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Abstract: Fish fecundity is one of the most relevant parameters for the estimation of the reproductive
potential of fish stocks, used to assess the stock status to guarantee sustainable fisheries management.
Fecundity is the number of matured eggs that each female fish can spawn each year. The stereological
method is the most accurate technique to estimate fecundity using histological images of fish ovaries,
in which matured oocytes must be measured and counted. A new segmentation technique, named
the multi-scale Canny filter (MSCF), is proposed to recognize the boundaries of cells (oocytes), based
on the Canny edge detector. Our results show the superior performance of MSCF on five fish species
compared to five other state-of-the-art segmentation methods. It provides the highest F1 score in four
out of five fish species, with values between 70% and 80%, and the highest percentage of correctly
recognized cells, between 52% and 64%. This type of research aids in the promotion of sustainable
fisheries management and conservation efforts, decreases research’s environmental impact and gives
important insights into the health of fish populations and marine ecosystems.

Keywords: image segmentation; microscopic image; fish gonad; cell recognition; histological images;
Canny filter; clustering; graph cuts; meanshift; active contours; sustainability

1. Introduction

Today, the oceans are facing increasing pressures, many of them of anthropogenic
origin, such as pollution, global warming, overexploitation or illegal activities, which
generate biodiversity losses and deteriorate marine ecosystems, acting at different geo-
graphical and temporal scales. These pressures affect the capacity of aquatic ecosystems
to maintain a healthy, safe and resilient state and jeopardize the provision of food of high
nutritional quality and biodiversity [1,2]. For the maintenance of seafood provision for
future generations, marine resources must be sustainably managed. Fecundity is one of
the population parameters considered critical in estimating the reproductive potential of
a fish stock [3] and is thus of interest to fishery scientists as both a critical parameter of
stock assessment [4] and as a basic aspect of population dynamics [5]. The importance
of determining accurate fecundity estimates has led to many research efforts to provide
simpler, faster and lower-cost methods for fisheries science [6].

For practical purposes, fecundity is the number of mature oocytes that a fish can
spawn, and it can vary from thousands to millions of eggs. Nowadays, the stereological
method [7,8] is the most accurate technique to estimate fish fecundity by using histological
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images of fish ovaries [9]. Stereology is a tridimensional interpretation of bidimensional
sections of the 3D structure [8], allowing the estimation of the number of particles (in our
case, cells) and the volume that they occupy within the structure. In order to automate
this process, it will be necessary to recognize the mature cells (oocytes) in the image and
classify them into categories [10]. Cell recognition is an image segmentation process, which
is a relevant topic in computer vision [11]. The segmentation of cells in routinely stained
histological images is a challenging problem due to the high variability in images, caused
by a number of factors, including differences in slide preparation (dye concentration,
evenness of the cut, presence of foreign artifacts, damage of tissue sample, etc.) and
the image acquisition system (presence of digital noise, specific features of slice scanner,
different lighting conditions or variations in microscope focus throughout the image).
Furthermore, biological heterogeneity among specimens (cell type or development state)
and differences in the type of tissue under observation influence outcomes. A successful
image segmentation approach will have to overcome these variations in a robust way in
order to maintain high quality and accuracy in all situations.

Image segmentation divides an image into non-overlapping regions. Classically,
the segmentation methods are categorized into thresholding, edge-based, region-based,
morphological segmentation or watershed and hybrid strategies [11]. Edge-based segmen-
tation finds boundaries between regions based on local discontinuities in image properties
(brightness, texture, color or numerical measures over local image patches). Region-based
segmentation constructs regions directly based on similarities in image properties. Thresh-
olding segmentation is accomplished via thresholds based on the distribution of pixels’
properties. Thresholding is the simplest and fastest method, but it is not suitable for com-
plex images. Note that the results of edge-based and region-based methods may not be
exactly the same. On the other hand, it is easy to construct regions from their borders and
conversely to detect borders of existing regions.

The segmentation approaches can also be categorized by the families of algorithms
into active contours [12], graph cuts [13], edge detectors [14], clustering, other hybrid
methods and deep learning (DL). The first ones are unsupervised, while the last one is
normally used in a supervised manner. The active contour model family transforms image
segmentation to an energy minimization problem, where the energy functional specifies
the segmentation criterion and the unknown variables describe the contours of different
regions. The active contour is a parametric model, with an explicit representation (called
snakes) or an implicit representation (called level set algorithms). The level set methods
can be categorized into edge-based and region-based, according to the image property
embedded in the energy functional. The Chan–Vese model is the most representative region-
based model [15]. The graph cut models represent the image as a weighted graph, and
the segmentation problem is translated to find a minimum cut in the constructed velocity
graph via a maximum flow computation. Clustering algorithms can cluster any image
pixels that can be represented by numeric attributes of those pixels. The most popular
clustering algorithms can broadly be classified into graph-based like normalized cuts [16]
or Felzenszwalb–Huttenlocher segmentation algorithms [17] and non-graph-based like
k-means, meanshift [18] or expectation maximization (EM).

