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Abstract: Primary Trans Chromosomal Tritipyrum (PTCT) amphiploid is a new cereal grown in
saline soil and brackish water for grain and forage production. We evaluated the tolerance to seed
deterioration in 13 promising PTCT lines, assessing accelerated aging (AA) tests by using AA boxes
with 100% relative humidity at 40 ◦C for 72 h. The (Ma/b)(Cr/b)F4 and (St/b)(Cr/b)F4) PTCT
lines, more sensitive to seed aging, were primed with NaCl, Salicylic Acid (SA), and Polyethylene
Glycol (PEG) to increase the seed vigor of artificially aged seeds. Germination and emergence
traits, biochemical parameters, and chromosomal abnormalities induced by artificial aging were
measured in deteriorated and not-deteriorated seeds. The highest reduction percentages related
to seed vigor were observed in (Ka/b)(Cr/b)F2 (34.52) and La(4B,4D)/b (28.15) lines, while the
lowest was found in (Ma/b)(Cr/b)F4 (7.65) and (St/b)(Cr/b)F4 (7.46) lines. Seed aging also increases
electrolytes, potassium, and protein leakages. Chromosomal abnormalities are caused by seed aging
that interferes with chromosome behaviors during cell division. Seed priming on aged seeds revealed
an increase in the germination percentage (GP) with PEG treatment, while the priming by SA showed
an increase in seedling traits, such as the seedling length (SL2). In conclusion, we highlighted the
potential use of different PTCT lines and the effective use of seed priming on deteriorated seed to
enhance seed viability and seedling vigor as a useful tool for sustainable agriculture.

Keywords: PTCT lines; seed deterioration; leakage; pre-sowing; chromosomal aberration

1. Introduction

The development and selection of new amphiploid lines of cereals are crucial to
identify the most performing ones in terms of crop production and survival in harsh
environmental conditions [1,2]. Nowadays, one of the main factors reducing plant pro-
ductivity is the poor seedling establishment in dry and semi-arid areas due to different
abiotic stresses, such as rare annual precipitation, high evaporation, water scarcity, and
soil salinity [3,4]. Primary Trans Chromosomal Tritipyrum (PTCT) lines, derived from the
natural hybridization of Triticum aestivum L. and Thinopyrum bessarabicum, are recombinant
chromosomal lines of hexaploid Tritipyrum, a new salt-tolerant species of cereal [5,6]. It was
demonstrated that Tritipyrum lines could tolerate a salt concentration of about 250 mmol
NaCl [7,8]. Thus, these novel amphiploid lines provide a new opportunity for producing
grain and forage in saline soils and brackish waters in arid and semi-arid areas.
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The first step toward reaching high production yields is the effective establishment of
a crop. Seed germination dynamics play a crucial role in this process [9]. The uniformity
of development, yield, and quality of the harvested products are all greatly influenced by
the quality of the seeds and how they are stored [10]. The seed’s nature and its physical,
morphological, and nutrient storage conditions are crucial to enable the proper seedling
establishment and the least amount of mechanical and biological losses [11,12]. Under-
standing the intricate factors affecting seed longevity is extremely important from an
ecological, agronomical, and economic perspective [13]. It is recognized that the aging rate
of the seeds is strongly influenced by environmental and genetic factors, such as storage
temperature, seed moisture content, and seed quality [14]. These factors could affect all
the seed properties that determine the successful plant establishment. Seed vigor is the
sum of the seed properties which determine the potential for high germination abilities,
rapid, uniform emergence, and development of normal seedlings under a wide range of
field conditions, as defined by the Association of Official Seed Analysts (AOSA) [15,16].

The uniformity of emergence and seedling establishment, with consequently farmers’
income, could be reduced by seed deterioration. Almost every year, 25% of the harvested
seeds lose their quality due to deterioration [17]. Seed deterioration may occur as a natural
phenomenon, starting with a chain of biochemical events, such as membrane damage
and disruption of biochemical processes [18]. Thereby, most of the vital properties of
seeds are diminished, starting with a decline in germination and emergence [19], leading
to poor seedling establishment [20]. During seed deterioration, chromosomal aberration
and permanent chemical and structural changes occur at the cellular level that leads to a
decreased viability of seeds [21].

In natural conditions, seed deterioration induces decreased germination percentages,
poor seedling production, lowered vigor, declined viability, and seed death [22]. Further-
more, deteriorated seeds have a more non-uniform establishment than healthy seeds [23].
These issues lead to low seedling emergence, and few plants per hectare occur in the form
of spots in the field [23]. The viability of damaged seeds can be influenced by a decrease
in total carbohydrates and an increase in lipid peroxidation during storage [24]. Seed
quality and viability decrease are further triggered by adverse environmental conditions,
leading to a decay rate variation among varieties of the same species [10,25,26]. Under high
salt concentrations, for example, seed decay induces chromosome abnormalities during
cell division (e.g., chromosome stickiness, laggard chromosome, disturbed and irregular
anaphase, and anaphase bridge formation) [27,28]. Katabale and colleagues [29] observed
high rates of chromosomal abnormalities after exposing onion (Allium cepa L.) seedlings to
aqueous extracts of neem (Azadirachta indica) leaf. Another study by Pavlova [30] evaluated
nickel’s toxic effects on root-meristem cell division in the seedlings of Plantago lanceolata L.,
observing anaphase bridges, chromosome adhesion, retardation, and extrusion of nuclear
material into the cytoplasm of these cells. The percentage of chromosome alterations
usually increases in a concentration and time-dependent manner.

