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Abstract: Geomaterials comprise naturally formed materials through geological processes, such as
soils and rocks, or artificially processed materials, including mineral waste and geosynthetics. These
materials find extensive use in geotechnical structures, such as slopes, dams, and pavements, among
others. However, two issues commonly arise in earthworks: the materials available in the region
do not meet the minimum engineering requirements, resulting in high transportation costs, and
the exploitation of new deposits increases environmental impacts. Consequently, there is a need to
develop stabilization and reinforcement techniques aimed at creating new geomaterials (NGs) to
expand the range of local material applications. In this context, the present study evaluates the key
success factors (KSFs) related to the application of NGs in geotechnical structures. The Delphi method
was employed through a structured questionnaire developed after an extensive literature review.
Brazilian experts from the public, private, and academic sectors were selected to identify the obstacles
and potential pathways for the practical application of NGs. The outcomes of the study indicated
that the lack of standardization, the complex behavior of geomaterials under varying conditions, as
well as technical and economic limitations serve as barriers impeding the widespread adoption of
NGs. Finally, a roadmap proposal was devised, encompassing a series of actions intended to facilitate
the broader utilization of NGs.

Keywords: new geomaterials; key success factors; geotechnical structures; Delphi method

1. Introduction

Efforts towards achieving the Sustainable Development Goals (SDGs) outlined in
Agenda 2030 and meeting the Nationally Determined Contributions (NDCs) on climate
change presented in the Paris Agreement are essential for the world’s sustainable growth [1].
Sustainable infrastructure is critical in achieving these goals by ensuring economic, financial,
social, environmental, and institutional sustainability throughout the project life cycle [2,3].
Therefore, solutions are required to achieve global temperature targets and mitigate the
consequences of global warming by replacing polluting practices with efficient ones and
developing resilient structures that can withstand the changes already underway [4].

New geomaterials (NGs) are innovative material solutions applied to geotechnical
structures that aim to adapt local materials to the required engineering behavior. This is
a key strategy to reduce the exploitation of natural materials and the costs and emissions
associated with transportation. The application of NGs can be an attractive way to work to-
wards mitigation strategies by reducing the emissions related to material transportation and
adapting in cases where composites perform more effectively in the face of hazards [5,6].

For the development of NGs, stabilization and reinforcement techniques are applied [7–9].
The stabilization technique covers solutions with chemical additives, which react with the
natural material, or mixing materials with complementary particle size distributions to
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form a more stable structure. The reinforcement technique aims to form composites with
inclusions of materials with a tensile strength to complement the behavior of the granular
materials, enabling a wide range of engineering applications, including slope stabiliza-
tion, retaining wall construction, and pavement design. These technologies can be used
individually or in combination [10–20], maximizing the benefits inherent to the techniques.

The main advantage of using these materials lies in the substitution of conventional
construction materials, such as sand and gravel, which may be associated with significant
environmental impacts due to the need for natural deposit extraction [21–23]. Further-
more, many of the new technologies have the characteristic of better quality control of the
products, allowing for a better prediction of the behavior of the final structure, even in the
design phase.

However, the use of NGs in geotechnical engineering projects can be limited by a
lack of established testing standards, higher initial costs, and potential sourcing concerns.
Despite a general understanding of the possible factors related to the limitations of using
NGs, there is a gap in the literature regarding potential key success factors (KSFs) that
could alter this scenario and facilitate the implementation of NGs in earth structures.

Based on the above, the following research questions emerged: (i) What are the key
success factors (KSFs) for the practical application of NGs? and (ii) How can stakeholders
involved in decision-making contribute to support the development and use of NGs?

In this context, this paper aims to identify the KSFs for the usage of NGs on a large
scale. Additionally, this paper proposes a roadmap to address the barriers identified based
on the opinion of renowned Brazilian professionals who work in geotechnical engineering.
The opinion of the experts was evaluated by using the Delphi method. Based on the results,
it was possible to identify the KSFs for the large-scale usage of NGs, along with correlated
barriers. The identified barriers then served as catalysts for devising a comprehensive
roadmap aimed at facilitating the broader implementation of these materials.

This study introduces a novel dimension to the field by pioneering the application of
the Delphi method in the specific context of new geomaterials. To the best of our knowledge,
no previous literature has documented the utilization of the Delphi method in this particular
context. This distinctive application not only underscores the innovative nature of this
research but also expands the boundaries of traditional evaluation methodologies. By
venturing into uncharted territory, we aim to contribute to the existing body of knowledge
and provide fresh insights that advance the understanding and practice of the practical
application of new geomaterials.