The DL methods are usually complex and require the support of powerful computing
resources [19]. They have been used to segment different organs in radiological medical
images [20], among others. In the field of medical microscopic images, Jiang et al. [21]
reviewed the applications of DL in citological studies, principally to classify and detect
cells or nuclei in citology images. Shujian Deng et al. reviewed the applications of DL
for digital pathology image analysis [22], including classification, detection and semantic
segmentation. Due to the computational requirements of DL methods, they are applied
to image patches or downsampled images. The most popular DL techniques for image
segmentation are U-Net versions [23], DeepLab [24] and SegNet [25].

The aim of this work is to design and evaluate algorithms to segment cells in histologi-
cal images of fish gonads requiring low computational time and resources in order to (1) be
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executed on general-purpose computers in order to be used in all institutions around the
world, without any specific computing equipment, in order to manage its marine resources,
e.g., to be included in the STERapp software [26]; and (2) be used in interactive systems,
because the problem is too complex to provide totally automatic recognition and it may be
necessary to rely on expert supervision before image quantification.

In our previous work [27], we statistically evaluated different state-of-the-art, publicly
available segmentation techniques to recognize cells in histological images of two fish
species, although cell segmentation is still an open issue due to the complexity of these
images. In the current paper, we propose a new segmentation approach, called MSCF
(multi-scale Canny filter), to recognize cells based on the Canny filter, and we perform an
extensive statistical evaluation using five fish species. Section 2 describes the datasets used
in the experimental work. Section 3 describes the proposed MSCF segmentation algorithm
and the measures used to report the performance. Finally, in Section 4, we present and
discuss the results obtained, and Section 5 summarizes the main conclusions achieved.

2. Materials

This research was done in collaboration with the Instituto de Investigacións Mariñas
(http://www.iim.csic.es/ (accessed on 12 July 2023)) (IIM) and the Instituto Español de
Oceanografía (http://www.ieo.es/en/home (accessed on 12 July 2023)) (IEO), both belong-
ing to the State Agency Consejo Superior de Investigaciones Científicas (CSIC) in Spain.
Ovaries at different maturity stages from different fish species were selected to develop the
experiments. The sample processing and image acquisition were done by IEO and IIM staff.
One ovary lobe was fixed in 4% buffered formaldehyde and one slice per ovary of all females
was embedded in paraffin. Then, 3 µm sections were cut and stained with hematoxylin
and eosin for later microscopical analysis. Fecundity estimates were based on 4 micro-
scope fields per ovary section, using different microscopes and digital video cameras to
acquire the images. Table 1 shows the acquisition system used for each fish species studied.
This images are available in https://gitlab.citius.usc.es/eva.cernadas/sterappimagesdb
(accessed on 12 July 2023). In all cases, the exposure time and color balance were set
automatically. The segmentation of the matured cells in images was supervised by experts
of IEO and IIM using the software Govocitos [10] and STERapp [26]. The ground truth
(optimal segmentation) for the cells in an image is reported in XML (Extensible Markup
Language) files as the image points that define each cell (one file per image). Figure 1 shows
representative images of each dataset with the ground truth outline of the cells overlapped.
The color reflects the developmental stage of the cell (cortical alveoli in yellow, vitellogenic
in blue, hydrated in green and without development stage in red). The type of line identifies
the presence of a visible nucleus, continuous for cells with a visible nucleus and dashed
for cells without a visible nucleus. Note the different appearances among fish species, and
even among a specific fish species (see the (e) and (f) images of Roughhead grenadier species
in Figure 1).

Table 1. Datasets of images used: code of set (first column), fish species (second column), number
of images (third column), acquisition system (column 4): (1) Leica DMRE microscope connected
to a Leica DFC 320 camera; (2) Nikkon Eclipse 80i microscope with a Nikkon DXM 1200F camera;
(3) Leica DM 4000B with Leica DFC 420; and (4) Leica M165C with Leica DMC 4500. Magnification
and image size in the last two columns.

Dataset Species #ima System Magnif. Image Size

HAKE European hake 31 1 2.5–10× 2088× 1550
POUTING Trisopterus luscus 30 1 2.5–10× 2088× 1550

PILCHARD European pilchard 25 2 40× 3840× 3072
MEGRIM Four-spot megrim 20 1 2.5–10× 2088× 1550

GRENADIER Roughhead grenadier 24 3 1.25× 3888× 2916
4 0.73× 2560× 1920

http://www.iim.csic.es/
http://www.ieo.es/en/home
https://gitlab.citius.usc.es/eva.cernadas/sterappimagesdb


Sustainability 2023, 15, 13693 4 of 16

(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of histological images of European hake (a), Trisopterus luscus (b), European pilchard
(c), Four-spot megrim (d) and Roughhead grenadier (e,f) fish species with the outline of the ground truth
cells overlapped. Different colors reflect different development stages of matured cells.

3. Methods

There is a consensus in the scientific community about the superior performance of the
Canny edge detector proposed by [14], in relation to other common differential operators like
Sobel, Prewitt, Roberts, Laplacian, Laplacian of Gaussian (LoG) and difference of Gaussians
(DoG). In the following subsections, we describe the proposed approach, based on the Canny
filter, to recognize cells in microscopic images of fish gonads. Section 3.2 briefly describes the
measures used to evaluate the statistical performance of the segmentation algorithms.