Seed storability is one of the key factors that assure plant propagation and crop pro-
duction [31]. This important characteristic has not been described for PTCT lines developed
in our previous work [11]. Currently, conventional methods to evaluate seed storability
include seed vigor accelerated aging (AA), followed by germination and seedling growth
tests [31,32]. Additionally, after AA, deterioration tests and electrical conductivity (EC),
pH level, and cellular leakage of solutes during seeds’ water uptake can be measured [33].
Biochemical processes augment cell membrane permeability in seeds during storage. As
a result, some cellular solutes (sugars, amino acids, fatty acids, proteins, enzymes, and
inorganic ions like K+, Ca+2, Mg+2, Na+, and Mn+2) are released to the external environment
during water uptake for germination [31]. The amount of solute leakage can be used as
an indicator for screening the storability of cultivars [34]. The frequencies of chromoso-
mal abnormalities arising from chromosomal fusions formed through errors in re-joining
DNA double-strand breaks (DSBs) by the cell’s recombination pathways can occur in AA
tests [35].
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One of the strategies used to improve plant growth in semi-arid and salinity-affected
environments is the priming of seeds. Many works highlighted the use of seed priming to
increase germination rate and crop development uniformity for overcoming poor germi-
nation and erratic crop stand [36]. This treatment is provided before planting, in the early
germination stage, when water is absorbed but prevents roots from coming out. In this
process, seeds are soaked in water or various osmotic solutions and then dried until the
initial moisture is achieved [37]. Some biochemical processes are required during priming
to initiate germination (e.g., water absorption, hydrolysis or metabolism of inhibitory
materials, and enzymatic activities) [38]. The induced effects remain even after redrying
the seeds. Materials of high molecular weights are usually used for priming. Polyethylene
glycol (PEG6000-8000) is the most used for seed priming. PEG is a non-toxic substance with
a high molecular weight, osmotic pressure, and water solubility, which does not penetrate
plant tissues while serving as a suitable compound for inducing drought stress [39,40]. Sali-
cylic Acid (SA) is a phenolic growth-regulating compound that is present in low quantities
(mg of fresh weight or less) in growing plants and applied for seed priming [41]. It was
demonstrated that rice seed priming by SA increases seed vitality [42]. Salts are frequently
utilized for seed priming [43,44]. Pretreatment with mineral salts (halo-priming) is an easy,
low-cost, and low-risk technique effective in seed priming for plantations under salinity
stress conditions [45]. Priming is a simple, low-cost, low-risk approach to increase the vigor
of deteriorated seeds.

The storage-tolerant lines development is one of the key characteristics of the ongoing
plant breeding program. However, this method of introducing current lines has been little
investigated. In this work, we hypothesized that 13 germplasms of Tritipyrum could be
valid tolerant storage lines.

To test this hypothesis, we analyzed 13 germplasms of Tritipyrum to determine seed
vigor by assessing germination and emergence traits, cell leakage, and cytogenetic ab-
normalities. Three different seed priming treatments were performed on the artificially
aged seeds, and germination and emergence traits were measured to evaluate the potential
increase in germination vitality of aged seeds.

2. Materials and Methods
2.1. Plant Materials

In this study, 13 PTCT (Primary Trans Chromosomal Tritipyrum) lines (Tritipyrum,
2n = 6x = 42, AABBEbEb) were provided by the Department of Crop Production and
Plant Genetics, School of Agriculture, Shiraz, Iran and transferred to the laboratory to
evaluate their viabilities. The Tritipyrum lines used were La/b (1), (Ka/b)(Cr/b)F5 (2),
(Ka/b)(Cr/b)F2 (3), La(4B,4D)/b (4), Ka/b (5), St/b (6), (Ma/b)(Cr/b)F3 (7), (Ma/b)(Cr/b)F4
(8), (St/b)(Cr/b)F4 (9), Cr/b (10), Az/b (11), (Ka/b)(Cr/b)F3 (12), (Ka/b)(Cr/b)F6 (13), and
kavir (14) as a control. Then, the homogeneous and uniform seeds were selected and stored
in plastic bags with minimum permeability at 5 ◦C.

2.2. Accelerated Aging (AA) Analysis

The experiments were carried out in a completely randomized factorial design with
three replications at the laboratory and greenhouse of the College of Agriculture, Shiraz
University, Shiraz, Iran.

Seeds were placed in mesh bags on a sieve suspended above water inside a plastic
Accelerated Aging (AA) box [28]. The box was kept in the incubator with 100% relative
humidity at 40 ◦C for 72 h [46]. After this aging period, four replicates of 25 seeds for each
treatment were analyzed for seed germination and emergence as described. The mean
average seedling percentage for each batch was calculated ten days after sowing based on
an evaluation of seedling development. Seed moisture content (oven-drying method at
105 ◦C/24 h) was also measured before and after the aging period to assess the accuracy of
the AA results. For cytogenetic studies, the seeds were subjected to AA stress adjusted in a
desiccator with 100% humidity in Petri dishes above wire meshes, sealed, and maintained
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at 5 ◦C (T1), 40 ◦C (T2), 50 ◦C (T3), 60 ◦C (T4), and 70 ◦C (T5) for 24 h. In the control
treatments (T1), the seeds were kept in a cold chamber at 5 ◦C. After applying each heat
treatment, a cytogenetic analysis of artificially aged seeds was performed.

2.2.1. Germination Test

Three replicates of 25 seeds were analyzed in 90-mm glass Petri dishes on 1-layered
filter paper (No. 1) at 25 ◦C. Each plate received 10 mL of deionized water, enough to cover
each seed by roughly half its content [47].

