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Abstract: In order to optimize the bus departure time considering uncertain factors, this paper con-

structed an uncertain bi-level programming model for departure frequency and scheduling of a bus 

line. The uncertainty of passenger arrival and bus operation time were taken into account, combined 

with actual operation conditions. Nanchang 207 bus line was taken as an example to optimize the 

departure frequency and scheduling in the morning peak hour. The optimal departure frequency in 

the morning peak hour is 12 times. The overall index value of the route’s non-uniform scheduling 

during peak hours increased by 0.06 and 9.23% compared with uniform scheduling. The analysis 

results show that the effect of the non-uniform scheduling is obvious. The issue of bus line departure 

frequency and scheduling has a positive effect on improving the efficiency of public transportation, 

reducing operating costs and promoting the sustainable development of the public transportation 

system. This paper provides a theoretical support for bus operators to optimize route operations. 
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1. Introduction 

With the characteristics of safety, high efficiency, convenience, and environmental 

protection, public transportation has become an effective transportation mode to alleviate 

urban transportation problems [1]. It has become a general consensus to prioritize the 

development of public transportation [2]. The development of regular bus routes and bus 

vehicle configuration issues are not only related to the costs and benefits of the bus com-

pany but also have an essential relationship with the service level of buses and passenger 

satisfaction [3,4]. The core of bus allocation is the optimization of departure intervals to 

meet passenger flow demand. Therefore, the optimization of bus departure intervals is of 

positive significance for the sustainable development of the public transport system. Bus 

vehicle configuration and bus departure intervals are closely related. Bus vehicle config-

uration refers to the number and type of vehicles configured on the bus route. The mini-

mum bus departure interval is subject to the number of vehicles configured on the bus 

route and the bus operation time. How to determine an optimal departure frequency and 

optimize the social benefits of bus services while ensuring the basic benefits of bus oper-

ators is a question worthy of discussion. The bus vehicle configuration of bus lines should 

meet the departure frequency of the peak period. Therefore, the problem of bus line vehi-

cle allocation is able to be transformed into the problem of optimizing the departure fre-

quency of bus lines during peak hours. 
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Many scholars have conducted in-depth research on the optimization of bus vehicle 

configuration and departure intervals. The two-level programming model that considers 

the benefits of bus operators and passengers has been commonly used. Di Zhen [5] con-

sidered the revenue of bus companies as the upper-level objective; the minimum weighted 

total cost of travel time and cost of passengers was the lower-level objective, and govern-

ment behavior was used as a constraint to establish a two-level programming model for 

the bus line vehicle allocation problem. Zhao Shuzhi [6] established a multi-model bus 

route allocation optimization model based on the weighted sum of bus operator costs and 

bus service levels. Liu Tao [3] researched public transport timetables and vehicle schedul-

ing problems and developed a bi-objective, bi-level programming model. The upper ob-

jective is to minimize the total operating cost and the total travel time of passengers from 

the perspective of the bus operator. The lower model is for a traffic distribution issue based 

on the departure time and vehicle capacity constraints. Filipe Monnerat [7] researched 

fleet management problems and established a vehicle and driver assignment model with 

an objective function of minimizing the total cost. Liujiang Kang [8] developed three inte-

ger linear programming models (ILPM) to describe bus and driver scheduling problems 

with meantime windows for a single bus line. M.A. Goberna [9] dealt with solutions prob-

lems for uncertain multi-objective convex programs, which allowed the data of the objec-

tive function and the constraints to be uncertain. 

However, uncertainty realizations play an important role in real-world applications 

[10]. There are many uncertain factors in the operation of public transportation: the service 

time windows and passenger demand of different stops cannot be accurately estimated. 

During the development of bus lines and bus vehicle allocations, these variables are typi-

cally estimated on the basis of historical data or experience, so that a relatively reliable 

result is obtained; this will result in large errors. In order to decrease the error, the meth-

ods for optimization under uncertain factors have been widely studied over past decades 

[10]. Real decisions are generally made under the state of indeterminacy [11]. Random-

ness, grayness, and fuzziness are three inseparable uncertain factors that affect real deci-

sions [12]. There are two mathematical systems for modeling the indeterminacy: one is 

probability theory [13], and the other is uncertainty theory [11]. Probability is interpreted 

as frequency, while uncertainty is interpreted as personal belief degree [11]. Frequency is 

the empirical basis of probability theory, while belief degree is the empirical basis of un-

certainty theory. Savage [14] said a rational man behaved as if he used subjective proba-

bilities. In other words, a rational person is expected to hold belief degrees that follow the 

laws of uncertainty theory rather than probability theory. In order to minimize the error 

of indeterminacy and unify the descriptions of grayness, randomness, and fuzziness as 

three inseparable uncertain factors, Liu Baoding [15] put forward the uncertainty theory 

in 2007 and continuously improved it to form a standardized axiomatic mathematical sys-

tem. Liu [16] introduced uncertain variables when considering programming problems in 

2009 and proposed uncertain programming. Stochastic uncertainty is caused by parame-

ter variations but also from an epistemic uncertainty caused by a lack of knowledge about 

the system. 

The uncertainty theory represented by uncertain programming has been widely and 

successfully applied in the fields of transportation, logistics, and finance [10,16,17]. The 

applications of uncertainty theory in transportation problems mainly include vehicle 

scheduling problems, critical road problems, etc. Jiao Dengya [18] built an uncertain pro-

gramming model based on Liu Baoding’s research to solve the logistics of the vehicle 

scheduling problem with uncertain factors, which took into account the uncertainty of the 

demand for goods and the travel time among the delivery points. A genetic algorithm that 

can effectively solve the uncertain programming model of vehicle scheduling is designed. 