3.1. MSCF: Multi-Scale Canny Filter

The classical Canny edge detector [14] includes the following steps: (1) smoothing of
the input image using a σ-width Gaussian kernel; (2) differentiation using a first derivative
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operator; (3) performing the non-maxima suppression process, which finds local maxima
in the direction perpendicular to the edge; and (4) performing thresholding with hystere-
sis. The hysteresis process uses a high threshold (TH) that allows a group of pixels to
be classified as edge points without using information about connectivity. The process
also uses a low threshold (TL) to determine which pixels will not be edge points. Only
those points that increase the connectivity of the previously determined edge points are
aggregated as edge points. The output of the process is an edge map, i.e., a binary image
with the detected edges in white. The filter performance depends critically on the tunable
parameters: thresholds TH and TL, and smoothing parameter σ. Medina-Carnicer et al. [28]
reviewed the approaches proposed to look for the best hysteresis thresholds for the Canny
edge detector. Nevertheless, we experimentally proved in our problem of cell segmentation
(see Section 4) that a unique set of parameters does not allow us to recognize all the cells.

We propose to apply the Canny filter using various sets of parameters followed by
an information fusion step. The idea behind our proposed model is to utilize various
scales (σ values) and thresholds in order to obtain more information from the image. The
objective is to achieve the efficient segmentation of microscopic images, where the strength
of cell boundaries varies far away with the microscope focus and, probably, depends
on the sample preparation and specimen. The pixel neighborhood in the Canny filter is
controlled by σ and its optimal value depends on the type and size of the objects of interest
in the image. High σ values smooth the inner regions of cells, which can be textured or
inhomogeneous. When cells are very close to each other, or when the edges are weak, high
σ values blur interesting edges as well. In the latter case, finer scales (i.e., lower σ values)
must be used, although, in this case, the Canny filter will detect more noisy edges. For a
given σ value, the variation in thresholds TL and TH controls the strength in the gradient
image. High thresholds detect the strongest edges (normally true edges), but they often
miss other true edges. Thus, low thresholds are also necessary in order to detect weak
true contours.

Added to the problem of tunable parameters, the output of the Canny edge detector
(either the implementation in Matlab (http://es.mathworks.com (accessed on 12 July 2023))
or in OpenCV (http://opencv.org (accessed on 12 July 2023))) only provides an edge
map of the image, without exploiting the connectivity of the hysteresis process. Thus,
we modified the filter implementation in order to provide the edges as sets or chains of
connected points, representing pixels in the image, instead of an edge map. The MSCF
function (summarized in Algorithm 1) returns a list of detected edges, E = {ei}Ne

i=1, in
the input grey level image I. Let NS and NT be the number of smoothing values and
thresholding rates; let S = {σi | i = 1, . . . , NS and σi > 0.1} be the set of scales; and
let R = {(Rj

L, Rj
H) | j = 1, . . . , NT , and 0 < Rj

L < Rj
H < 1} be a set of threshold rate

pairs. For each scale, a smoothed version IS of I is obtained by applying a Gaussian
filter (GaussianFilter function as in Algorithm 1). Afterwards, the gradient image IG is
calculated by applying a difference operator to IS (GradientFilter function). The selection
of the best values to apply hysteresis thresholding to the gradient image IG is always a
critical decision. In our approach, these values are determined from IG and a pair of rates
(RL, RH) using the CalculateThresholds function, which returns a different set of values
(TL, TH) for each gradient image IG. Finally, the hysteresis process (Hysteresis function)
thresholds the gradient image and returns a set of edges. Each edge ei is a set of points in
the image representing contours or discontinuities in the image properties. Only the edges
with more than a minimum number of points are considered in order to remove noisy
edges. As the Canny filter is applied to different scales and threshold sets, some edges may
correspond to the same cell. Thus, it is necessary to include an information fusion step,
which provides only one instance for each cell. The edges should also be with the points
sorted in order to build a closed contour, whose area can be measured, in order to estimate
the fish fecundity.

http://es.mathworks.com
http://opencv.org
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Algorithm 1: Multi-scale Canny filter
1 Algorithm: E=MSCF(I,S ,R, mp)

Data: I: grey-level image; S = {σi}
NS
i=1;R = {Rj

L, Rj
H}

NT
j=1; mp: minimum number of points

Result: E : set of edges (sets of points)
2 E ← ∅; np ← max(10, mp)
3 foreach σ ∈ S do
4 IS ←GaussianFilter(I, σ)
5 IG ←GradientFilter(IS)
6 foreach (RL, RH) ∈ R do
7 (TL, TH)←CalculateThresholds(IG , RL, RH)
8 E ′ ←Hysteresis(IG , TL, TH)
9 E ← E ∪ {e ∈ E ′ | size(e) > np}