This paper is organized as follows: The introduction section provides an overview
of the context and the motivation behind this study. Following that, the methodology
section outlines the research approach, detailing the identification of key success factors
(KSFs), introducing the sample utilized, and explaining the statistical methodology applied.
The subsequent section presents the obtained results, offering a clear insight into the
outcomes of the study. The ensuing discussion section delves into the implications of the
results and introduces a comprehensive roadmap as a strategic response to the identified
barriers. Finally, the conclusion section encapsulates the key findings and emphasizes their
significance within the broader context, providing insights for future research directions
and applications.

2. Research Method

Although much progress has been made in recent years regarding the development of
NGs, there remains a gap in the practical application of this group of materials. To explore
this gap, a four-stage process was employed (Figure 1), consisting of a conceptual phase,
application of the Delphi method, and proposal of a roadmap.
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Figure 1. Four-stage research method.

In the conceptual phase, a systematic literature review (SLR) was conducted by using
the Scopus database. The keywords used were “geomaterials”, “new geomaterials”, “new
geotechnical materials”, “soil reinforcement”, “soil stabilization”, “soil improvement”,
“tailings improvement”, “tailings reinforcement”, and “tailings stabilization”. The fol-
lowing combinations of words were also used: “New Geomaterials” AND “Sustainable
Materials”, “Soil Reinforcement” AND “Soil Stabilization”, and “Tailings Reinforcement”
AND “Tailings Stabilization”. The search considered papers as a document type, published
in English from 2009 to 2023, in the following subject areas: engineering, materials science,
environmental science, and multidisciplinary subjects. Based on this procedure, 143 papers
were found.

After analysis, 112 papers were selected for in-depth reading to identify the KSFs for
the usage of NGs, categorized into five groups [24]: (1) technical, economic, and financial;
(2) socio-environmental; (3) logistical; (4) institutional; and (5) educational. These KSFs
were the basis to structure a questionnaire considering the Delphi method, which was
presented for evaluation using a 5-point Likert scale.

The Delphi method was chosen due to the need for expert judgment in the investiga-
tion. It is a structured and iterative research technique used to gather and distill expert
opinions on a particular topic or issue. It involves a panel of experts, typically selected
for their knowledge and experience in the subject matter, who provide anonymous input
through a series of questionnaires or rounds of communication. This approach allows for
structured communication without the need for direct confrontation among the experts,
which can help to avoid unconscious biases and ensure a consensus on a topic that is not
yet well explored. Over the years, this method has been primarily used to make forecasts,
identify priority issues, and develop frameworks [25,26].

However, this method requires evaluating the reliability and the consensus of the
responses. The reliability of the responses was measured by using Cronbach’s alpha. This
is a useful measure for assessing the internal reliability of a measurement instrument, such
as a questionnaire. It helps determine whether the items consistently measure the same
attribute and to what extent the results are reliable.

High internal consistency is essential to ensure that the research results are reliable
and consistent. Values above 0.7 are considered highly acceptable [27]. The consensus
was measured by calculating the mean score, standard deviation (SD), interquartile range
(IQR), and change in SD [28–30]. The consensus was based on IQR < 1 and a negative SD
change after the second round. Therefore, the experts were invited to evaluate the KSFs
in the first round, the consensus was analyzed, and those factors without consensus were
presented again to respondents. The KSFs considered relevant had a mean value above 4.
The convergence was found in two rounds. Once the KSFs were identified, a roadmap was
designed to highlight the actions of those involved in the use of NGs.
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2.1. Description of the Sample

Experts were selected following the guidelines outlined by [26], focusing on a diverse
sample of participants from academia and public and private sectors. A total of 7 experts
were chosen, which falls within the recommended range of 5 to 20 experts [26,28,30]. The
selection process prioritized individuals with knowledge and recognized research works in
NGs. A profile of the sample respondents is shown in Table 1. All experts participated in
both rounds.

Table 1. Profile of the sample respondents.

ID Academic Qualifications Employment Sector Experience (Years)

FB Master in Transportation Engineering Private—Infrastructure 10
JW Ph.D. in Civil Engineering Academia—Researcher 8
MR Master in Civil Engineering Private—Environmental 10
NC Ph.D. in Civil Engineering Academia—Researcher 25
RP Ph.D. in Civil Engineering Academia—Researcher 10
SA Ph.D. in Architecture Academia—Researcher 15
TD Civil Engineering Public—Transportation 12

2.2. Identification of KSFs

Table 2 summarizes the materials used, their main properties and potentials, examples
of applications, and additional factors to consider for using NGs. Most of the literature
regarding composites focuses on technical testing, particularly those using traditional
geotechnical methods [14,31–33]. However, microstructural analysis is required for a
comprehensive understanding of the behavior of composites in tailings. Since tailings
materials have not undergone the typical soil formation process, classical soil mechanics
may not accurately represent their behavior [34–37].