Liu Wusheng [19] used the bus IC card data to analyze the passenger flow uncertainty of 

bus stops and proposed a probabilistic derivation model and algorithm, without applying 

it to bus vehicle allocation, operation scheduling, and other issues. Wei Ming [20] con-

structed a bi-level programming model for solving uncertain bus scheduling problems. 
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The constraints such as depot capacities, fueling, and emissions of polluting gases are con-

sidered in the bi-level programming model. The genetic algorithm for solving the upper 

and lower models is designed, the concept of satisfactory solutions is introduced, and a 

set of satisfactory solutions produced by the lower programming are compared and se-

lected by the upper programming, and then the best bus dispatching plan as well as the 

corresponding vehicle purchase plan are generated. Lin Chen [21] established uncertain 

goal programming models for bicriteria solid transportation problems: the transportation 

cost and time, conveyance capacities, supplies, and demands were regarded as uncertain 

variables in the model. By applying some properties of uncertainty theory, the chance-

constrained goal programming model and the expected value goal programming model 

can be, respectively, transformed into the corresponding deterministic equivalents [21]. 

Based on uncertainty theory, Jun Guo [22] proposed a vehicle scheduling method consid-

ering the dynamic departure interval and vehicle configuration of electric buses (EBs). An 

uncertain bi-level programming model (UBPM) was established, which took the total cost 

of passenger travel (CP) as the upper objective function and the total cost of EBs (CB) as 

the lower. Bing Zhang [23] established a two-level planning model that takes the maxi-

mum total revenue of the bus company as the upper-level goal and the minimum total 

travel cost of passengers as the lower-level goal and used uncertainty theory to study and 

design customized bus routes with uncertain factors. Bin Zhan [24] established a bi-level 

programming model to determine the frequency of the bus vehicles and non-uniform in-

terval optimization considering the uncertainty of passenger demand, without consider-

ing the uncertainty of bus travel time. 

The vehicle scheduling problem is well known as an NP-hard problem; in order to 

solve the problem, Lu Sun [25] considered the vehicle scheduling problem with an uncer-

tain processing time and proposed a hybrid cooperative co-evolution algorithm (hccEA). 

The results prove the efficiency and effectiveness of hccEA, and future research will apply 

the algorithm on multiple objectives of the uVSP (uncertain vehicle scheduling problem). 

Hannah Bakker [10] reviewed multi-stage optimization under uncertainty; problems re-

quiring a sequence of decisions considering uncertainty in reality are of crucial relevance 

in real-world applications, e.g., vehicle scheduling, supply chain planning, or finance. 

While models for multi-stage optimization under uncertainty have often been addressed 

from a specific application-driven point of view (pre-determining the style of uncertainty 

representation and solution methodology), the classification possibilities and insights 

shown in this review can form the basis of an undistorted and consistent model for the 

analysis of multi-stage uncertainty problems considering potentials of a variety of uncer-

tainty models, solution methods, and evaluation techniques [10]. Federica Ciccullo [26] 

developed a method to link supply uncertainty and sustainable supply chain strategies, 

which has a positive effect on logistics and transportation. However, when sustainability 

is a desirable a�ribute or an order winner, companies might implement sustainable prac-

tices aiming at reducing supply uncertainty rather than for sustainability goals. 

To sum up, although many scholars have conducted in-depth research on the opti-

mization of bus vehicle configuration, and the uncertain theory has been widely and suc-

cessfully applied in the fields of transportation and logistics, few results have been ob-

tained using the uncertainty theory to study bus vehicle configuration problems. This pa-

per considers the uncertainty of the number of passengers at the bus station and the bus 

operation time, as well as the cost and benefits of bus operators and bus passengers. An 

uncertain bi-level programming model is established with a view to providing theoretical 

support for bus departure time problems. The structure of the thesis is to briefly introduce 

the uncertainty theory, then build an uncertain bi-level programming model for the bus 

departure time problem, and design a solution algorithm. No. 207 bus line of Nanchang 

city, China, is taken as an example for case analysis, and the last section is the research 

conclusion. 
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2. Uncertainty Theory 

The number of passengers arriving at each bus station over a period of time (such as 

a departure interval) and the operating time between bus stops are uncertain. The number 

of travelers arriving at each station fluctuates within a range, which is an uncertain varia-

ble. Since the number of passengers at bus stops and the running time between bus stops 

are uncertain variables, their uncertain distributions are the key to the research problem. 

The concepts of uncertain variable and uncertain distribution are supposed to be given in 

the description of the methodology. Objectively speaking, uncertainty measure and un-

certainty space are the basis of uncertainty variables and uncertainty distribution. There-

fore, the descriptions of the above concepts are necessary, and the related concepts of un-

certainty theory are given in Sections 2.1 and 2.2 based on [15]. The index of symbols used 

in this section is listed in Table 1. 

Table 1. The index of symbols used in Section 2. 

Symbol Description 

L a -  algebra on a non-empty set   

  a non-empty set 

[0,1]L ：
 set function from L to interval [0.1] 

  an event 

C  the complement of  ; 

( , , )L   uncertainty space, composed of  , L and the uncertainty measure M 

  the real number set 


 

an uncertain variable, it is a measurable function from the uncertain 

space ( , , )L  to the real number set   

B  any Borel set 

( )x
 

uncertain distribution 

( , )L a b
 

linear uncertainty distribution with a, b as upper and lower bounds 

( , )N e   normal uncertainty distribution with parameters 
,e   

 

2.1. Uncertain Measure and Uncertain Space 

Uncertain measures and uncertain spaces are the most fundamental concepts of un-

certainty theory, and they are also the foundation of uncertain variables and uncertain 

distributions. The concepts of uncertain measures and uncertain spaces are given as fol-

lows based on [15]. 