10 end
11 end

In order to recognize cells in the image, the set E of edges detected by MSCF is post-
processed by the following steps: (1) sort the contour points of the edge; (2) apply a size
filter to the edges; (3) cells are normally round, so a roundness filter is applied to them; and
(4) apply an overlapping test to remove various instances of the same cell. This process
is summarized by the CellDetector method in Algorithm 2. The first and fourth steps
are necessary to provide a unique segmentation with closed contours for a cell. The cell
filtering by size and roundness is optional. The edgeSortedFiltered function, included in
Algorithm 2 and detailed in Section S1 of the Supplementary Materials, sorts the points
in a contour. This process is performed by calculating the convex hull of the contour and
measuring its difference with the contour. When this difference is small, the convex hull
is kept as the contour, and when the difference is high, interpolated points are created
from the true and convex hull polygons. In many biological problems, the experts are
only interested in objects (cells) with diameters between dmin and dmax, whose values are
specific to the problem and microscopic calibration. The size filter (see lines 8 and 9 in
Algorithm S1 of Section S1 in the Supplementary Materials) removes from E the edges
whose convex hull has a diameter lower than dmin or higher than dmax. The object roundness

ri is defined as ri =
P2

i
4πAi

, where Pi and Ai are, respectively, the perimeter and area of the
contour. The roundness filter removes the edges with a roundness higher than a certain
value Rmax > 1, because the roundness of a circle is 1. The edgeSortedFiltered function
allows us to specify whether we wish to apply a size filter (flag variable SF = True)or not
(SF = False), and whether we wish to apply the roundness filter (flag variable RF = True)
or not (RF = False).

Algorithm 2: Algorithm for cell recognition
1 Algorithm: C=CellDetector(I,S ,R, dmin, dmax , Rmax , SF, RF, OF)

Data: I: input image; S = {σi}
NS
i=1;R = {T j

L, T j
H}

NT
j=1; dmin/dmax : min./max. cell diameter; Rmax :

maximum roundness; SF: size flag; RF: roundness flag; OF: overlapping flag
Result: C: set of cells detected

2 C ← ∅; E ← MSCF(I,S ,R, dmin)
3 foreach e′ ∈ E do
4 e← edgeSortedFiltered(e′, dmin, dmax , Rmax , SF, RF)
5 C ← C ∪ {e}
6 end
7 if OF then // overlapping flag
8 C ← computeOverlappingTest(C)
9 end

After applying MSCF, there may be various detections of each true object in the image.
The overlapping test (computeOverlappingTest function included in Algorithm 2 and
detailed in Algorithm 3) provides only one instance of each true object as a closed curve. Let
E = {ei}Ne

i=1 be a set of contours representing the cells. For each contour ei, we precalculate
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the following data: (1) the minimum rectangle bi that encloses ei, using the boundingBox
function in line 5; (2) the radius ri of ei, calculated as half of the longest side of rectangle
bi; (3) the mass center pi

c, calculated as the center of the rectangle bi; (4) the parameter
di, which is the maximum distance between two consecutive points in ei (bear in mind
that when overlapping is tested, the points in the contour are sorted); and (5) the status
si of ei is set to 1, indicating that this contour is still not selected. Once these data are
computed, for each contour ei that is still not considered (si = 1), it is checked whether
there exist other ej ∈ E , ej 6= ei, with sj = 1 that overlaps ei. In order to speed up this
process, a simplified procedure is implemented. The first pre-selection of a cell candidate is
done if the distance between the mass centers of both cells (pi

c and pj
c) is lower than their

approximate radius, i.e., ei, ej ∈ E , i 6= j| distance(pi
c, pj

c) < ri + rj. Secondly, for a finer
test, the pointInsideContour function in line 17 of Algorithm 3 is used, which returns
true if a point is inside a closed sorted contour and false otherwise. Then, if pj

c is inside ei
and pi

c is inside ej, both contours are candidates to represent the same cell, i.e., both cells are

overlapped and ej is added as a candidate cell. If pi
c is inside ej but pj

c is not inside ei, it is
probable that the ei contour is a noisy object inside the ej cell. Thus, ej is exchanged by ei in

the set of candidate cells D. Finally, if pj
c is inside ei but pi

c is not inside ej, the contour ej is
de-estimated because it is probably a noisy object inside the ei cell. Once the set of candidate
cells D is built, the cell ek ∈ D with the minimal dk is selected, being dk the maximum
distance between two consecutive points in ek.

Algorithm 3: Overlapping test of cells
1 Algorithm: C=computeOverlappingTest(E)

Data: E : set of cells
Result: C: set of cells

2 C ← ∅; E = {ei}Ne
i=1

3 s← {si = 1, i = 1, . . . , Ne} // cell status
4 foreach ei ∈ E do // precalculated data
5 bi ←boundingBox(ei)
6 li ← longest side of the rectangle bi

7 ri ← li/2; pi
c ←mass center of bi

8 di ←maximum distance between two consecutive points in ei

9 end
10 for i← 1 to Ne − 1 do
11 D ← ∅ // cell candidates to be overlapped
12 if si = 1 then
13 D ← D ∪ {ei}
14 for j← i + 1 to Ne do
15 if sj = 1 then
16 if distance(pi

c, pj
c) < ri + rj then

17 ji← pointInsideContour(ei , pj
c)

18 ij← pointInsideContour(ej, pi
c)

19 if ji and ij then
20 D ← D ∪ {ej}; sj ← 0
21 else if ij then
22 D ← D ∪ {ej} − {ei}; sj ← 0
23 else if ji then
24 sj ← 0
25 end
26 end
27 end
28 end
29 if size(D) > 0 then
30 C ← C ∪ {ek ∈ D|dk is minimum}
31 end
32 end
33 end
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3.2. Evaluation of Cell Segmentation Methods