More recently, scholars have explored the cost–benefit analysis of new materials [38,39].
Although environmental analyses are also beginning to be addressed in the literature
regarding geomaterials, they remain incipient [40]. However, logistical, institutional, and
educational aspects have received little attention. To address this gap, institutional and
educational aspects were added to support the roadmap, which aims to identify the main
actions of stakeholders toward an inclusive and coordinated decision-making process [2].

Table 2. Geomaterials for soil stabilization and reinforcement.

Category Materials Employed Main Properties and Potentials Additional Factors to Consider Examples of Applications

Cementitious
materials

Portland cement, fly
ash, silica fume, and

slag, for instance

Cementitious materials can
boost soil strength, decrease

compressibility, suppress soil
expansiveness, and improve

durability [41–43].

Potential concerns related to energy
consumption and greenhouse gas
emissions, the influence of curing
conditions, cementitious material

age and content, and potential
damage from seawater

environments [8,32,44–47].

Cementitious materials find application in
road and pavement construction and

airport and industrial yard pavements, as
well as soil improvement and remediation,
including the treatment of contaminated

soils [12,23,48–50].

Lime
Lime, in general,

including quicklime
and hydrated lime

Using locally available lime
materials has the potential to

enhance soil strength and
stability, reduce plasticity and

construction costs, and increase
durability and frost resistance

capabilities [22].

It is important to consider the
possible effects of carbonation, pore

fluid–soil structure interactions,
wetting–drying cycles, and

aggregate size, as well as compaction
mode, density, and suction [51–53].

Lime stabilization can be used in road and
airfield construction, embankment, and

slope stabilization, building and foundation
construction, and landfill liners and covers.

Additionally, it can be used for soil
improvement and remediation, including

the protection of earthen sites [54].

Asphalt

Asphalt, in general,
including a foamed
sulfur asphalt and
asphalt emulsion

Enhanced soil strength, reduced
erosion, increased durability,

and improved water resistance.
It has the potential to provide

control of the swell and collapse
potential and can also increase

the load-bearing capacity of
pavements [55].

Asphalt can be sensitive to
temperature variation. Overuse can
lead to rutting and cracking, which

can affect their long-term
performance and increase

maintenance costs.

Asphalts are typically used for the
construction of road bases [56,57].
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Table 2. Cont.

Category Materials Employed Main Properties and Potentials Additional Factors to Consider Examples of Applications

Polymers

Geopolymers,
biopolymers,
and synthetic

organic polymers

Improved strength, reduced
permeability, inhibited swell

and collapse potential,
enhanced durability and

stability, improved dynamic
responses under cyclic loading,

and improved resistance to
freeze–thaw action [9,58–64].

The use of polymer materials in
construction may face challenges
such as costs, limited long-term

durability studies, and
environmental concerns regarding

the potential leaching of these
materials into the surrounding

environment.

Eco-friendly urban renewal projects,
tailings structures, and pavement

applications [34,46].

Enzymes
Urease and

phosphatase,
among others

The use of enzymatically
induced carbonate precipitation

can lead to enhanced soil
strength, reduced compaction,

increased water retention,
improved nutrient availability,
and environmentally friendly
and biodegradable promotion

of plant growth and soil
fertility [65].

More research is needed to
understand the long-term effects and

efficacy of new technology,
especially regarding potential
moisture degradation [66,67].

Soil stabilization for transportation
infrastructure, dust and erosion control,

land reclamation, and soil remediation [68].

Synthetic
fibers

Examples include
polypropylene and

polyester fibers

Improved soil strength and
durability, reduction in swelling
and shrinkage potential, erosion

control, resistance to
degradation, flexibility, and

crack control [61,69,70].

Considerable knowledge has already
been gathered on the use of synthetic

fiber reinforcement. More research
may be needed to understand the
influence of fiber inclusion on the

mechanical behavior of
cemented/stabilized mixtures [13].

Applications include structural use under
freeze–thaw cycling, transportation

subgrades, and mining tailings [37,71,72].

Natural
fibers

Coir, jute, palm, and
kenaf, as examples

Improved soil strength,
cost-effectiveness, high

availability, eco-friendliness,
and healing ability for

wetting–drying cycles [73–77].