Definition 1. Let L be a -   algebra on a non-empty set   , then the set function 

[0,1]L ：  is called an uncertainty measure, if [0,1]L ：  meets the following three 

axioms: 

Axiom 1 (normality): For the universal set  ,  =1  ; 

Axiom 2 (self-duality):    + 1C     for any event  . C is the complement of  ; 

Axiom 3 (sub-additivity): For every countable sequence of events 1 2, , ,    we have

 
11

i
ii
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Definition 2. The triplet ( , , )L  composed of the above non-empty set  , the - algebra on 

 , and the uncertainty measure M is called uncertainty space. 

2.2. Uncertain Variable and Uncertain Distribution 

Uncertain variables are variables that describe uncertain phenomena, and uncertain 

distributions describe the distribution pa�erns and trends of the values of uncertain vari-

ables. The concepts of uncertain variable and uncertain distribution are given as follows 

based on [15]. 

Definition 3.   is called an uncertain variable if it is a measurable function from the uncertain 

space ( , , )L   to the real number set  . In other words, for any Borel set B  in the real num-

ber set , the set    ( )B B        is an event. 

Definition 4. The uncertain variable   is linear; if it follows the following linear uncertain dis-

tribution ( )x , the distribution is recorded as ( , ), ,L a b a b . 

 
0,

( ) ( ) / ,

1,

x a

x x a b a a x b

x b




     
   

(1)

Definition 5. The uncertain variable   is normal; if it follows the following normal uncertain 

distribution ( )x , the distribution is recorded as ( , ), ,N e e    . 

1
( )

3( ) 1 ,

e x

x e x






 
 
 

 
    
 
 

 (2)

Definition 4 gives the structure of linear uncertain distribution, and Definition 5 gives 

the structure of normal uncertain distribution. Whether it is consistent with the distribu-

tion of the number of passengers at the bus station needs to be verified with real data. The 

bus running time is affected by multiple factors, such as basic road conditions, the signal 

control method at the intersection, whether the bus priority control is adopted, etc. The 

bus running time is an uncertain variable, and its distribution cannot be expressed by an 

accurate deterministic model. The data fi�ing is carried out when investigating the bus 

running time during peak hours, and the bus running time roughly conforms to a normal 

uncertain distribution. After determining the uncertain distribution of the number of pas-

sengers at the bus station, the uncertainty programming model can be introduced to op-

timize vehicle allocations of bus lines. Take No. 207 bus route of Nanchang city, China, as 

an example for investigation and analysis, and obtain the morning peak (7–8 o’clock) IC 

card data and ticket data for the bus route on 25–31 March 2019 (Tables 2 and 3). According 

to the proportion of the number of IC card-swiping passengers and coin-operating pas-

sengers at each station and time period, the number of swiping IC cards in the morning 

peak can be approximated expanded to the number of bus passengers in the morning 

peak. According to one week’s survey data, it is known that the number of travelers arriv-

ing at each bus stop and bus running time are uncertain variables, and the variables’ val-

ues fluctuate within a range. By fi�ing the number of arrivals at each bus stop for one 

week and performing a chi-squared test, the uncertain variable of passenger arrivals at the 

stations conforms to a linear uncertainty distribution. The running time of the bus line at 

peak hours follows a normal uncertain distribution (see chi-squared test at Tables 4 and 5 

in Section 4.1). In the following sections, modeling and analysis are carried out based on 

the linear uncertain distribution of the numbers of passengers at bus stations, as well as 

the normal uncertain distribution of bus running time. 



Sustainability 2023, 15, 7005 6 of 18 
 

Table 2. The cards volume and number of vehicles in 7:00–8:00 am from 25–31 March 2019 for bus 

line 207. 

Date March 25 March 26 March 27 March 28 March 29 March 30 March 31 

Swipe mount 1085 1215 1100 1180 1128 956 588 

Departures 13 13 12 11 12 12 13 

Table 3. Number of passengers ge�ing on and off bus stop during 7:00–8:00 am on 29 March 2019 

for bus 207. 

Stop Boarding Getting Off Stop Boarding Getting Off Stop Boarding Getting Off 

1 79 0 8 138 64 15 13 87 

2 47 0 9 119 167 16 26 157 

3 40 0 10 79 81 17 36 85 

4 93 11 11 13 63 18 13 60 

5 106 14 12 27 80 19 32 80 

6 119 35 13 79 47    

7 158 50 14 40 114    

Table 4. Chi-squared test statistics for passenger numbers satisfying linear uncertainty distributions. 

Date if  
iP  

iF  
i if F  2( )i if F  2( ) /i i if F F  

1 1085 0.15 1090 −5.24 27.41 0.03 

2 1215 0.17 1234 −19.12 365.72 0.30 

3 1100 0.15 1107 −6.84 46.75 0.04 

4 1180 0.16 1195 −15.38 236.69 0.20 

5 1128 0.16 1138 −9.83 96.61 0.08 

6 956 0.13 947 8.55 73.05 0.08 

7 588 0.07 540 47.86 2290.89 4.24 

sum 7252 1.00 7252 — — 2   4.97 

Note: if  is real swipe amount of bus passengers; iP  is probability in theory; iF  is the theoretical 

swipe amount of bus passengers based on uncertain linear distribution. 

Table 5. Chi-squared test of normal uncertainty distribution for running time at peak hours (25–31 

March 2019). 