2.2.2. Emergence Test

The emergence test was conducted in a greenhouse with four replicates of 25 seeds.
Each germplasm was hand-sowed on trays of sand at a depth of 20 mm in 1-m-long furrows
in 60-mm-spaced rows. The emerged seedlings were counted daily. Evaluation of seedling
development was performed ten days after starting the tests. Emergence tests were carried
out at the deterioration levels of deteriorated seeds and not-aged seeds of the different
Tritipyrum lines for ten days. Tritipyrum lines, a new salt-tolerant cereal, are derived from
the natural hybridization of Triticum aestivum L. and Thinopyrum bessarabicum [5,6].

2.3. Plant Traits
2.3.1. Germination Percentage (GP)

Germination Percentage (GP) was calculated through the following formula:

GP =
N
n
∗ 100

where N is the number of germinated seeds, and n is the number of experimental seeds.

2.3.2. Germination Rate (GR)

Germination count was performed daily at the same time, and Germination Rate (GR)
was calculated by using the following equations [48]:

GR = 1/MGT

MGT = ∑(ni ∗ di)/N

where ni shows the number of seeds germinated per day, di represents the incubation
period, and N denotes the total number of seeds germinated in each treatment.

2.3.3. Shoot Length (SL) and Root Length (RL)

Shoot Length (SL) and Root Length (RL) was measured with a ruler with 1-mm accu-
racy, and then, their average lengths were recorded for each treatment in each repetition [46].

2.3.4. Seedling Length Vigor Index (SLVI)

Seedling Length Vigor Index (SLVI) was calculated via the following equation [49]:

SLVI =
(RL + SL) ∗ GP

100

where RL, SL, and GP stand for root length (cm), shoot length (cm), and germination
percentage, respectively. Length measurements were performed by considering the total
seedling in each treatment and replication.

2.3.5. Shoot Dry Weight (SDW) and Root Dry Weight (RDW)

Shoot and root were separated to measure their dry weights. They were heated in
an air-heated oven at 105 ◦C for 30 min, dried in the oven at 70 ◦C for 24 h, and then
determined their dry weights with an accuracy of 0.0001 g.
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2.3.6. Tolerance Index (TI)

We also calculated the Tolerance Index (TI) through the following equation [50]:

TI =
Mean traits a f ter AA

Mean traits be f ore AA
∗ 100

2.3.7. Reduction Percentage (RP)

Reduction Percentage (RP) was calculated for GP, GR, GE, SDW, RDW, SVI, EP, and
ER by applying the following formula:

RP =

(
1 − Nx

Mc

)
∗ 100 (1)

where Nx and Mc are the amounts of germination and emergence traits after and before
seed aging (aged and not-aged seeds) since the measurement units of germination traits
were different, the declining changes in each trait were first calculated and converted into
percentages after applying artificial seed aging. Then, their means were determined for
each cultivar.

2.4. Biochemical Parameters
2.4.1. Electrical Conductivity (EC)

Electrolyte leakage was measured based on the leakage of solutes from the cell mem-
branes of all the seeds in deionized distilled water. Fifty undamaged seed samples per lot
were weighed on an analytical balance (0.01 g) and soaked in 25 mL of distilled water at
25 ± 1 ◦C for 24 h [51]. Then, the Electrical Conductivities (ECs) of the leachates were mea-
sured with a conductivity meter (K220 Consort, DDS-11A model, Nanjing T-bota Scietech
Instruments & Equipment Co., Ltd. (TBT), Nanjing, China).

2.4.2. Potassium Leakage

Fifty undamaged seed samples per lot were weighed on an analytical balance (0.01 g)
in 4 replicates and then soaked in 75 mL of distilled water at 25 ± 1 ◦C. Then, they
were placed in disposable plastic cups and kept in a germinator at 25 ◦C. After 48 h
(imbibition period), leached potassium was determined with a flame photometer adjusted
to 50 g K+ mL−1 and reading 50 [52]. The results were expressed in g K+ g−1 seeds.

2.5. Cytogenetic Analysis

Cytogenetic analysis was carried out through the root-tip smear method [53,54]. Root
cell chromosomes of plants are suitably utilized for research purposes like studying chro-
mosomal abnormalities due to their ease of access, large size, small number in each batch,
and detectable characteristics [55]. Twenty-five seeds with three replicates in each treat-
ment were used in the germination test. Seed germination rates varied due to the different
temperatures applied in each treatment. Once the radicles were 1–2 cm long, the root
tips containing meristem tissues were collected after keeping them in Lewitsky’s fixative
solution for 16 h. Then, the samples were hydrolyzed (1N HCl was maintained at 60 ◦C for
10 min), washed in distilled water, and stained with 2% acetic orcein using the squashing
method [56]. The slides were observed through a light microscope (Zeiss, Axiolab 5, Jena,
Germany), and the best chromosomal plates were captured at 100× magnification using
an Axiocam 208 color camera (Zeiss, Jena, Germany). Five hundred cells per treatment
(100 cells with five replicates) were counted and analyzed. Mitotic Index (MI) was cal-
culated by dividing the total number of cells under division by the total number of cells
analyzed multiplied by 100.

2.6. Seed Priming

The seeds of PTCT lines, including (Ka/b)(Cr/b)F2 and La(4B/4D)/b that resulted
in the more sensitive to seed aging, were primed at four levels of priming treatments,
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including control, NaCl (350 mM), SA (1100 ppm), and osmo-priming with PEG6000
(−1.2 Mpa) for 9 h [57]. Then, the germination test was performed as described in the
previous section.