Not suitable for high-stress
applications, due to the

susceptibility of fiber degradation
from environmental factors, and can
require proper surface treatment to

improve performance [78,79].

Used for temporary structures, erosion
control, slope stabilization, and pavement

construction [80].

Geosynthetics

Examples include
woven geotextiles,

geogrids, and
geostrips

Improved soil strength,
durability, and erosion

reduction using lightweight,
flexible, and

degradation-resistant materials.

Specialized installation and
maintenance are required,
performance limitations in

fine-grained soils, the potential for
UV degradation, and chemical

resistance issues [81].

Applications include reinforced soil
structures, pile-supported embankments,

bridge abutments, and subgrade soil
stabilization [6,7,78,82–85].

Rubber
Examples include tire
chips, crumb rubber,

and rubber-soil

Improved soil strength, reduced
compaction, erosion, noise, and
vibration, and enhanced frost
resistance, as well as swelling

potential reduction through the
use of appropriate additives

and geotechnical seismic
isolation (GSI) [86–88].

Specialized processing and
installation techniques may be

required, and the materials may be
susceptible to degradation and
chemical leaching. The effect of

rubber size and format should also
be considered [89].

Applications in erosion control, slope
stabilization, retaining structures, and fillers
in various construction methods, including
a remediation technique for mitigating soil

liquefaction [50,90–92]. Geotechnical
seismic isolation entails absorbing seismic

energy from the soil into the superstructure
through the introduction of a surface soil

layer, aimed at mitigating the transmission
of accelerations from the ground to the
structure. This method of mitigation is
especially well-suited for developing
nations, as GSI serves as an affordable

seismic isolation system [93–96].

The KSFs identified based on the SLR are listed in Table 3. Group A composes
technical, economic, and financial factors. Field tests and validations for specific cases,
such as in transportation infrastructure, were deemed highly relevant for proving and
promoting the application of these materials. Additionally, cost–benefit analyses that
consider quantitative, as well as socio-environmental aspects, were also considered highly
important. Conducting these analyses in parallel to case studies would allow for monitoring
indicators to be obtained in a more controlled and efficient manner. Group B includes the
socio-environmental aspects, which discussed key global issues in the upcoming years,
particularly considering climate change effects, including decarbonization and the creation
of more resilient structures [97]. Furthermore, the potential for distributing these materials
to disadvantaged communities as a cost-effective solution for constructing safer structures
was also assessed.

Group C includes the logistical aspects. The use of local materials is the most relevant
item, especially when considering the Brazilian context. It is a crucial aspect that promotes
sustainable solutions in a country with diverse geology [98]. The use of local materials
presents numerous opportunities, such as: (i) reducing transportation distances, which



Sustainability 2023, 15, 12929 6 of 19

leads to lower greenhouse gas emissions; (ii) creating opportunities for local skilled labor,
which boosts the regional economy; (iii) utilizing waste and non-conventional materials
that are abundant in the region; and (iv) developing budgeting techniques and guidelines
that are tailored to the local context.

Group D includes the institutional aspects, which aim to identify the responsibili-
ties of the different stakeholders, including multilateral and international organizations,
governments, and public institutions. Finally, Group E includes the educational aspects,
which aim to evaluate the KSFs related to the dissemination of knowledge about NGs. No
relevant references were found in the literature for the last two groups. Their formulation
was based on the authors’ experience.

Table 3. KSFs identified in the SLR.

Group KSFs References

A

A1: The technical validation through laboratory testing from a mechanical standpoint [14,31,99,100]

A2: Technical validation through laboratory testing from a hydraulic standpoint [13,33,88,101–103]

A3: Technical validation through field tests [104–106]

A4: Technical validation for a specific application [101,107–109]

A5: Experimental evaluation of environmental contamination aspects [35,101]

A6: Collaboration between universities and governmental agencies for the development of applied research [110]

A7: Verification of cost–benefits through quantitative financial methods [38,111]

A8: Verification of cost–benefits through socio-environmental justifications [38]

A9: Low implementation complexity [112,113]

A10: Clear, concise, and easily accessible information on the advantages of new geotechnical materials
compared to traditional construction methods [38,71,111]

A11: Promotion of solutions suitable for the regional context [33,108]

B

B1: Development of materials more resistant to the effects of climate change [24,114–118]

B2: Development of materials that use waste as reinforcement or matrix [99,103,119,120]

B3: Development of materials that propose decarbonization [38,40,121,122]

B4: Life cycle analysis of materials and verification of carbon footprint [39,121]

B5: Compatibility with the Sustainable Development Goals [24,123–125]