Running Time, Minute if  
iP  

iF  
i if F  2( )i if F  2( ) /i i if F F  

[20, 22] 5 0.05 8 −2.78 7.74 0.99 

[22, 24] 10 0.07 11 −0.79 0.62 0.06 

[24, 26] 16 0.10 15 1.41 1.99 0.14 

[26, 28] 23 0.13 19 3.87 14.98 0.78 

[28, 30] 32 0.16 24 7.79 60.69 2.51 

[30, 32] 22 0.16 24 −2.21 4.88 0.20 

[32, 34] 17 0.13 19 −2.13 4.54 0.24 

[34, 36] 12 0.10 15 −2.59 6.70 0.46 

[36, 38] 10 0.07 11 −0.79 0.62 0.06 

[38, 40] 6 0.05 8 −1.78 3.18 0.41 

Sum 153 1 153 — — 2   5.84 

Note: if  is actual number of vehicles in the running time period; iP  is probability in theory; iF  

is the theoretical number of vehicles in the running time period based on uncertain normal distri-

bution. 
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3. Uncertainty Bi-level Programming Model for Departure Frequency of a Bus Line 

3.1. Model Construction 

Consideration from the perspectives of the interests of bus companies and passen-

gers, two objective functions are established under relevant constraints. The passengers’ 

revenue is the upper-level objective function and the bus operator’s revenue is considered 

the lower-level objective function. 

The model construction is based on the following model assumptions: 

(i). The bus vehicle configuration is performed after the bus line is determined; 

(ii). The bus travel speed is obtained by averaging the historical data; 

(iii). The boarding rule is first-come-first-service; 

(iv). Considering single-type bus vehicles, the bus departs according to the timetable 

specification, without considering emergencies; 

(v). Failure to board a bus is counted as a retained guest, which affects the satisfaction 

of bus services. Additionally, the passenger’s arrival follows a linear uncertain 

distribution (the chi-squared test process to verify the distribution is given in the 

case analysis). 

3.1.1. Upper-Level Objective Function Considering Minimization of Passengers’ Waiting 

Time Cost 

The upper objective function is to minimize the waiting time of all passengers on the 

bus route. The function is as follows: 

��� �����  =  
1

2
� × � � ��� ×

��

��

�

� � �

�

� � �

 (3)

where I is the set of the operating time period of the bus line in one day, the time period 

can be divided into peak period and off-peak period, and the departure frequency varies 

from different periods; J is the set of bus stops; f is the waiting time cost per passenger, 

CNY/(person*hour); the cost of waiting time for passengers’ travel is calculated based on 

the income level of local residents and converted into the time value per hour. The calcu-

lation method is similar to references [27,28]. ��� is the passenger flow that arrives at stop 

j at time period i, and means the number of persons, and the unit is a person; �� is the 

total duration of the period i, hour; �� is the number of departure shifts in the period i, it 

is dimensionless; 
��

��
 is the average length of the bus departure interval in the period i 

(hour), the average waiting time approximately equals 
��

���
. 

3.1.2. Lower-Level Objective Function 

The minimum operating cost of the bus line per day is the lower-level objective func-

tion. The values of various operating costs are based on the financial statement data of 

Nanchang Public Transport Company. 

min��  =  m�� +  �
�

�
 +  � �� × �

�

� � �

 (4)

where m is the number of the bus vehicles of the bus line; p is the bus parking cost, 

CNY/(d·m2); S is the parking area of bus vehicles, m2; C is the average purchase cost of 

present vehicle, CNY; d is the average operating life of the bus vehicle, day; Cs is the op-

erating cost of the bus line per day; �� has the same meaning as formula (3); w is the op-

eration maintenance and fuel cost per bus per shift, which can be expressed as follows: 

� =  �������  + ��� (5)

where �� is the average speed of the bus in period i, km/h; �� is the running time of a 

bus shift in period i, hour; Cr is the maintenance cost per kilometer of bus operation, 
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CNY/km; �� is the fuel cost per kilometer of the bus, CNY/km; The overall objective func-

tion of the above model is: 

min�����  =  � ×
�

�
� × ∑ ∑ ��� ×

��

��
 �

� � �
�
� � �  + β × �m�� + �

�

�
+ ∑ �� × ������� + ����

� � � � (6)

where α and β are proportional coefficients, α + β = 1, and the values of α and β are deter-

mined by the expert scoring method. 

Considering the uncertainty of passenger arrival and the uncertainty of bus running 

time is beneficial to improve the accuracy and reality of the model. Now, set all the event 

sets of passenger arrivals as p� ∈ PA and all sets of bus running time as t ∈ TR; the pas-

senger flow of passengers arriving at j stations in the period i is ���
�, and the bus running 

time in the period i is ��
�; therefore, considering the uncertain factors of passenger waiting 

time cost and bus operation cost, the objective function can be expressed as: 

minC =  �
1

2
� × � � ���

� ×
��

��

�

� � �

�

� � �

 +  β × �m�� +  �
�

�
 + � �� × V�

���
�

�

� � �

���  + ���� (7)

Therefore, the expected value of all possible events can be expressed as follows: 

E(C)  =  �
1

2
� � � ���

� ×
��

��

�

� � �

�

� � ���∈��

�(�)�� +  β � �m�� +  �
�

�
 + � �� × V�

���
�

�

� � �

���  + ���� ��
�∈��

 (8)

3.1.3. Constraints 

From the perspective of the government, the one-time ridership rate should not be 

less than a certain value; that is, there should not be too many passengers who have to 

wait for the next bus due to no space left in the present bus; for peak hours, a maximum 

departure interval should be set as a limit; in addition, the departure interval should not 

be too small, and the time interval should meet the following relationships: 

���� ≤
��

��
≤ ���� (9)

The parameters have the same meanings as above. 