2.7. Statistical Analysis

The data were tested for normality via the Kolmogorov–Smirnov normality test [58].
They were then analyzed using SAS software (version 9.3), and the graphs were plotted in
Excel. To show the effect of aging on the slope of germination percentage and emergence
percentage, the regression test was performed by Excel 2010 software. The means were
compared by Duncan’s multiple range test (DMRT) in the case where the F-test of the
two-way ANOVA was at least at the p < 0.05 and p < 0.01 level of confidence.

3. Results
3.1. Accelerated Aging (AA) Effects on Germination and Emergence Traits

Seed vigor was affected by the accelerated aging test (Table 1). The seed accelerated
aging reduced the germination percentage (GP), seedling traits emergence percentage, and
emergence rate. The percentage of reduction of seedling traits and the percentage and speed
of emergence to seed aging did not follow the same trend. So that the highest percentage
reduction (PR) of germination percentage (36.9), germination rate (31.75 seed/day), and
the lowest percentage reduction (PR) of germination percentage (2), germination rate
(5.40 seed/day) were observed in line 3 and line 9, respectively. The highest percentage
reduction (PR) of the shoot length (33.06) and the lowest percentage reduction (PR) of it
(0.18) were observed in line 1 and line 6, respectively. The highest percentage reduction (PR)
of root length (65.22) and the lowest percentage reduction (PR) of it (6.46) were observed
in line 3 and line 8, respectively. The highest percentage reduction (PR) of the seedling
vigor index (41.69) and the lowest percentage reduction (PR) of it (1.48) were observed in
line 3 and line 10, respectively. The highest percentage reduction (PR) of the root shoot
ratio (8.36) and the lowest percentage reduction (PR) of it (0.42) was observed in line 2 and
line 5, respectively. The highest percentage reduction (PR) of the root dry weight (55.42)
and the lowest percentage reduction (PR) of it (2.83) were observed in line 3 and line 10,
respectively. The highest percentage reduction (PR) of the shoot dry weight (44.66) and the
lowest percentage reduction (PR) of it (2) were observed in line 3 and line 11, respectively.
The highest percentage reduction (PR) of the emergence percentage (19.46) and the lowest
percentage reduction (PR) of it (3.73) were observed in line 3 and line 12, respectively.
The highest percentage reduction (PR) of the emergence rate (27.27 seed/day) and the
lowest percentage reduction (PR) of it (20 seed/day) were observed in line 2 and line 12,
respectively (Table 1).

We can use the average reduction percentage for the final evaluation of cultivars
regarding the effect of aging on germination percentage, germination rate, seedling traits,
emergence percentage, and emergence rate. The highest and lowest mean reductions
percentage of germination percentage (GP), the germination rate (GR), the shoot length
(SL), the root length (RL), the seedling vigor index (SVI), the root shoot ratio (R/S), the root
dry weight (RDW), the shoot dry weight (SDW), the emergence percentage (EP) and the
emergence rate (ER) occurred in (Ka/b)(Cr/b)F2, La (4B,4D)/b lines and (Ma/b)(Cr/b)F4,
(St/b)(Cr/b)F4 lines, respectively (Figure 1). So (Ma/b)(Cr/b)F4, (St/b)(Cr/b)F4, and
(Ka/b)(Cr/b)F2, La(4B,4D)/b lines were introduced as the tolerant and sensitive lines to
seed deterioration, respectively.
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Table 1. Effect of seed accelerated aging on germination and emergence traits of PTCT (Primary Trans Chromosomal Tritipyrum) lines.

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GP NA 100 a 98 a 97.33 a 89.33 a 94.67 a 100 a 98.67 a 100 a 100 a 100 a 100 a 97.33 a 97.33 a 97 a
A 80 b 93 b 61.33 b 70.67 b 86.67 b 81.33 b 92 b 95.33 b 98 b 98.67 b 92 b 84 b 93.33 b 96 b

PR (%) 20 5.10 36.9 20.88 8.45 18.67 6.76 4.67 2 1.33 8 13.69 4.10 1.03

GR NA 0.24 a 0.39 a 0.38 a 0.35 a 0.35 a 0.41 a 0.43 a 0.38 a 0.37 a 0.36 a 0.43 a 0.39 a 0.33 a 0.42 a
A 0.2 b 0.3 b 0.26 b 0.3 b 0.311 b 0.27 b 0.3 b 0.33 ab 0.35 ab 0.25 b 0.24 b 0.29 b 0.3 b 0.38 b

PR (%) 16.66 23.07 31.57 14.28 11.14 34.14 30.23 13.15 5.40 30.55 44.18 25.64 9.09 9.52

SL NA 9.98 a 10.80 a 7.12 a 9.29 a 9.41 a 9.96 a 11.08 a 11.5 a 11.8 a 10.18 a 10.23 a 9.77 a 10.37 a 11.98 a
A 6.68 b 9.86 b 6.62 b 7.47 b 9.3 ab 9.95 ab 8.1 b 11.4 a 10.35 ab 9.36 b 10.03 a 9.55 a 6.72 b 10.1 b

PR (%) 33.06 99.08 7.02 19.59 1.16 0.18 26.89 0.86 12.28 8.05 1.95 2.25 35.19 15.69

RL NA 10.81 a 13.17 a 9.72 a 7.77 a 9.06 a 9.92 a 8.49 a 14.07 a 15.13 a 12 a 9.07 a 11.32 a 9.84 a 14.45 a
A 9.86 b 8.45 b 3.38 b 5.67 b 8.41 b 8.22 b 7.77 b 13.16 ab 13.87 b 7.91 b 8.4 b 9.1 b 7.41 b 13.25 b

