-ZORB.TE_2603.DACA OV 0.778 S-ZORB.TE_5003.DACA OV 0.761
S-ZORB.FC_5202.PV OV 0.775 S-ZORB.PT_9401.PV OV 0.760

S-ZORB.FT_2433.DACA OV 0.774 S-ZORB.FC_1005.PV OV 0.760
S-ZORB.TC_3102.DACA OV 0.768 Bromine value NOV 0.759

S-ZORB.TE_1105.PV OV 0.768 S-ZORB.TE_5004.DACA OV 0.759
S-ZORB.TE_5006.DACA OV 0.767 / / /

To ensure the consistency of the data, 19 variables were uniformly filtered out by
the two methods mentioned in Figure 1. According to Figure 1a, 19 variables with a
correlation greater than 0.759 were selected, of which 2 are operational variables and 17
are non-operational variables. The Pearson correlation coefficients of the two screening
methods were plotted, as shown in Figure 5.
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Figure 5. Pearson coefficient diagram filtered by two methods introduced in Figure 1a,b. Coefficients
near 1 indicate a higher level of correlation. (a,b) corresponding to the results of the hybrid filtering
method and grey correlation analysis, respectively. The closer the color to red, the stronger the
correlation between the objective and the variables.

According to Figure 5 and Equation (6), the total correlation degree between each
method and the RON of the product was calculated. Among them, the total correlation
degree of method (a) is 6.34, and that of method (b) is 5.46. The mixed filtering method has
a better effect, so in this study, 4 operational variables and 15 non-operational variables
were filtered by method (a). The filtering results and the corresponding data range are
shown in Table 3.

In this paper, the number of samples used is 325, and the data of the prediction model
have been divided, with the training set accounting for 0.7 (228 in total). The test set
accounts for 0.3, with a total of 97 copies.
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Table 3. Variables filtered by method (a), with 4 operational variables and 15 non-operational variables.

Reference Designator Minimum Maximum Variable Types

SC (µg/g) 57.0 392.0 NOV
pRON 87.2 91.7 NOV

Saturated hydrocarbon (v%) 43.2 63.4 NOV
Olefins (v%) 14.6 34.7 NOV

S-ZORB.LC_1201.PV 49.38 50.29 OV
S-ZORB.LC_1202.PV 49.70 50.86 OV

S-ZORB.LT_1501.DACA −1.265 −1.248 OV
S-ZORB.TE_2005.PV 412.26 428.20 OV
S-ZORB.PT_9403.PV 0.9866 0.9985 OV

S-ZORB.TE_2004.DACA 411.85 427.67 OV
S-ZORB.RXL_0001.AUXCALCA.PV 92.08 97.30 OV

S-ZORB.TE_2003.DACA 411.85 427.67 OV
S-ZORB.TE_2002.DACA 413.08 429.49 OV
S-ZORB.TE_1604.DACA 407.04 421.58 OV
S-ZORB.TE_1102.DACA 417.53 432.74 OV
S-ZORB.TE_1602.DACA 404.67 417.88 OV

S-ZORB.TC_1606.PV 403.25 416.71 OV
S-ZORB.TE_2103.PV 415.82 431.20 OV

S-ZORB.TE_1603.DACA 403.39 419.55 OV

4.2. Results of the Prediction and Optimization
4.2.1. Prediction Result of Gasoline Octane Number

After several parameter adjustments, the training results and the main parameters
defined in four prediction models are shown in Tables 4 and 5:

Table 4. Performance results of the four prediction models, including test and training set perfor-
mance, evaluated by RMSE and R2.

Method Data Partition RMSE R2

BP
Training set 0.0566 0.9645
Testing set 0.3321 0.9221

RBF
Training set 0.0631 0.8911
Testing set 0.8457 0.7039

XGboost
Training set 0.0192 0.9996
Testing set 0.2175 0.9475

SVR
Training set 0.0973 0.9898
Testing set 0.2534 0.9390

Table 5. List of key parameters defined in four prediction models.

Model Parameter Name Parameter Value Model Parameter Name Parameter Value

XGboost

Base learner Decision Tree

RBF

Input layer elements 19
Number of base learners M 75 Hide Layer elements 227

Learning Rate η 0.1 Output layer elements 1
L1 Regular Terms λ 0 Expansion speed of RBF 100

L2 Regular Terms γ 1

BP

Input layer elements 19
Maximum depth of tree 10 Hide Layer elements 10

SVR

Loss-function P 0.1 Output layer elements 1
Kernel function type RBF Training algorithm Levenberg-Marquardt

Penalty factor 4 Learn Rate 0.01
Radial basis function parameters 0.8 MERT 0.00001

At the same time, the data from the test and training sets were combined to plot the
R2 of the four methods and the prediction curves, as shown in Figure 6:
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Figure 6. Comparison results of four prediction methods. Comparison results of four prediction
methods. (a–d) are the prediction curves of RBF, BP, SVR and XGBoost, respectively. The blue points
are all the data points, the red line is fitted by the blue points using the least square method, and the
dotted line is the 100% prediction line (that is, the true value = predicted value, i.e., y = x). The greater
the overlap between the red line and the dotted line, the more accurate the prediction.