3.2. Optimization Model of Non-Uniform Departure Interval 

The upper and lower models are connected by the frequency of departure. According 

to the lower model, the optimal departure frequency within the time period is obtained, 

and after the departure frequency is determined, the operating cost of public transport 

vehicles is calculated. The upper model takes the passenger waiting time as the objective 

function (Function (10)) and the departure interval time as the constraint, which relies on 

the calculation results of the lower model to obtain the optimal departure interval time 

using a genetic algorithm. (Taking the passenger waiting time as the objective function 

(Function (10)) and the departure interval time as the constraint condition, the upper 

model relies on the calculation results of the lower model and applies the genetic algo-

rithm to obtain the optimal departure interval.) 

min���
�  =  

1

2
� � (��������  + �������  + �������)

�

� � �

��

� � �

 (10)

where ���
�  is the waiting time of passengers under the possible event n (n ∈ NS, n means 

the number of passengers, NS represents the set of possible amount of passengers) in the 

period i, the unit is person–hour; the waiting time of passengers at each bus stop consists 

of three parts, namely, the waiting time of passengers at the initial departure interval, the 

final departure interval, and the intermediate departure interval, where the waiting time 

is equal to half of the departure interval; the objective is to minimize the total waiting time 
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of bus passengers on all bus stops for all departure shifts; ���� is the passenger flow of the 

bus stop j within the h-1 and h departure interval in the time period i, person; ���� is the 

interval between the h-1 and h departure shifts at bus stop j in period i, hour; ��� is the 

last departure interval of the current period excluding the time segment (T1 = 0 ), hour; ��� 

is the time area not covered by the starting time of the departure interval of the current 

period (T1 = 0), hour; ���� is the number of passengers arriving at the bus stop j during the 

last departure interval TI of period i, person; ���� is the passenger flow at the bus stop j 

during the starting departure interval ti in the period i, person. 

Taking into account the uncertainty of the arrival of passengers, f (n) is the probability 

function of the arrival of passengers, and the expected value of the waiting cost of passen-

gers and the time interval of bus departure must adhere to the following constraints: 

 E(���
� )  = ∫

�

�
∑ ∑ ���������  +  �������  +  ���������

� � �
��
� � ��∈��

× �(�)�� (11)

���� ≤ ���� ≤ ���� (12)

���� ≤ ���  + �(� � �)� ≤ ���� (13)

���  + � ����

��

� � �

 +  ���  =  ��� (14)

��� ≥ 0 (15)

��� ≥ 0 (16)

where ���� is the time interval between the hth and h-1 buses at the bus stop j in the i pe-

riod; Equation (12) is the maximum and minimum departure interval constraints; Equa-

tion (13) is the time interval ���  + �(� � �)� between one departure at the end of the current 

period i at the bus stop j and the first departure in the next period i + 1, which should also 

satisfy the departure interval constraint; Equation (14) is the sum of the departure interval 

length of a time period at the bus stop j plus the time section not included at the beginning 

and end of the time period, and the sum is the numerical constraint of the time length TMi 

of the time period i; Equation (15) is the numerical constraint of the last departure interval 

in the current period that does not include the time region; Equation (16) is the numerical 

constraint of the time area not covered by the starting time of the departure interval of the 

current period. 

3.3. Model Solution 

3.3.1. Lower-Level Programming Model Solution 

The solution of the lower-level programming model is divided into three steps, as 

shown in Figure 1. 

Step (1): Input the original data. 

In step 1, the original data are inpu�ed, including the probability density function of 

passenger arrival and bus running time, the values of proportional coefficients α and β, 

the minimum departure interval, the longest departure interval, and the passenger wait-

ing cost per unit time. 

Step (2): Calculate the objective function value and departure frequency. 

Excel can be used to calculate the optimal passenger waiting cost and public transport 

operating cost under the integer departure frequency in period i. At the same time, the 

optimal departure frequency in the period can be obtained by meeting the constraints of 

the lower-level model. 

Step (3): Judge whether it is the optimal departure frequency. 
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Check whether it is the optimal solution by checking the value of the objective func-

tion. When it is the optimal solution, select the output result; if not, take i = i + 1 and return 

to step (2) to continue solving. 

Data input. i=1

Calculate the objective function value 
and departure frequency in period i

Optimal 
departure 
frequency

No,i=i+1

Lower-level 
programming 
model solution

Data input. i=1
Upper-level 
programming 
model solution

Yes

Take values for qhij, qTIJ,qtij. Round 
and code the  uneven time intervals

Initialize the population

Use GA to calculate the fitness

Genetic operator setting

Satisfy 
termination 
condition

No

Output the optimal chromosome of fitness

i = total 
number of 

time periods

Output

Yes

Yes

No,  i=i+1

 

Figure 1. The process of solution algorithm. 

3.3.2. Upper-Level Programming Model Solution 

The optimal departure frequency in a period has been solved in the lower model. The 

upper model uses a genetic algorithm to determine the optimal uneven departure interval 

within a period of time and then uses the upper model’s constraints on departure interval 

and �� to select the value of each time interval and solve the optimal time interval of the 

second time period in the same way until the solution is completed (Figure 1). 
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Step (1): Initial i = 1, input the basic data, take values for ����, ����, ����. 

Step (2): In each period, according to the length of the period and the optimal number 

of departures, the uneven time intervals in the period are rounded and coded, which are 

(���, ����, ����, … … , �����, ���), respectively, and satisfy���  +  ∑ ����
��
� � �  +  ���  =  ���, and TMi 

is the numerical constraint of the time length of the period i. 

Step (3): Use the random assignment method to initialize the population, and use the 

constraints in the upper model and����  to check all values of ����, ℎ ∈ [2, ��], � ∈ �, � ∈
�; �� is the number of departure shifts in the period �. 