B6: Compatibility with the Nationally Determined Contributions [13,111]

B7: Development of construction techniques that stimulate regional development [108,119,126]

B8: Development of materials that generate less polluting waste [13,38,112,127,128]

B9: Development of materials that generate less solid waste [31,124,129,130]

B10: Public policies for the distribution of new geotechnical materials to vulnerable populations

C

C1: Development of solutions that use local materials [13,36,40,118,131,132]

C2: Analysis of the available material supply [40,133]

C3: Analysis of the potential demand for available material [102,111,117,129]

C4: Verification of the infrastructure for the availability of materials [124]

C5: Financial and tax incentives granted for the use of industrial waste in construction [121]

C6: Logistical planning for the distribution of materials for use in civil construction [121]

C7: Logistical planning for the storage of materials for use in civil construction [121]

D

D1: Promotion of projects by multilateral organizations for the research and development of new
geotechnical materials [110]

D2: Promotion of projects by federal-level public institutions for the development of new geotechnical materials

D3: Promotion of projects by state-level public institutions for the development of new geotechnical materials

D4: Promotion of projects by municipal-level public institutions for the development of new geotechnical materials

D5: Development of knowledge materials by international organizations on the subject

D6: Mandatory use of new geotechnical materials established by government authorities
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Table 3. Cont.

Group KSFs References

E

E1: Development of knowledge materials in Portuguese

E2: Courses, lectures, and workshops in partnership with public entities

D3: Courses, lectures, and workshops for undergraduate students on new geotechnical materials

3. Results

The Delphi method was then applied to the selected experts through a structured
questionnaire presented in the previous section. Two rounds were conducted to establish
convergence criteria, and all experts participated in both rounds. All responses were
considered reliable, with alpha de Cronbach values being 0.895 and 0.778 for the first and
second rounds, respectively. The next subsection details the results of the groups.

3.1. Technical, Economic, and Financial Aspects

Table 4 summarizes the results of the technical, economic, and financial aspects. This
first group emphasizes technical results, including laboratory and field tests, as well as
cost–benefit financial outcomes. All aspects of this group, except for implementation com-
plexity, were identified as relevant by the experts. They considered mechanical verification
more important than hydraulic verification since the latter would only be necessary for
flow-related applications. Mechanical tests were identified as the first validation necessary
for the new geomaterials. Developing solutions that are suitable for the regional context is
a crucial aspect, and it received a mean score of 4.43, making it highly relevant. To achieve
this, having access to clear information was also deemed essential, with a mean score of 4.29.

Table 4. KSFs for technical, economic, and financial aspects.

Key Success Factors (KSFs)
Round 1 Round 2 SD

ChangeMean SD IQR Mean SD IQR

Technical validation through laboratory
testing from a mechanical standpoint 4.86 0.38 0

Technical validation through laboratory
testing from a hydraulic standpoint 4.00 0.58 0

Technical validation through field tests 4.71 0.49 0.5

Technical validation for a specific
application, such as road infrastructure 4.57 0.54 1

Experimental evaluation of environmental
contamination aspects 4.29 0.76 1

Collaboration between universities and
governmental agencies for the

development of applied research
4.57 0.54 1

Verification of cost–benefits through
quantitative financial methods 4.57 0.54 1

Verification of cost–benefits through
socio-environmental justifications 4.29 0.76 1

Low implementation complexity 3.71 1.11 1.50 4.00 0.58 0.0 −48.1%

Clear, concise, and easily accessible
information on the advantages of new

geotechnical materials compared to
traditional construction methods

4.29 1.11 1.00

Promotion of solutions suitable for the
regional context 4.43 0.79 1.00
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The only item that did not achieve a consensus and received an average score below
4 was related to the implementation complexity. However, participants believed that
engineering techniques could be employed in diverse situations, indicating that this factor
would not impede the application of these materials.

3.2. Socio-Environmental Aspects

The results of KSFs regarding the socio-environmental aspects are presented in Table 5.
Among this group, the most significant factors related to utilizing waste for developing
new materials and conducting a life cycle analysis to minimize pollutant generation and
greenhouse gas emissions. Life cycle analysis has become a prevailing practice in the
realm of emerging materials, aimed at evaluating the complete production chain [91,134].
Nevertheless, the literature references still indicate a knowledge gap regarding this type of
analysis and a lack of standardization, resulting in ambiguity and difficulty in comparing
solutions [135].

Table 5. KSFs for socio-environmental aspects.