PR (%) 8.788 35.83 65.22 27.02 7.17 17.13 8.48 6.46 8.32 34.08 7.38 19.61 24.69 8.30

SVI NA 797 a 1045 a 694.6 a 719.5 a 889.4 a 940.6 a 1091.7 a 1017 a 1186.6 a 936.66 a 959 a 923.81 a 971.21 a 1394 a
A 766 a 834 b 405 b 589 b 816.8 a 822.45 b 898.9 b 956 ab 1035 ab 922.80 b 846 b 836.82 b 658.26 b 1234 b

PR (%) 3.76 b 20.19 41.69 18.13 8.16 12.56 17.65 15.83 12.78 1.48 11.78 9.41 32.22 11.47

R/S NA 1.22 a 1.22 a 1.05 a 0.70 a 0.95 a 1.02 a 0.98 a 1.24 a 1.34 a 1.29 a 0.98 a 1.35 a 1.87 a 1.21 a
A 0.89 b 0.2 b 0.45 b 0.62 a 0.91 a 0.79 b 0.74 ab 1.16 a 1.28 a 0.76 ab 0.88 ab 0.92 b 0.95 b 1.10 ab

PR (%) 2.70 8.36 5.71 1.14 0.42 2.25 2.44 0.64 0.44 4.10 1.02 3.18 4.91 0.90

RDW NA 0.08 a 0.14 a 0.08 a 0.08 a 0.09 a 0.1 a 0.1 a 0.06 a 0.11 a 0.14 a 0.12 a 0.09 a 0.11 a 0.14 a
A 0.06 b 0.10 ab 0.04 b 0.06 bc 0.06 ab 0.08 ab 0.07 ab 0.06 a 0.10 a 0.14 a 0.11 a 0.08 a 0.10 ab 0.13 a

PR (%) 25 27.97 55.42 25.97 31.03 14.43 27.83 3.38 5.50 2.83 6.77 8.04 8.84 7.14

SDW NA 0.11 a 0.17 a 0.103 a 0.93 a 0.1 a 0.13 a 0.15 a 0.08 a 0.16 a 0.18 a 0.15 a 0.123 a 0.15 a 0.13 a
A 0.1 ab 0.15 ab 0.06 b 0.08 b 0.08 b 0.12 a 0.10 ab 0.08 a 0.15 b 0.17 ab 0.14 ab 0.11 b 0.14 b 0.13 a

PR (%) 11.81 10 44.66 91.39 20.61 5.51 31.33 8.045 4.37 5.55 2 13.00 4.66 3.70

EP NA 91.33 a 83.66 a 87.33 a 79.33 a 85 a 90.66 a 89.66 92.33 a 93 a 91 a 90.33 a 80.33 a 87.33 a 89 a
A 80 b 73.66 b 70.33 c 66 b 74.66 b 80 b 78.66 b 89 a 89.6 a 80 b 80 b 77.33 b 77.3 b 79.6 b

PR(%) 12.40 11.95 19.46 16.80 12.16 11.76 12.27 6.85 6.88 12.08 11.43 3.73 11.48 10.49

ER NA 0.18 a 0.22 a 0.16 a 0.18 a 0.22 a 0.19 a 0.19 a 0.24 a 0.24 a 0.2 a 0.2 a 0.20 a 0.22 a 0.24 a
A 0.14 b 0.16 b 0.1 b 0.12 b 0.16 b 0.14 bb 0.14 bb 0.2◦ 0.2 a 0.15 b 0.15 b 0.16 b 0.17 b 0.18 b

PR (%) 22.22 27.27 37.5 33.33 27.27 26.31 26.31 16.66 16.66 25 25 20 22.72 25
Mean of PR (%) 15.64 26.88 34.52 28.15 12.76 14.29 19.02 7.65 7.46 12.50 11.95 11.85 15.79 9.32

Means that sharing the same letter does not differ significantly at p ≤ 0.05 between the lines. The traits represent the germination percentage (GP), the germination rate (GR), the shoot
length (SL), the root length (RL), the seedling vigor index (SVI), the root shoot ratio (R/S), the root dry weight (RDW), the shoot dry weight (SDW), the emergence percentage (EP), the
emergence rate (ER), the percentage reduction (PR), aged seeds (A) and not-aged seeds (NA).
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Figure 1. Reduction Percentage (RP) of the germination and emergence traits after seed aging of
PTCT (Primary Trans Chromosomal Tritipyrum) lines. Results followed by the same case letter are
not significantly different (p > 0.05).

The trends of average germination and emergence percentage were affected by seed
aging of Tritipyrum lines.

Seed aging reduced germination and emergence rate (slope of germination curve
over time) (Figure 2). The germination process in control seeds (not aged) and aged seeds
follows the logarithmic model with 93% accuracy, and seed aging has not reduced the
prediction accuracy. However, the prediction accuracy of emergence, a situation similar to
a farm, has decreased by 90%.
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Figure 2. The effect of seed aging on the average trend germination and emergence percentage of
PTCT (Primary Trans Chromosomal Tritipyrum) lines. Data represented germination and emergence
from three and four replication, respectively. Control: germination percentage of non-aged seeds;
AG%: germination percentage of aged seed in the laboratory; AE%: emergence percentage of aged
seed in the greenhouse.

Seed aging reduced the percentage of final germination (83.5) and the percentage of
final emergence (49.28) compared to the control (94.4). Additionally, seed aging decreased
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the germination slope from 44.33 (control) to 42.2 and reduced the emergence percentage
to 25 in the aged seeds.