Step (4): Genetic algorithm is used to calculate the fitness of each chromosome. The 

fitness function is shown as formula (17): 

������� =  �
1

2
� � ���������  + �������  + ��������

�

� � �

��

� � ��∈��

× �(�)� (17)

Step (5): Genetic operator se�ing: single point crossing method is adopted for the 

chromosome of the population, and two pairs are matched randomly. Then, the number 

of populations is set by using fundamental mutation, and the mutation probability and 

crossing probability are selected. 

Step (6): Set the termination condition, such as 500 iterations. Judge whether it is sat-

isfied. If it is satisfied, output the optimal chromosome of fitness. If not, turn back to op-

eration (4) to calculate the fitness. 

Step (7): Judge whether i is equal to the total number of time periods. When it is sat-

isfied, select the output result, and end the operation. If not, let i = i + 1, and return to step 

(2) to continue solving. 

4. Case Analysis 

4.1. Case Introduction 

This paper takes Nanchang 207 bus line as an example to optimize bus vehicle con-

figuration. The Nanchang 207 bus line has a total length of 10 km and has 19 stops (Figure 

2). The fare of bus No. 207 is CNY 2. The time of the first and last bus at the starting and 

terminal station is 06:10–20:30, and the average departure interval is 10 min. There is peak 

passenger flow in the morning and evening, usually 7:00–8:00 a.m. and 5:30–6:30 p.m. Line 

210 is equipped with a 12 m air-conditioned bus with a body size of 1150 mm/2400 

mm/3130 mm. Bus line 207 covers Nanchang Railway Station and Xufang Passenger Sta-

tion. There are many schools around the line, such as Nanchang No. 14 Middle School, 

College of Engineering of Nanchang University, and the old campus of Nanchang Avia-

tion University. The 207 bus line is widely used by students. At the same time, a part of 

medical resources, such as the Second People’s Hospital and the Ninth Nanchang Hospi-

tal, are gathered around the line. Medical institutions will increase the demand for citizens 

to use public transport and a�ract more passengers and vehicles along the line; there are 

many large-scale public commercial facilities and cultural tourism sites around the line, 

such as Shengjin Tower, Tanzikou, Wangfujing Shopping Center, etc. These large-scale 

public gathering and distributing sites bring a certain degree of traffic pressure to the 

roads along the line. 

Due to the influence of the epidemic situation of COVID-19, the historical data of 

Nanchang Public Transport Group in 2019 are used for the bus operation data. Because of 

the large epidemic situation in the past three years, the passenger flow is not universally 

representative. During peak hours (7:00–8:00 a.m.), the number of IC card-trips is around 

1000, and there are 11–13 vehicle departures (Table 2). The survey is conducted by follow-

ing the bus during peak hours. The number of passengers ge�ing on and off the bus at 

each station is shown in Table 3. Nanchang Railway Station, as well as many schools and 

universities, gather around the bus line. At the same time, some of the best medical re-

sources in Jiangxi Province are distributed around the line. These institutions tend to at-
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tract a lot of passengers and traffic flows; in addition, there are many large public com-

mercial facilities and well-known squares and museums around the line; these facilities 

will bring many uncertain factors to the passenger flow demand along the bus line and at 

the same time increase the complexity of passenger flow types and further increase the 

difficulty of the bus line’s operation. Based on the uncertain passenger flow demand of 

stations along the route, this study constructs an uncertain bi-level programming model 

to find the optimal number of vehicles of the 207 bus line and the corresponding departure 

time. Due to the influence of the epidemic situation of COVID-19, the bus passenger flow 

has decreased sharply in the past three years. With the improvement of the global epi-

demic situation, the bus passenger flow will gradually recover to the level of 2019. There-

fore, this study uses the normal passenger flow data of 2019. 

 

Figure 2. The stops and route distribution of bus line 207 in Nanchang city, China. 

By fi�ing the chi-squared test to the number of passengers arriving at each bus stop 

for one week, it can be seen that the uncertain variables of passenger arrivals at the stops 

conform to a linear uncertainty distribution. The chi-squared test indicates the degree of 

deviation between the actual observation value of the statistical sample and the theoretical 

value of the model. The degree of deviation between the actual observation value and the 

theoretical inferred value determines the size of the chi-squared value. The larger the chi-

squared value, the more inconsistent it is. The smaller the deviation, the smaller the chi-

squared value and the more it tends to conform. If the magnitudes are completely equal, 

the chi-squared value is 0, indicating that the theoretical value is in full compliance with 

the observed value. Table 4 takes the number of weekly card swipes as an uncertain vari-

able to verify that the number of passengers as an uncertain variable obeys a linear uncer-

tain distribution (the parameter fi�ing value is taken 100, 1500a b   to satisfy the chi-

squared test). fi presents the actual observation value, Fi means the model theoretical value, 

and the sum of the values in the last column of Table 4 is the chi-squared value, which 

indicates the degree of deviation between the actual observation values and the model 

theoretical values. Since the number of sample groups 7g  , there are two parameters 

,a b in the linear uncertain distribution, the number of parameters 2l  , so the degree of 

freedom of the chi-squared statistic is 1 7 1 2 4DF g l        . In checking the chi-

squared distribution quantile table, we receive 
2
0.05 9.488 4.97    , so there is a 95% 

probability that the number of passengers obeys a linear uncertain distribution. The chi-
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squared test for the number of bus passengers at each station obeying a linear uncertain 

distribution is similar. 