Key Success Factors (KSFs)
Round 1 Round 2 SD

ChangeMean SD IQR Mean SD IQR

Development of materials more resistant to
the effects of climate change 4.00 1.15 1.50 4.42 0.78 1.0 −31.86%

Development of materials that use waste as
reinforcement or matrix 4.71 0.48 0.50

Development of materials that propose
decarbonization 4.42 0.78 1.00

Life cycle analysis of materials and
verification of carbon footprint 4.42 0.78 1.00

Compatibility with the United Nations’
Sustainable Development Goals (SDGs) 3.71 1.70 1.50 3.85 1.21 2.0 −28.71%

Compatibility with the Nationally
Determined Contributions (NDCs) 4.14 1.21 1.50 4.00 1.15 1.5 −4.96%

Development of construction techniques
that stimulate regional development 4.42 0.53 1.00

Development of materials that generate
less polluting waste 4.28 0.75 1.00

Development of materials that generate
less solid waste 3.85 0.37 0.00

Public policies for the distribution of new
geotechnical materials to
vulnerable populations

3.85 1.34 1.50 3.85 0.90 1.5 −33.11%

Four items failed to reach a consensus among the interviewees, namely: (1) the
development of materials that are more resistant to climate change effects; (2) compatibility
with the United Nations’ Sustainable Development Goals (SDGs); (3) compatibility with
the Nationally Determined Contributions (NDCs); and (4) the need for public policies to
distribute new geotechnical materials to vulnerable populations. The authors observed that
bridging the gap between the global climate debate and the industry remains challenging,
which may explain the current situation. Therefore, scientific studies highlighting the
significance of NGs in mitigating the effects of global warming are crucial.

3.3. Logistics-Related Aspects

The logistics aspects were assessed to determine the significance of supply and demand
in selecting NGs. Moreover, the utilization of local materials and logistic planning for
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storage and distribution were also discussed. During the first round, two items failed to
reach a consensus: one pertained to demand analysis, and the other related to the necessity
of financial and tax incentives to promote the use of waste as construction materials. The
items that were considered of lesser importance by the experts were related to logistical
distribution and storage plans. Eventually, all items achieved a consensus, as presented
in Table 6.

Table 6. KSFs for logistics-related factors.

Key Success Factors (KSFs)
Round 1 Round 2 SD

ChangeMean SD IQR Mean SD IQR

Development of solutions that use local materials 4.57 0.54 1.00

Analysis of the available material supply 4.43 0.54 1.00

Analysis of the potential demand for available materials 4.00 0.89 1.50 4.57 0.54 1.0 −40.24%

Verification of the infrastructure for the availability
of materials 3.86 0.69 0.50

Financial and tax incentives granted for the use of industrial
waste in construction 4.29 0.95 1.50 3.86 0.69 0.5 −27.45%

Logistical planning for the distribution of materials for use in
civil construction 3.29 0.76 1.00

Logistical planning for the storage of materials for use in
civil construction 3.29 0.95 0.50

3.4. Institutional Aspects

Table 7 shows that there was no consensus among the interviewees regarding the
importance of promoting NGs by multilateral organizations and public institutions at the
municipal level. The KSF with the highest average in this group refers to the participation
of institutions at the federal level, which is indeed essential in the Brazilian context. The
government agency responsible for transportation infrastructure, for example, also normal-
izes engineering materials and services. Additionally, it controls and guides contracts with
the private sector that manages some assets of Brazilian infrastructure.

Table 7. KSFs for institutional aspects.

Key Success Factors (KSFs)
Round 1 Round 2 SD

ChangeMean SD IQR Mean SD IQR

Promotion of projects by multilateral organizations for
research and development of new geotechnical materials 4.14 1.22 1.50 4.000 1.155 1.5 −4.96%

Promotion of projects by federal-level public institutions for
the development of new geotechnical materials 4.29 0.49 0.50

Promotion of projects by state-level public institutions for the
development of new geotechnical materials 3.86 0.69 0.50

Promotion of projects by municipal-level public institutions
for the development of new geotechnical materials 3.57 1.40 1.50 4.14 0.90 1.5 −35.61%

Development of knowledge materials by international
organizations on the subject 3.71 0.95 0.50

Mandatory use of new geotechnical materials established by
government authorities 3.71 1.25 1.00
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The municipal level of governance can be susceptible to diversion from overarching
objectives and a dispersal of efforts when the community lacks a unified focus, a coherent
vision, and well-defined goals. However, local government managers often assume a
pivotal role in identifying decision-making challenges and prompting governing bodies to
undertake self-evaluation and enhancement initiatives [136,137].