This problem is well defined in the sense that there is only one ground truth, the cells
annotated by the experts. The segmentation performance can be measured to the pixel or
region level. The pixel evaluation estimates the capability of segmentation algorithms to
correctly classify the image pixels into cells or background pixels. Precision, recall and
F1 score allow us to measure the segmentation quality to the pixel-based level. For each
image segmentation, we record the number of true positives TP (the number of pixels that
were classified as belonging to a cell by both the algorithm and the expert), true negatives
TN (the number of pixels that were classified as non-cell pixels by both the algorithm
and the expert), false positives FP (the number of instances where a non-cell pixel was
falsely classified as part of the cell by the algorithm) and false negatives FN (the number of
instances where cell pixels were falsely classified as non-cell pixels by the algorithm). From
this, we can calculate the precision (P), recall (R) and F1 using the equations

P =
TP

TP + FP
R =

TP
TP + FN

F1 =
2PR

P + R
(1)

As we are interested in measuring the diameter of the cells, it is also important to
evaluate the capability of the algorithms to recognize the cells, i.e., an evaluation at the
region level. To quantify the rate of cells correctly segmented, let Di be the number of
recognized cells and Ai the number of true cells annotated by the expert in image Ii. Let Pi

d
be the number of pixels of each recognized cell Ri

d, d = 1, . . . , Di. Similarly, let the number
of pixels of each annotated cell Ri

a, with a = 1, . . . , Ai, be called Pi
a. Let Oi

da = Ri
d ∩ Ri

a be the
number of overlapped pixels between Ri

d and Ri
a. Thus, if there is no overlap between two

regions, Oi
da = ∅, while, if the overlapping is complete, Oi

da = Ri
a = Ri

d. Let a threshold T
be a measure for the strictness of the overlapping (0.5 ≤ T ≤ 1). A region can be classified
into the following types: (1) a pair of regions Ri

d and Ri
a is classified as an instance of correct

detection if Oi
da ≥ Pi

dT (at least rate T of the pixels of region Ri
d in the detected image

overlaps with Ri
a) and Oi

da ≥ Pi
aT; (2) a region Ri

a that does not participate in any instance
of correct detection is classified as missed; and (3) a region Ri

d that does not participate in
any instance of correct detection is classified as noise.

4. Results

The MSCF algorithm is applied to the grey-level images of all datasets using the
following parameters: (1) the Gaussian spread of the filter to smooth the images is some
combination of the set S = {2, 4, 6} with NS = 3; and (2) the rate for selecting the
two thresholds to execute the hysteresis process on the gradient image is some combination
of the following pairs—R = {(RL, RH)} = {(0.4, 0.6), (0.55, 0.75), (0.7, 0.9)}. In order
to test the effect of varying both parameters, we performed experiments using one, two
or three σ values. Table 2 shows the highest value F1 using one, two or three values of
σ for each fish species. The precision and recall and the best configuration for the rates
to threshold are also presented. The F1 score gives a trade-off between the capability of
the algorithm to detect pixels that belong to cells without detecting pixels outside the
cells. The highest F1 ranges from 70.14% for pouting to 80.33% for the Four-spot-megrim
species (see column F1 in the table). The best configuration, number of σs used and
values of the thresholds depend on the fish species considered, as can be seen in Table 2.
Nevertheless, the differences in performance (F1 value) are small for different numbers
of σs. The highest F1 is normally achieved using more than one value of σ, except for the
pouting fish species. In order to identify the best configuration globally, the Friedman
rank [29] over all configurations and species is shown in Table 3. The first position is for an
MSCF that needs three scales S = {2, 4, 6} and one pair of thresholds T H = {(0.55, 0.75)};
in the second and third positions, the MSCF algorithm uses two scales S = {2, 4} and also
one pair of thresholds; and the first configuration using only one scale, as in the classical
Canny filter, is ranked in 12th position. Thus, the best performance cannot be achieved
using the classical Canny filter.
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Table 2. Precision, recall and F1 in % for the classification of pixels for datasets hake, pouting,
European pilchard, Four-spot megrim and Roughhead grenadier using Dmin = 100 pixels. The
columns labeled “No. σs”, “σ Value” and “Thresholds” show the configuration providing the
highest performance.

Hake Dataset
No. σs σ Value Thresholds (T H) Precision Recall F1

1 {2} {2} 80.85 59.93 68.83
2 {2, 4} {2} 78.77 64.01 70.63
3 {2, 4, 6} {2} 77.67 65.72 71.20

pouting dataset

1 {2} {2} 65.25 75.83 70.14
2 {4, 2} {1} 62.83 76.85 69.14
3 {2, 4, 6} {2} 62.1 75.69 68.23

European pilchard dataset

1 {4} {1, 2} 71.7 67 69.27
2 {2, 4} {1} 70.5 71.61 71.05
3 {2, 4, 6} {2} 69.68 74.55 72.04

Four-spot megrim dataset

1 {2} {1} 85.84 70.25 77.27
2 {2, 4} {1} 85.93 75.41 80.33
3 {2, 4, 6} {1} 85.02 74.63 79.49

Roughhead grenadier dataset

1 {4} {2} 73.56 68.28 70.82
2 {2, 4} {2} 71.66 70.67 71.16
3 {2} {2} 70.15 71.58 70.86

T H = {1 = (0.4, 0.6), 2 = (0.55, 0.75), 3 = (0.7, 0.9)}.

Table 3. List of the 20 best MSCF configurations (σ values and thresholds) using minimum diameter
Dmin = 100 pixels according to the Friedman rank of F1.