Similarly, the running time of the bus line at peak hours (25–31 March 2019) follows 

a normal uncertain distribution (the parameter fi�ing value is taken 30, 10e    to sat-

isfy the chi-squared test). One shift has two operation times, which are the two-way oper-

ation times from the main station to the sub-station. Since the number of sample groups

10g  , there are two parameters ,e   in the linear uncertain distribution, the number of 

parameters 2l   , so the degree of freedom of the chi-squared statistic is

1 10 1 2 7DF g l       . In checking the chi-squared distribution quantile table, we 

receive 2
0.05 14.067 5.84  

, so there is a 95% probability that the running time of the bus 

line at peak hours (25–31 March 2019) obeys a normal uncertain distribution (Table 5). 

4.2. Model Solution and Analysis 

4.2.1. Initial Values 

The values of relevant parameters in the model are taken as follows: the length of 207 

bus line is 10 km, and the time is the morning peak (7:00~8:00 a.m.); the morning peak 

hour of 207 bus line was determined by consulting Nanchang Bus Group and according 

to historical operational data. Passenger arrival rates at each platform are independent of 

each other and obey the uncertain distribution with the parameters 100, 1500a b  ; the 

running time follows the uncertain normal distribution with the parameters 
30, 10e   ; the proportional coefficient of passenger travel cost and bus operation cost 

are � =  0.3, β =  0.7. The ticket price is CNY 2. The minimum departure interval is 5 

min, the maximum departure interval is 15 min, and the passenger waiting cost is 2.5 

(CNY/min). Bus operation cost is CNY 80 per shift, and vehicle allocation cost is CNY 100 

per vehicle. In the genetic algorithm, the number of populations is set as 50, the mutation 

probability is 0.005, and the crossover probability is 0.5. The number of terminated itera-

tions is 500. 

4.2.2. Model Solution  

Genetic algorithm is used to solve the lower-level programming model. We ensured 

that the target function value of the lower layer is the minimum, and the departure fre-

quency in the morning peak hour is 12. Table 6 and Figure 3 show the relationship between 

the departure frequencies and object function values. When the departure frequency is 12 

during peak hours, the operating cost is the lowest. The operating cost at this time is 9.7% 

and 5.4% lower than that at the departure frequency of 11 and 13, respectively. 

Table 6. The relationship between departure frequency and operation cost. 

Index Values 

Departure Frequency 6 7 8 9 10 11 12 13 

Operation cost, CNY 4546 3877 3375 2984 2671 2416 2203 2322 

Difference from the minimum value 2343 1674 1172 781 468 213 0 119 

Percentage of difference to minimum 106.4% 76.0% 53.2% 35.5% 21.2% 9.7% 0.0% 5.4% 

The lower-level model has solved the optimal departure frequency in morning peak 

hours, and the upper-level model determines the optimal uneven departure interval. Ac-

cording to Section 3.2 solution methods, it can be seen that the uneven bus departure in-

terval (minute) in peak hours is 6, 5, 5, 5, 4, 4, 5, 4, 4, 4, so the departure time is 7:06, 7:11, 

7:16, 7:21, 7:25, 7:29, 7:34, 7:38, 7:42, 7:46, 7:50, 7:54. The time range of non-uniform depar-

ture interval excluding peak time is 6 min. 
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Figure 3. Relationship between departure frequency and objective function value in lower-level 

function. 

4.2.3. Analysis of Model Results  

In order to analyze the optimization effect, this paper establishes public transport 

operation indicators. The quantitative comparative analysis of uneven departure interval 

and uniform departure is carried out. The greater the value is, the be�er the service. 

(1) Passenger information acquisition index [24] 

With the continuous updating and development of information processing technol-

ogy, public transport service information is mainly obtained through the information re-

lease system. The degree of passenger information acquisition is mainly divided into ex-

cellent, good, average, poor, and extremely poor. The relevant quantitative values are 

shown in Table 7. 

Table 7. Index of passenger related information acquisition. 

Index Degree of Passenger Information Acquisition 

Evaluation Criterion Excellent Good Average Poor Extremely Poor 

value 1 0.75 0.5 0.25 0 

(2) Passenger waiting time index [24] 

The passenger waiting time index is mainly related to the bus departure interval, and 

the calculation formula is as follows: 

B�  =  
Maximum departure interval waiting time − Total waiting time

Maximum departure interval waiting time
 =  

�� ×
����

2
− ������

�� ×
����

2

 (18)

where fi is the departure frequency in period i; ���� is the maximum departure interval; 

������ is the total waiting time of passengers in period i. The smaller the total waiting time 

is, the larger the value of index B1. 

(3) Time index of unsatisfied demand [24] 

��  =  
Maximum departure interval − Length of time not meeting travel demand in the period �

Maximum departure interval
 =  

���� − ���

����
  (19)

where ���� is the maximum departure interval; ��� is the length of time when there is 

no bus service in time period i, which refers to the time interval from the last departure 

time to the end of the time period. The smaller the length of time is in not meeting travel 

demand, the larger the value of index B2. 

For the uniform departure interval, the optimal peak hour departure frequency is 12 

times, and if the uniform departure interval is 4 min, a total of 12 min cannot be covered 

during the peak hours. The departure time is 7:04, 7:08, 7:12, 7:16, 7:20, 7:24, 7:28, 7:32, 
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7:36, 7:40, 7:44, and 7:48. The index value of passenger related information acquisition de-

gree is set as 0.2, passenger waiting time as 0.4, and time not meeting demand as 0.3. The 

index values of different schemes are calculated in Table 8. 

Table 8. Comparison of indicators before and after vehicle allocation optimization for the bus line. 