The items that were considered less relevant by the experts were related to promoting
projects at the municipal level with the mandatory use of new geotechnical materials. In
other words, projects that are already planned, tendered, and executed with NGs in mind.
Additionally, the use of materials endorsed by international organizations was of lesser
significance, as the experts believed that other institutions have a wider reach among
local municipalities.

3.5. Educational Aspects

The results are shown in Table 8. The importance of developing training materials
in Portuguese is also related to the socioeconomic background of the country. Brazil is a
continental area with different levels of socioeconomic development, meaning that only
part of the population can understand a foreign language. To ensure a more accessible appli-
cation of these materials, especially in small and medium-sized municipalities, educational
materials in Portuguese are considered essential for the application of these innovative
solutions. All educational aspects reached consensus in the first round, with high mean
values. Notably, the interviewees considered the training of engineering students to be
equally important as the training of workers through partnerships with public institutions.

Table 8. KSFs for educational aspects.

Key Success Factors (KSFs)
Round 1 Round 2 SD

ChangeMean SD IQR Mean SD IQR

Development of knowledge materials in Portuguese 4.14 1.07 1.00

Courses, lectures, and workshops in partnership with
public entities 4.43 0.53 1.00

Courses, lectures, and workshops for undergraduate students
on new geotechnical materials 4.43 0.79 1.00

4. Discussion

By applying the Delphi method, the KSFs for each aspect were identified based on
a mean greater than four, as shown in Figure 2. The threshold of four was chosen as it
represents the essential range. These KSFs can be used to provide recommendations and
support a roadmap for the main stakeholders involved in implementing NGs. However,
it is crucial to highlight that all the experts invited to this study are from Brazil. Thus,
the discussion is conducted based on the Brazilian context. From a technical perspective,
validating these materials becomes more complex as multiple aspects need to be addressed.
Hence, it is essential to establish clear roles for each stakeholder involved in creating a
workflow that enables the continuous development of new solutions.
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Figure 2 presents a proposed roadmap to facilitate the practical application of the NGs
on a large scale, organized into three phases as previously discussed. Each action has a list
of stakeholders involved and their corresponding KSFs. In Brazil, universities play a major
role in the advancement of science and technology [138]. Therefore, the development of
NGs is often linked to academic research. Public universities and research funding agencies
are considered the main agents in the technological development phase. However, this
does not preclude or hinder opportunities for collaboration with the public and private
sectors to provide support for research and development.

After technical development, including laboratory validations, social and environ-
mental impact assessments, and full-scale technical performance evaluations, pilot projects
should be implemented. These projects require continuous monitoring to evaluate and
validate performance indicators. It is recommended to plan for pilot schemes that validate
cost–benefit indicators for different applications. Developing SMART indicators (specific,
measurable, achievable, relevant, and time-bound) is advised to ensure that the pilot
schemes are realistic and measurable within an accelerated timeframe.

All these steps constitute phase I of the roadmap, focused on technology development
and encompassing laboratory and full-scale testing for engineering applications. In sum-
mary, Phase I encompasses the development of novel solutions, validation through pilot
projects, and monitoring, culminating in final a retro-analysis, followed by validation and a
presentation of the results and lessons learned.

Phase II revolves around regulation and expanding the legal framework for the practi-
cal implementation of these innovative materials. The implementation process of this novel
solution unfolds through distinct phases, each contributing to its successful integration.
The initial stage involves the standardization of the innovative approach, ensuring its
consistency and reliability across various contexts. Subsequently, legal regulation comes
into play, establishing a framework within which the solution can operate effectively while
adhering to relevant guidelines and requirements. As the endeavor progresses, attention
shifts to the financial realm, where opportunities for financing are explored, and potential
tax benefits are evaluated, aiming to incentivize adoption. Furthermore, the formulation of
logistical plans is proposed, meticulously addressing the practical aspects of implementa-
tion. Collectively, these phases facilitate the holistic integration of the novel solution into
existing systems, promoting both efficacy and compliance in its application.

Developing standards established by regulatory institutes, such as the Brazilian Asso-
ciation of Technical Standards (ABNT), and involving organizations like the Road Research
Institute (IPR), linked to the National Department of Transport Infrastructure (DNIT), are
crucial in this phase.

Incorporating NGs into technical standards enables their adoption as references in
bidding processes. This not only generates funding opportunities from multilateral orga-
nizations and the private sector but also promotes the adoption of sustainable solutions
aligned with the country’s Sustainable Development Goals (SDGs) and Nationally Deter-
mined Contributions (NDCs).