Seed aging delayed reaching maximum germination and reaching maximum emer-
gence by one and two days, respectively. Thus, the maximum germination in the control
seed occurred on the sixth day, but in the aged seeds, it occurred on the seventh day, and
the maximum emergence occurred on the ninth day (Table 2).

Table 2. Comparison trend of germination and germination percentage of aged seeds with control of
PTCT (Primary Trans Chromosomal Tritipyrum) lines.

Day 1 2 3 4 5 6 7 8 9 DM Slope

Control 20.2 42.4 71 82 90 94.4 94.4 94.4 94.4 6 44.33
AG% 10.8 20.3 42 59.8 74.2 80.2 83.5 83.5 83.5 7 42.2
AE% 3.57 7.85 13.92 27.5 34.64 41.42 47 48 49.28 9 25

Tolerance Index (TI) to aging was evaluated to introduce aging-tolerant cultivars.
The PTCT (Primary Trans Chromosomal Tritipyrum) lines showed different responses
to aging tolerance. The lowest and highest TI manifested in the germination percent-
age (GP), the germination rate (GR), the shoot length (SL), the root length (RL), the
seedling vigor index (R/S), the root shoot ratio (RSW), the root dry weight (RDW),
the shoot dry weight (SDW), the emergence percentage (EP) and the emergence rate
(ER) occurred in (Ka/b)(Cr/b)F2 (56.3), La(4B,4D)/b (67) lines and (Ma/b)(Cr/b)F4 (99),
(St/b)(Cr/b)F4 (98) lines, respectively (Figure 3). Finally, (Ma/b)(Cr/b)F4, (St/b)(Cr/b)F4,
and (Ka/b)(Cr/b)F2, La(4B,4D)/b was introduced as the tolerant and sensitive lines to
seed deterioration, respectively.
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Figure 3. Tolerance index (TI) of germination and emergence traits after seed accelerated aging of
PTCT (Primary Trans Chromosomal Tritipyrum) lines. Results followed by the same case letter are
not significantly different (p > 0.05).

3.2. Biochemical Parameters and Membrane Permeability

The effect of aging on membrane permeability was estimated based on the elec-
trolyte, protein, and potassium leakages. The EC values recorded for the seeds of PTCT
lines were different. The ECs were enhanced by seed aging, so their measurements of
the leachates from the aged seed were significantly more than the non-aged seed. The
highest and lowest ECs were recorded in (Ka/b)(Cr/b)F2 (132.33 µS cm−1 g−1) and
La(4B,4D)/b (145.44 µS cm−1 g−1) lines and (Ma/b)(Cr/b)F4 (58.66) and (St/b)(Cr/b)F4
(59.33) lines, respectively. In this study, protein and potassium leakage values differed after
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the seed lines’ aging treatments. The seed protein and potassium leakages were affected
by its aging. The values of protein and potassium leakages from the aged seeds were
significantly higher than those of the control treatments (not aged) (Table 3).

Table 3. Effect of seed accelerated aging effect on electrical conductivity and the protein and potassium
leakage values of PTCT (Primary Trans Chromosomal Tritipyrum) lines.

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14

EC
NA 19.85 27 30.69 43.11 11.74 27.51 30.66 19.33 19.60 36.71 27 18.03 10 17
A 109.70 97 132.33 145.44 101.19 118.69 69.23 58.66 59.33 125.60 96.04 105.38 105 74

KL
(%)

NA 1398 1354 1539 1553 1482 1536 1298 1003 1038 1529 1366 1422 1297 1005
A 2598 2553 2900 2942 2782 2700 2300 1603 1703 2728 2562 2622 2554 1953

PL
(%)

NA 60 64 64 59 63 61 67 561 49 19 65 62 56 67
A 80 86 96 95 87 76 82 68 61 63 86 82 80 79

3.3. Cytogenetic Analysis

The mitotic results followed by observing the root-tip cells demonstrated mitotic
depression, various types of chromosomal abnormalities, and changes in the Mitotic Index
(MI) using different artificial aging treatments to the seeds. Since the cytological qualities of
the seeds were negatively influenced by Accelerated-Aging (AA) stress through increasing
temperatures, using artificial aging stress was an efficient method to study the alterations
caused by the seed deterioration process. Different temperatures induced various mitotic
abnormalities, including chromosome bridge (a, b, c, d), chromosome fragment (e, f),
chromosome stickiness (g, h), disorganized cell (i), laggard chromosome (j), chromosome
break (k, l, m), unequal anaphase (n, o), and disturbed metaphase (p) in the root-tip
cells (Figure 4, Tables 4 and 5). The highest and lowest percentages of chromosomal
abnormalities were evidenced in the seeds treated at 70 ◦C and the control treatments. In
this study, MI was an efficient index for detecting the seed deterioration process, which
ranged from 2.40 to 12.00%, with a sharp decrease in rate throughout the treatments due
to applying higher stress temperatures (Table 4). The highest depression in cell division
was witnessed in the seed’s root tips of the seeds, which were stored at 70 ◦C with an MI
value of not more than 2.4% compared with 12% in the control treatments. In general, the
rate of mitotic division is precisely related to ATP levels. Therefore, cell division can be
an energy-dependent process. Chromosome movement mainly depends on the energy-
generating system. It can be assumed that any toxic materials in the aged seeds may disturb
their respiratory pathways, producing low-energy and other essential ATP compounds
like sugars and protein molecules. PTCT lines also showed a susceptible attitude toward
long-term storage in the gene bank and maintained germination and vigor for a longer
period. This aspect is in line with the chromosomal abnormalities induced by AA.