Position Rank σ Values (S) Thresholds (T H)

1 5.8 {2, 4, 6} {2}
2 6.4 {2, 4} {1}
3 6.6 {2, 4} {2}
4 8.2 {2, 4, 6} {2, 3}
5 8.4 {2, 4} {2, 3}
6 9.6 {2, 4, 6} {1}
7 12.0 {2, 4} {1, 2}
8 12.8 {2, 6} {1}
9 13 {2, 4} {1, 2, 3}

10 14.4 {2, 6} {2}
11 14.6 {2, 6} {2, 3}
12 15 {2} {1}
13 15.4 {2, 4, 6} {1, 2}
14 16.6 {2, 4, 6} {1, 2, 3}
15 17.6 {2} {2}
16 17.8 {2} {2, 3}
17 17.8 {2} {1, 2}
18 18 {2, 6} {1, 2}
19 18 {2} {1, 2, 3}
20 18.4 {4, 6} {1}

T H = {1 = (0.4, 0.6), 2 = (0.55, 0.75), 3 = (0.7, 0.9)}.

We compare the best configuration for the MSCF algorithm with other state-of-the-art
segmentation techniques mentioned in Section 1 with publicly available code. Specifically,
we use the following approaches: k-means clustering (implemented by kmeans function in
the OpenCV library (http://opencv.org (accessed on 12 July 20233))), mean shift (Authors’
code: https://github.com/xylin/EDISON (accessed on 12 July 2023)) [18], Chan–Vese
(http://dx.doi.org/10.5201/ipol.2012.g-cv (accessed on 12 July 2023)) [15,30], region merg-

http://opencv.org
https://github.com/xylin/EDISON
http://dx.doi.org/10.5201/ipol.2012.g-cv
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ing (Authors’ code: http://cs.brown.edu/~pff/segment/ (accessed on 12 July 2023)) [17]
and Govocitos [10] segmentation methods. The configuration used for each mentioned tech-
nique is detailed in Section S1 of the Supplementary Materials. Deep learning approaches
are not considered in this comparison because they are normally used as supervised seg-
mentation techniques and they would require large amounts of computational resources
for the size of the images in our datasets. Moreover, these are high-resolution images, but
DL should be applied on image patches or downsampled images. None of the options are
acceptable in our case, because (1) image patches should be large enough to include a small
number of whole cells, and therefore the patches would be too large for a DL setting; and
(2) image downsampling to the size required by DL networks may significantly reduce the
image information required to perform cell recognition.

The output of the MSCF algorithm is a set of contours C associated with the outline
of the cells. The output of the remaining algorithms is a binary image IB with cells and
background. In the last case, the set of contours C is extracted from IB using the Suzuki
algorithm [31]. The experts provide a minimum diameter for the matured cells, Dmin, which
depends on the fish species and the spatial resolution at which the images are acquired.
In our case, Dmin = 100 pixels for all fish species. At the same time, the cells are always
rounded, so we assume that their roundness is lower than a value Rmax. We consider
Rmax = 1.2, slightly above 1, which is the circle roundness. Finally, in all algorithms, the con-
tours ci ∈ C are filtered by size and roundness. Table 4 shows the performance (classification
of pixels) of all algorithms for the different fish species using the same minimum diameter,
Dmin = 100 pixels, which is the parameter used by the fishery experts in their daily work to
distinguish immature from matured cells. Comparing the segmentation algorithms tested,
the highest F1 value is provided by the MSCF algorithm for all fish species (F1 = 70.14%
for pouting, 72.04% for European pilchard, 80.33% for Four-spot megrim and 71.16%
for Roughhead grenadier), except for the hake species, where the best performance is pro-
vided by clustering (F1 = 79.86%). The differences from the best algorithm to the poorest one
are normally less than 10 points for all fish species: from 67.67% for the Chan–Vese method
to 79.86% for clustering and the hake species; from 46.6% for the Chan–Vese method to
70.14% for MSCF and pouting; from 65.97% for the Chan–Vese method to 72.04 for MSCF
and the European pilchard species; from 65.09% for the Chan–Vese method to 80.33% for
MSCF and the Four-spot megrim species; and from 43.55% for the Chan–Vese method to
71.16 for MSCF and the Roughhead grenadier species. Thus, the Chan–Vese method is the
worst segmentation algorithm for this problem.

Due to the properties of our problem, the best algorithm from the pixel classification
point of view would not be the best option. For example, imagine that the segmentation
algorithm detects correctly the majority of pixels of a cell; thus, from the pixel point of view,
its performance is good. However, if these correctly detected pixels are distributed into
various regions, its performance would be rather poor in order to count and measure the
cells, which is our goal in estimating fish fecundity. Figure 2 shows the variation in correct
cell recognition for different values of tolerance for all the fish species. The MSCF algorithm
achieved the best results, followed by the Govocitos algorithm, with the exception of the
European hake fish species, in which clustering provided the best results. The correct rate
decreases as a stricter overlap between the computer-recognized and expert-annotated cell
is required, i.e., for higher values of tolerance T, being practically zero when we demand
a perfect cell overlap. Experts believe that an overlap of 70% could be acceptable for
practical purposes. For this value, the average percentage of cells correctly recognized is
51.83% for the hake fish species and clustering segmentation algorithm, and 60.62%, 57.67%,
55.55% and 64.41% for the MSCF algorithm and the pouting, European pilchard, Four-spot
and Roughhead grenadier species, respectively. The average performance for the different
fish species ranges from 51.83% for European hake to 64.41% for Roughhead grenadier fish
species. Figure 3 shows the performance of the MSCF algorithm using the best global
configuration (S = {2, 4, 6} and T H = {(0.55, 0.75)}) for each image of all fish species.
The left panel shows the correct cell recognition rate for a tolerance of T = 0.7 and the