Legalizing the use of these solutions enables the creation of logistical strategies based
on the analysis of demand, supply, and regional potential. In Latin America, the trans-
portation sector is responsible for one-third of greenhouse gas emissions [139]. Therefore,
investing in the storage and distribution planning for these solutions is integral to their
sustainability throughout their life cycle. However, it is necessary to explore the supply
and demand outlook of a given region first. For example, composite materials containing
mining waste in the pavement could be applied in the state of Minas Gerais, where a
significant percentage of its roadways are unpaved and 24.41% of economic activity is
related to mining. Similarly, using natural fibers in the northern region of the country could
be an alternative solution, as petroleum-derived aggregates are scarce [140].

Utilizing local engineering materials and fostering the development of new technolo-
gies can have significant social impacts. When communities leverage the materials available
in their immediate surroundings, it often leads to increased economic activity at the local
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level. This, in turn, can generate job opportunities, especially for individuals within those
communities. By harnessing local resources, communities can reduce their dependence on
external suppliers, contributing to enhanced self-sufficiency and economic resilience.

Furthermore, the development of new technologies can bring about transformative
changes in various sectors. These technologies have the potential to improve living stan-
dards, create innovative solutions to existing problems, and enable access to better infras-
tructure and services. As new technologies are adopted and integrated, they can enhance
efficiency, productivity, and quality of life. Additionally, technology development often
requires skilled individuals, fostering the growth of educational and training programs
that benefit the workforce. This, in turn, supports the development of a knowledge-based
economy and can elevate the skill sets of community members.

Phase III of the roadmap involves continuous training for both public and private
sectors, as well as undergraduate-level actions. This step is a cross-cutting activity in
the roadmap. Brazil is currently the leading producer of scientific knowledge in Latin
America [141], and the development of accessible material knowledge for different skill
levels can contribute to the institutional strengthening of the whole region. Therefore, it is
ideal to develop material in both Portuguese and Spanish, with support from multilateral
organizations to spread it.

5. Conclusions

New geomaterials (NGs) play a crucial role in the commitment to decarbonization and
sustainability. In Brazil, the identification of key success factors (KSFs) for large-scale NG
projects was conducted using the Delphi method. The selection of seven experts followed
the guidelines outlined by [26], and two rounds were carried out to establish convergence
criteria. The following conclusions can be drawn from the study:

n Technical evidence, cost–benefit analyses, and the development of context-specific
solutions are paramount for the successful implementation of NGs. It is essential to
have solid scientific evidence supporting the effectiveness of these materials and to
assess their economic viability in a given regional context.

n Socio-environmental considerations are crucial in the adoption of NGs. This entails
utilizing waste materials for the development of new solutions, conducting life cycle
analyses to minimize pollution and greenhouse gas emissions, and promoting the use
of locally available resources. Moreover, it is imperative for multilateral organizations
and federal-level public institutions to actively support NG initiatives. Additionally,
investing in the training and education of engineering students and workers in the
field of NGs is essential for their successful implementation.

n Overall, the utilization of local engineering materials and the advancement of new
technologies not only drive economic growth but also contribute to social progress. By
empowering communities with resources and innovative solutions, the social fabric is
strengthened, fostering a sense of ownership, pride, and resilience.

n It is worth noting that not all aspects achieved a consensus among the interviewees.
Some areas that require further attention include the development of materials that
are more resistant to the effects of climate change, ensuring compatibility with Sus-
tainable Development Goals (SDGs), and the need for public policies that facilitate the
distribution of new geotechnical materials to vulnerable populations.

The study, though pioneering in nature, acknowledges its inherent limitations. The in-
sights presented are intrinsically grounded in the Brazilian reality, prompting caution when
extrapolating its findings to diverse contexts. Additionally, as an inaugural venture into
this field, the present research signifies a preliminary exploration, positioned for expansion
in subsequent investigations. Recommendations dictate that forthcoming studies engage
in validating the proposed roadmap through concrete case studies, thereby reinforcing its
practical applicability.



Sustainability 2023, 15, 12929 14 of 19

This research brings innovation by identifying the main factors that drive the use of
new geotechnical materials in real-world situations. This achievement was made possible
through a strong statistical method. While academic efforts have contributed significantly
to developing new materials, there is still much to explore in larger studies that consider
the environmental and economic effects.

In summary, the findings shared here matter to researchers and policymakers who
want to promote sustainable practices in geotechnical engineering. Moving forward, there
is an invitation for future researchers to test the suggested plan in real-world scenarios.
This then can pave the way for progress that balances human ingenuity with caring for
the environment.
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