By comparing the above four prediction results, it was found that XGBoost had
the highest accuracy in predicting both the octane number and the sulfur content of the
products; therefore, the XGBoost model was used as the fitting function to calculate the
octane number.

4.2.2. Optimization Results of the Gasoline Octane Number

According to the above optimization process, combined with the range of raw material
RON variables given in Table 5 (87.2, 91.7), the variation of raw material RON starts from
87.5 with an increasing sub-step of 0.5 and ends at 91.5, the final optimization values of
the above 9 points were simulated respectively. At the same time, the experiments were
independently repeated 10 times at each point to test the stability of the three algorithms
and to eliminate random errors. The mean value of the final convergence results and
the standard deviation of the results were calculated for 10 times. The results are shown
in Figure 7.
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Figure 7. Comparison of the results of the four optimization algorithms. (a) is the comparison of
optimized values, (b) is the comparison of the stability of the optimized data.

It can be seen in Figure 7a that the curves using the SSA and GWO methods are slightly
higher than those using the GA and PSO methods. The overall trend of the three curves is
not very different. As shown in Figure 7b, the SSA curve is significantly lower than those
of GA, PSO and GWO. At the same time, in Figure 7a,b, the octane numbers obtained by
GA and PSO are not significantly different.

In terms of octane number optimization shown in Figure 7, the SSA optimizer outper-
forms the other three optimizers on six points. In terms of stability, SSA also has certain
advantages, which obtained better results than other three algorithms in eight points,
further proving that the SSA-based optimization has the advantages of good stability and
strong global search ability.

5. Discussion

Regarding model prediction, it can be seen from Table 5 and Figure 6 that BP’s
prediction accuracy is higher than RBF in the neural network domain. Although RBF has a
better generalization ability, its complexity makes it inferior to the BP neural network in
the same prediction range. In the process of parameter optimization, XGBoost adopts the
first and second derivatives, and adds the regular term to control the overfitting problem,
which effectively improves the model’s predicting accuracy. Therefore, XGBoost is better at
predicting nonlinear problems than the other three algorithms.

According to Figure 7, it is found that SSA is the best optimization algorithm. Taking
the octane number of raw materials as a reference, the octane number of products before
and after optimization by the SSA algorithm were compared, as shown in Figure 8.

As shown in Figure 8, the octane number of the raw materials and the RON curves of
products before and after optimization were provided.

The arrows show the path of change before and after optimization. According to
Equation (17), among the nine sample points tested, the RON loss of seven sample points
decreased by 30%, indicating a good optimization effect.

At the same time, the results obtained are competitive compared with other opti-
mization results published in the previous literature. For example, for the RON loss, in
literature [6], the octane loss of 245 out of 325 sample points (about 75%) decreased by 30%;
in the literature [18], out of the 291 samples, 163 samples had 30% decrease in RON loss, a
proportion of about 56%. Corresponding results were obtained in this study: 252 out of
326 samples (about 77% of the samples) reached 30%, meaning the proposed model can
achieve better results than the existing literature, which provides a new method for solving
nonlinear problems.
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6. Conclusions

In this study, the optimization of octane loss in the gasoline refining process has been
studied in detail using the Honeywell PHD and LIMS real-time database. From the work
carried out in this paper, the following conclusions can be drawn:

Firstly, after pre-processing the data using methods such as the Bessel formula, the
main variables were divided into operational variables and non-operational variables,
and then processed by using random forest and grey correlation analysis, respectively,
which improves the accuracy of the data processing. By comparing the variable filtering
methods—grey relational degree-based method and the hybrid filtering method—it can be
seen that the hybrid filtering method obtained a better result.

Secondly, in terms of octane number prediction, the prediction results of neural
networks, such as BP and RBF, integrated learning XGBoost and SVR regression, were
compared, and it could be found that the XGboost model received the best results, which
was taken as the fitness function and substituted into the optimization algorithms to
perform the RON calculation.

Thirdly, a new optimization model for gasoline octane loss was proposed and inte-
grated into the SSA algorithm. The introduced SSA algorithm was compared with the
GA, PSO and GWO, and it was found that the optimization results of the improved SSA
algorithm were superior to the other three algorithms. For the RON loss under the con-
dition that the sulfur content is less than 5 µg/g, 252 out of 326 samples (about 77% of
the samples) reached 30%, which is better than the optimization results published in the
previous literature [6,18].

Finally, the work completed in this paper can provide inspiration for problems such as:
data dimension reduction, correlation analysis, value prediction and system optimization
and so on. The predictive model proposed in this paper can be used for areas such as: fault
diagnosis of rolling bearings, inventory prediction, pollution concentration optimization
and traffic accident detection and so on. By using the optimization method, the model
parameters can be optimized, which can also be used for path planning, combinatorial
optimization and machine learning parameter optimization. However, there are some chal-
lenges in solving optimization problems, such as: low convergence accuracy, easy falling
into local optimality and sensitivity to parameterization; these need further investigation.
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