http://cs.brown.edu/~pff/segment/
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right panel presents the F1 value. Among each fish species, there is great variability in
performance in terms of the correct cell recognition rate and F1 value. This behavior is
similar for all fish species. It is important to emphasize that these datasets were built to
test the robustness of the STERapp software, and the images present high variability. The
absolute performance at a pixel level (F1 value) is always higher than at the region level
(correct cell recognition rate), which confirms the hypothesis that the pixels are correctly
labeled as cells or background but the connectivity among pixels could not be correctly
identified. Thus, we can conclude that the MSCF algorithm can be automatically run to
recognize cells for some images but, for other images, the recognition of cells could be
practically performed manually by the fishery experts. Thus, in order to provide a fully
automatic tool to estimate fecundity, it will be necessary to adopt software like STERapp
that combines automatic processing with an intuitive graphical interface to review the
recognition results before image quantification [27].

Table 4. Precision, recall and F1 in % for the classification of pixels for datasets hake, pouting,
pilchard, megrim and grenadier using Dmin = 100 pixels. The second column reports the algorithm
configuration providing the highest performance.

Hake Dataset
Algorithm Configuration Precision Recall F1

Clustering Color RGB WP 79.61 80.1 79.86
Meanshift sbw = 8, rbw = 4 68 75.3 71.46
Chan–Vese µ = 0.2 72.24 63.64 67.67

Felzenszwalb σ = 0.5, k = 750 68.63 74.62 71.5
Govocitos – 70.87 65.6 68.13

MSCF S = {2, 4, 6}, T H = {2} 77.67 65.72 71.2

pouting dataset

Algorithm Configuration Precision Recall F1

Clustering Color LAB WP 56.93 63.73 60.14
Meanshift sbw = 8, rbw = 6 48.93 77.85 60.09
Chan–Vese µ = 0.2 50.3 43.42 46.6

Felzenszwalb σ = 0.7, k = 250 47.47 82.9 60.37
Govocitos – 62.37 74.29 67.81

MSCF S = {2}, T H = {1, 2, 3} 65.25 75.83 70.14

Pilchard dataset

Algorithm Configuration Precision Recall F1

Clustering Grey RGB WP 61.32 83.83 70.83
Meanshift sbw = 8, rbw = 1 64.24 80.93 71.63
Chan–Vese µ = 0.2 59.35 74.24 65.97

Felzenszwalb σ = 0.7, k = 250 54.22 79.22 64.38
Govocitos – 68.63 72.12 70.33

MSCF S = {2, 4, 6}, T H = {2} 69.68 74.55 72.04

Megrim dataset

Algorithm Configuration Precision Recall F1

Clustering Color LAB WP 84.99 69.11 76.23
Meanshift sbw = 1, rbw = 4 74.21 82.23 78.02
Chan–Vese µ = 0.2 76.48 56.66 65.09

Felzenszwalb σ = 0.5, k = 250 74.29 73.53 73.91
Govocitos – 84.42 72.42 77.96

MSCF S = {2, 4}, T H = {1} 85.93 75.41 80.33

Grenadier dataset

Algorithm Configuration Precision Recall F1

Clustering Grey RGB WP 63.78 59.82 61.74
Meanshift sbw = 8, rbw = 8 69.59 67.83 68.7
Chan–Vese µ = 0.2 54.48 36.27 43.55

Felzenszwalb σ = 0.5, k = 750 76.32 66.73 71.2
Govocitos – 67.06 67.79 67.43

MSCF S = {2, 4}, T H = {2} 71.66 70.67 71.16

WP = without pre-processing, T H = {1 = (0.4, 0.6), 2 = (0.55, 0.75), 3 = (0.7, 0.9)}.



Sustainability 2023, 15, 13693 12 of 16

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Tolerance

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
rr

e
c
t 

ra
te

Clustering
MeanShift
Chan-Vase
Felzenszwalb
Govocitos
MSCF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Tolerance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
rr

e
c
t 

ra
te

Clustering
MeanShift
Chan-Vase
Felzenszwalb
Govocitos
MSCF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Tolerance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
rr

e
c
t 
ra

te

Clustering
MeanShift
Chan-Vase
Felzenszwalb
Govocitos
MSCF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Tolerance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
rr

e
c
t 
ra

te

Clustering
MeanShift
Chan-Vase
Felzenszwalb
Govocitos
MSCF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Tolerance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
rr

e
c
t 
ra

te

Clustering
MeanShift
Chan-Vase
Felzenszwalb
Govocitos
MSCF

Figure 2. Correct rate of cell recognition for different values of tolerance and fish species, European
hake (upper left ), Trisopterus luscus (upper right), European pilchard (midle left), Four-spot
megrim (middle right) and Roughhead grenadier (lower), achieved by the tested segmentation
algorithms using the minimum cell diameter Dmin = 100 pixels.