Table 4. Different mitotic phases of root cells under five increasing aging treatments.

Treatment * TA
CD

CI
CP CM CA CT MI (%)

RE IR RE IR RE IR RE IR RE IR

T1 500 59 1 440 14 - 17 - 16 1 12 - 12.00
T2 500 38 3 459 15 - 16 - 1 3 6 0 8.20
T3 500 30 9 461 12 1 12 5 1 3 5 - 7.80
T4 500 16 9 475 15 - - 3 1 3 - 3 5.00
T5 500 6 6 488 5 1 - 1 - 2 1 2 2.40

* T1: control; T2: 24 h at 40 ◦C; T3: 24 h at 50 ◦C; T4: 24 h at 60 ◦C; T5: 24 h at 70 ◦C. Regular Cells (RE); Irregular
Cells (IR); Total number of cells analyzed (TA); the number of cells under different phases of mitotic division (MD)
at cell interphase (CI), cell prophase (CP), cell metaphase (CM), cell anaphase (CA), cell telophase (CT) and the
mitotic index (MI) in seeds submitted to five different aging treatments.
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Table 5. Types of cell division abnormalities mitotic phases of root cells under five increasing
aging treatments.

Treatment * CD CB B DC TIC Irregular Cells (%)

T1 60 1 - - 1 1.66
T2 41 2 - 1 3 7.31
T3 39 1 - 8 9 23.07
T4 25 1 7 1 9 36.00
T5 12 1 5 - 6 50.00

* T1: control; T2: 24 h at 40 ◦C; T3: 24 h at 50 ◦C; T4: 24 h at 60 ◦C; T5: 24 h at 70 ◦C; Total Number of cells
under mitotic division (CD); number and types of cell division abnormalities: Chromosome Breaks (CB); Bridge
(B); Disorganized Cells (DC) and Total number of Irregular Cells (TIC) in seeds submitted to five different
aging treatments.
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Figure 4. Different abnormalities in mitosis and chromosomes on aged seeds; Chromosome Bridge
(a–d); Chromosome Fragment (e,f); Chromosome Stickiness (g,h); Disorganized cell (i); Laggard
Chromosomes (j); Chromosome Break (k–m); Unequal anaphase (n,o); Disturbed Metaphase (p).

3.4. Seed Priming

GP, GR, and seedling traits of the aged seeds of PTCT (Primary Trans Chromoso-
mal Tritipyrum) lines were improved by pretreatments. GP and GR were significantly
augmented by priming. Their highest values were observed in the seeds primed with
PEG6000 and NaCl, respectively. Treatment with polyethylene glycol ameliorated GP
up to 69/58 compared to the control treatments (unprimed seeds). Seed priming of the
deteriorated seeds significantly impacted the SVI and GE values of the seedlings. The
highest SVI and GE values were observed in the deteriorated seeds primed with PEG6000.
Therefore, treatment with PEG6000 enhanced SVI and GE in the seedlings up to 13/15 and
2/23, respectively, compared to the control treatments. Root Dry Weight (RDW) and Shoot
Dry Weight (SDW) were also significantly augmented by priming (Table 6).
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Table 6. Effect of different seed priming treatments on PTCT lines for germination percentage,
germination rate, and seedling traits of aged seeds.

Germination Traits
Control NaCl Salicylic Acid Polyethylene Glycol

GP 40 b 57.92 ab 65.00 ab 69.58 a
GR 0.30 b 0.39 a 0.37 a 0.37 a
SL1 7.69 b 11.11 a 12.25 a 11.84 a
GE 1.19 b 1.65 ab 2.00 a 2.23 a
RL 4.04 b 6.47 a 6.89 a 6.97 a
SL2 11.73 b 17.49 a 19.14 a 18.81 a
SVI 4.72 b 10.50 ab 12.36 ab 13.15 a
RDW 0.03 b 0.07 a 0.08 a 0.07 a
SDW1 0.04 b 0.08 a 0.10 a 0.10 a
SDW2 0.07 b 0.15 a 0.17 a 0.16 a

Means with the same letter are not significant at p ≤ 0.01. The traits represent the germination percentage (GP),
the germination rate (GR), the shoot length (SL1), the germination energy (GE), the root length (RL), the seedling
length (SL2), the seedling vigor index (SVI), the root dry weight (RDW), the shoot dry weight (SDW1), the dry
seedling weight (SDW2).

4. Discussion

The reduction percentage and the Tolerance Index of germination and emergence traits
of the aged seed showed that (Ma/b)(Cr/b)F4, (St/b)(Cr/b)F4 PTCT lines are the most
tolerant lines to seed deterioration. Instead, the more sensitive lines were (Ka/b)(Cr/b)F2
and La(4B,4D)/b. The results obtained from seed aging about (St/b)(Cr/b)F3 line is promis-
ing, also considering its potential in salinity tolerance, as demonstrated by Pirsalami et al.
(2021) [59]. Furthermore, seed aging decreased cell membrane stability and increased the
electrolyte, protein, and potassium leakages. This physiological parameter was inversely
related to seed quality [60]. Differences in the EC values indicated that the membrane’s
nature and extent of protection were not the same in the studied seed lines. Seed deterio-
ration is associated with increased permeability of the seed membrane, leading to higher
electrolyte leakage during imbibition [61]. During storage, the seeds gradually get old
and lose their strength through coagulation and the breakdown of proteins [62]. The more
sensitive the storage condition, the faster the process develops as the temperature of the
seed mass increases [63]. We noticed that artificial aging causes cytological damage in
seeds and chromosomal abnormalities. It is known that chromosomal aberrations increase
during seed aging [64]. We observed that, at mitosis, the enhancing seed age led to the
percentage reduction of the dividing cells. With increasing temperature, the number of
cells under division decreases while chromosomal abnormalities and injuries increase,
leading, for example, to the formation of anaphase and telophase bridges [65–67]. The
chromosomal bridge may be caused by chromosomal adhesion and the subsequent inability
of chromosomes to initiate a normal anaphase separation. It may be attributed to unequal
transmission or the origin of chromosomal fragments [68]. Hence, cell division phases are
considered helpful for detecting the seed deterioration process. This study’s cell numbers at
the interphase stage ranged from 440 to 488. MI indicates the frequency of mitotic division,
in which temperature increase and reduces. With increasing deterioration time, a decrease
in cell division was observed.