Index Non-Uniform Scheduling Uniform Scheduling Index Weight 

Passenger-related information acquisition 0.75 1 0.2 

Passenger waiting time, B1 0.8 0.8 0.4 

Unsatisfied demand time, B2 0.6 0.33 0.4 

Overall index value 0.71 0.65  

From the above indicators, it can be concluded that there are advantages in terms of 

uneven departure intervals in terms of overall index value and unsatisfied demand time 

B2, which has greatly improved the convenience of public transport operation, passenger 

satisfaction. Among them, the overall index value of non-uniform scheduling is 9.23% 

higher than that of uniform scheduling. However, uniform scheduling is more advanta-

geous for passenger information acquisition. The uniform departure time is fixed, which 

is conducive to passenger information acquisition. According to reference [24], the value 

of passenger related information acquisition under uniform scheduling takes 1, and it is 

0.75 for non-uniform scheduling. In this case, the waiting time of passengers is approxi-

mate under uniform and non-uniform scheduling. In the actual bus operation stage, bus 

departures should follow a flexible and close-to-demand departure scheduling, so that 

public transport operation and passenger satisfaction can reach the best level. 

5. Discussions and Conclusions 

This paper investigated the basic data of bus route 207 of Nanchang city, China, and 

optimized the departure frequency and departure interval of the bus route in the morning 

peak hour based on uncertainty theory and a bi-level programming model. The uncer-

tainty of passenger arrival and bus operation time was taken into account, combined with 

actual operation conditions. After determining the optimal departure frequency, the dif-

ferences between uniform and non-uniform scheduling are studied and analyzed. Nan-

chang 207 bus line was taken as an example to optimize the departure frequency and 

scheduling in the morning peak hour. The optimal departure frequency in the morning 

peak hour is 12 times. The overall index value of the route non-uniform scheduling during 

peak hours increased by 0.06 and 9.23% compared with uniform scheduling. The analysis 

results show that the effect of the non-uniform scheduling is obvious. 

Moreover, taking integers of model variables is conducive to the solution of the 

model and improves the practicability of the model. At the same time, the upper-level 

programming model can intuitively reflect the mutual influence and mutual restriction 

between the bus companies and passengers in the public transportation system. The prob-

lem of bus line departure frequency and scheduling has a positive effect on improving the 

efficiency of public transportation, reducing operating costs, and promoting the sustaina-

ble development of the public transportation system. This paper considers the uncertainty 

of the number of passengers at the bus station and the bus operation time and also con-

siders the cost and benefits of bus operators as well as bus passengers. The uncertainty bi-

level programming model for departure frequency of a bus line is more consistent with 

reality. Although the uncertain theory has been widely and successfully applied in the 

fields of transportation [16–24], the results of using the uncertainty theory to study the bus 

vehicle configuration problems are few. Therefore, this article provides a theoretical sup-

port for bus operators to optimize route operations. 

However, the model assumptions are relatively ideal, and some influencing factors 

are not reflected in the model and need to be further discussed in future research. Nan-

chang Public Transport Group only provided the number of card swipes but unfortu-

nately did not provide passenger a�ribute information. If relevant data can be obtained 
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in the future, in-depth analysis of the impact of passenger a�ributes and economic and 

social background on public transportation travel can be conducted. The social (in) equity 

and housing along the bus line are not considered in the research. The captive riders of 

public transport are often middle-to-low-income residents, with high-income residents 

(the choice riders) often choosing to drive to reach various destinations. Housing 

price/cost is often a good indicator for the income level of residents living there and the 

probability of residents’ transit utility. Moreover, the optimization of transit location 

should consider the very people living along the transit lines, which can be relatively ac-

curately reflected by housing costs/prices. In [29–31], housing and transit costs have been 

examined. Transit optimization is often a social equity issue that should be discussed in 

the future along with housing since they are often intertwined with each other in affecting 

(in) equity. The coupling factors of passenger travel demand and vehicle scheduling, the 

location, environment, platform capacity, passenger waiting time, and other a�ributes of 

the bus stop should also be fully considered. Zhichao Cao [32] considered the constraints 

of the vehicle with regard to capacity in shu�le bus service timetabling and vehicle sched-

uling. Man Li [33] considered the function of rail transit line capacity and load distribution 

strategy, the passenger flow congestion in a train delay scenario. When considering pas-

sengers choosing a bus, the model assumes that as long as the number of passengers in 

the bus does not reach the maximum capacity, then passengers could get on the bus, with-

out considering the impact of the crowded situations in vehicles on passenger choice, 

which also affects the reliability of model calculation results. This study only analyzes 

departure frequency and scheduling and considers the uncertain variables of the number 

of passengers at the bus stop as well as running time; the optimization problem under 

multiple uncertain factors, such as the number of passengers at the bus stop, bus line as-

signments, and driving timetables, which constitute the optimization problem of driving 

operation plans, needs further research. The size of the test population and the flow fre-

quency are not fully considered in the present manuscript; deeper work will be carried 

out in the future. In addition, the optimization of public transportation networks and re-

gional dispatching considering uncertain factors are also worthy of discussion. Addition-

ally, the situation especially in COVID-19 times, when the utilization of public transport 

is being re-defined to address the new safety standards, is not considered in the manu-

script, which can be discussed in further research. 

To summarize the research, this paper considers the uncertainty of the number of 

passengers at the bus stop and the bus operation time and also considers the cost and 

benefits of bus operators as well as bus passengers. An uncertain bi-level programming 

model was established with a view to providing theoretical support for bus departure 

time problems. The case study of bus route 207 of Nanchang city, China, shows the pro-

posed uncertain bi-level programming model is effective for addressing the departure fre-

quency problem of bus lines. As mentioned in the previous paragraph, this study has 

some limitations. Model assumptions and more influencing factors need to be further con-

sidered and improved. 
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