Sustainability 2023, 15, 13693 13 of 16

0 5 10 15 20 25 30 35 40 45 50

Image

0

10

20

30

40

50

60

70

80

90

C
o

rr
e

c
t 

ra
te

European Hake
Trisopterus Luscus
European Pilchard
Four-spot Megrim
Roughhead Grenadier

0 5 10 15 20 25 30 35 40 45 50

Image

0

10

20

30

40

50

60

70

80

90

F
1

 (
%

)

European Hake
Trisopterus Luscus
European Pilchard
Four-spot Megrim
Roughhead Grenadier

Figure 3. Correct rate of cell recognition for different values of tolerance and Roughhead
grenadier species achieved by the tested segmentation algorithms using the minimum cell diameter
Dmin = 100 pixels (left panel). The right panel shows the correct cell recognition rate achieved by
the MSCF algorithm for each image of all the fish species.

Figure 4 shows visual examples of the performance of the MSCF algorithm for the
different fish species, where the cell contour annotated by the expert and the cell outline
recognized by the algorithm are overlapped with the image in green and blue, respectively.
In all cases, we use the minimum diameter Dmin = 100 pixels. As can be seen visually
in the images, some false positive cells are due to the detection of cells whose sizes are
between matured and immature. In some cases, they were detected by the algorithm, but
the experts considered them immature. This fact led us to perform additional experiments
using a greater Dmin value, providing slightly higher performance results. Thus, in the
current version of STERapp [27], the process of cell recognition can be achieved using two
steps: firstly using a larger diameter and, if it is necessary, using a second diameter to add
the undetected cells.

To determine which is the best algorithm globally, Table 5 shows the Friedman ranking
of the algorithms over all datasets for correct cell recognition. The MSCF algorithm achieved
the first position, very near to 1. This means that it achieved the best performance in almost
all the experiments. The second position, with a ranking of 2.2 (i.e., the second-best
performance in almost all the experiments), was achieved by Govocitos, followed by
clustering, meanshift, Felzenszwalb and Chan–Vese in the last position.

All the experiments were performed on a computer equipped with 32 GB of RAM
and a 3.10 GHz processor under Linux Kubuntu 20.04. The average elapsed time of
the segmentation algorithms per image, using the configuration that provided the best
performance for each fish species, was 4.61 s for clustering, 2.97 s for Felzenszwalb, 3.83 s
for Govocitos, 2.69 s for MSCF, 133.31 s for meanshift and 165.04 s for the Chan–Vese
algorithm. The MSCF algorithm was the fastest one, followed by Felzenszwalb, Govocitos
and clustering. In fact, the time needed by the first four algorithms was only a few seconds,
which makes them suitable for image processing in interactive applications, while the last
two require more than one minute and they are too slow for real-time applications.
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Table 5. Friedman ranking of the different segmentation algorithms using correct cell recognition as
a quality measure and using Dmin = 100.

Position Rank Algorithm

1 1.2 MSCF
2 2.2 Govocitos
3 3 Clustering
4 4.4 Meanshift
5 4.8 Felzenszwalb
6 5.4 Chan–Vese

Figure 4. Examples of histological images of European hake (a), Trisopterus luscus (b), European pilchard
(c,d), Four-spot megrim (e) and Roughhead grenadier (f) fish species with the outline of the ground truth
cells (in green color) and computer-recognized cells (in blue color) overlapped.

5. Conclusions

We propose a segmentation algorithm based on the Canny edge detector, called the
multi-scale Canny filter (MSCF), to recognize cells in microscopic images. The classical
Canny edge detector combines the following steps: (1) smoothing of the grey-level im-
age using a σ-width Gaussian kernel; (2) differentiation using a first derivative operator;
(3) performing the non-maxima suppression process, which finds local maxima in the di-
rection perpendicular to the edge; and (4) performing thresholding with hysteresis. MSCF
considers different scales using a set of σ values, and the thresholds to the hysteresis process
are selected automatically from the image characteristics. Finally, there is a fusion process of
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the information coming from different scales. Our approach has been statistically evaluated
over five datasets of histological images of fish ovaries, providing F1 values from 70% to 80%
for the different fish species. Compared with other state-of-the-art segmentation techniques,
MSCF globally achieved the highest performance both in pixel classification (the highest F1
values) and cell recognition, measured as the percentage of cells correctly recognized for a
level of overlapping tolerance. This percentage for the different fish species ranged from
51.83% for European hake to 64.41% for the Roughhead grenadier dataset. Globally, the MSCF
algorithm achieved the first position using the Friedman ranking, followed by Govocitos,
clustering, meanshift and Felzenszwalb, and the last one was the Chan–Vese method.

In conclusion, our MSCF algorithm is very competitive, both in computational time
and performance, with other state-of-the-art segmentation algorithms. We verified that the
problem of recognizing cells in histological images of fish gonads is very challenging, and
that a completely automatic approach is still not available. Our future work will continue
designing new approaches to solve automatically this problem.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su151813693/s1, References [32,33] are cited in the supplementary
materials. Algorithm S1: EdgeSortedFiltered to return a sorted contour; Figure S1: Example of the
operation of Algorithm S1 to sort the point into a cell contour.
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