Chromosomal abnormalities in the mitotic cells of degraded seeds are detected via
micronucleosis and chromosome breakage and bridge [69]. Chromosome fragment forma-
tion might be due to chromosomes’ stickiness followed by separation failure. Breakage
and reunion of the broken ends lead to chromosome bridges, which could be observed
until early telophase. Our results of cytological changes in the root-tip cells of the aged
seeds confirmed the previous studies [69,70]. In prophase, chromosomes are already visi-
ble, preparing to enter metaphase. When they exhibit a distinct pattern of organization,
any irregularities occur probably due to mitotic spindle formation and chromosome con-
densation triggered by already duplicated chromosomes in the interphase. Chromosome
disorganization at this stage would interfere with the regularity of metaphase chromosomes
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due to disturbances in mitotic spindle organization. Disorganized metaphase chromosomes
appear due to their diffuse arrangements in the equatorial planes of the cells. This chro-
mosome aberration is considered a sign of spindle malformation or partial inactivation.
However, little is known about the activities of the directly regulated zones [71]. Therefore,
the chromosomes organized in the equatorial plates represent regular cell divisions in the
metaphase [72]. Only low cell irregularities were detected in the control treatments in this
research, while aberrations were observed in the stress treatments.

Applying priming in the accelerated seed of PTCT lines was promising (Table 6). It
was observed that primed seeds’ germination traits were greater than untreated seeds. In
addition, the germination traits were enhanced by applying all three priming treatments
(halo-priming, hormone-priming, and osmo-priming). Seed priming promotes efficient
germination by inducing a more favorable physiological state. It regulates hydration
that starts the normal metabolic process during the early stages of germination before
the protrusion of the radicle [73]. In this study, osmo-priming increased germination
traits further than hydropriming and hormone-priming (Table 6), as Mohajeri et al. (2016)
observed. They reported that polyethylene glycol application for seed priming improved
vetch seeds’ root dry weight and shot dry weight values [74].

Furthermore, Chen et al. (2021) observed that PEG6000 application for seed priming
improved germination percentage and germination rate [75]. Osmo-priming can benefit
abiotic stresses like drought, extreme temperature, and salinity, generating different pre-
germination metabolic activities, improving the antioxidant system, and preparing the
seed for radicle protrusion [76]. In our study, priming significantly affected shoot and
root length (Table 6). The highest and lowest mean values of these traits were observed
in hormonal priming with SA and the control treatments, respectively (Table 6). These
outcomes match with those attained by Tabatabaei [77]. Many field crops have reported
increasing SVI and GE values in seedlings by priming seeds [78–81]. Rosinska et al. (2023)
reported the benefits of osmo-priming on germination and seedling vigor in carrots seeds.
They demonstrated the potentiality of this treatment also to mitigate biotic stress [82]. PTCT
lines’ best germination percentage, germination rate, shoot length, root length, seedling
vigor index, and dry seedling weight were observed in seeds treated by osmo-priming
compared to the control. Possible mechanisms for improved germination traits by halo-
priming, hormone-priming, and osmo-priming are activation of water-induced metabolic
processes, improved repair due to enzyme activity, and production of hormones. Osmo-
priming with PEG enhances some of the antioxidant enzymes, such as the activities of
catalase-peroxidase in seedlings exposed to stress, thus increasing seed germination and
stand establishment [83]. In other research, Zhang and colleagues found that osmo-priming
with PEG improved cell membrane stability, enhanced superoxide dismutase, peroxidase,
and catalase, and decreased lipid peroxidation, compared to non-primed seeds [84].

5. Conclusions

It is a well-known fact that some seeds of Tritipyrum lines are susceptible to aging.
The latter significantly decreases germination and emergence traits and enhances leakage
of cellular solutes of PTCT (Primary Trans Chromosomal Tritipyrum) lines. In this research,
these responses to seed deterioration were varied, indicating genetic diversities of the PTCT
lines. These genetic diversities were also underlined by the different Tolerance Indexes
(TI) obtained after aging. Some PTCT lines were prone to long-term storage in the gene
bank and could maintain germination and vigor, as also evidenced by the chromosomal
abnormalities induced by the artificial aging of seeds. Nevertheless, the vigor of the
deteriorated seeds of the PTCT lines was significantly improved by priming. The treatment
could ameliorate the germination and seedling establishment rate of the PTCT lines of
the aged seeds. These findings are in line with our previous studies on other cereals like
wheat and triticale. We observed that these PTCT lines gave a positive response to priming.
In addition, we observed an enhancement of the early vigor of Tritipyrum line seeds by
using priming.
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