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Abstract: Vehicle detection and classification are the most significant and challenging activities of an
intelligent traffic monitoring system. Traditional methods are highly computationally expensive and
also impose restrictions when the mode of data collection changes. This research proposes a new
approach for vehicle detection and classification over aerial image sequences. The proposed model
consists of five stages. All of the images are preprocessed in the first stage to reduce noise and raise
the brightness level. The foreground items are then extracted from these images using segmentation.
The segmented images are then passed onto the YOLOv8 algorithm to detect and locate vehicles
in each image. The feature extraction phase is then applied to the detected vehicles. The extracted
feature involves Scale Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB),
and KAZE features. For classification, we used the Deep Belief Network (DBN) classifier. Based
on classification, the experimental results across the three datasets produced better outcomes; the
proposed model attained an accuracy of 95.6% over Vehicle Detection in Aerial Imagery (VEDAI)
and 94.6% over Vehicle Aerial Imagery from a Drone (VAID) dataset, respectively. To compare our
model with the other standard techniques, we have also drawn a comparative analysis with the latest
techniques in the research.

Keywords: YOLOv5; vehicle detection; classification; segmentation; DBN

1. Introduction

In recent years, vehicle detection and classification has been an emerging research
area due to its various applications in intelligent traffic management systems. Road Traffic
management applications include congestion detection, categorizing the various vehicle
types, recognizing doubtful vehicles on the road, and parking management system [1]. All
these systems mainly depend on vehicle identification, which has become a significant and
crucial issue in aerial imagery [2]. In conventional systems, vehicle detection was primarily
conducted by estimating motion in the image pixels [3–6]. However, the methods are not
efficient enough in remote sensing data because motion is also detected in pixels other than
the targeted objects [7]. Recently, researchers have proposed many improved techniques,
which include object segmentation [8], silhouette extraction [9], feature extraction, and
classification [10], to enhance the object detection capabilities of a system [11–16].

Sustainability 2023, 15, 14597. https://doi.org/10.3390/su151914597 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151914597
https://doi.org/10.3390/su151914597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8361-6561
https://orcid.org/0000-0003-1862-7250
https://doi.org/10.3390/su151914597
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151914597?type=check_update&version=2


Sustainability 2023, 15, 14597 2 of 19

Aerial images provide a better and broader view, thus providing significant informa-
tion about the sensed environment [17]. These images are used in numerous applications,
such as deforestation detection [18], agriculture field monitoring [19], and disaster manage-
ment systems [20]. The aerial traffic data is also collected to do traffic analysis to efficiently
use the road network, forecast forthcoming transportation requirements, and improve
traveler protection [21].

In our proposed model, we have used aerial images to recognize and classify vehicles.
In our model, the aerial videos are first converted into image frames. These frames are
pre-processed for noise removal and brightness enhancement using defogging and gamma
correction techniques, respectively [22–25]. Then, the images are segmented to reduce the
background complexity using Fuzzy C Mean segmentation. To detect vehicles in each
extracted frame, YOLOv8 is employed, which can detect small objects effectively. In the
end, all the detected vehicles are subjected to SIFT, ORB, and KAZE feature extraction
to classify them into multiple vehicle classes. For classification, we used the Deep Belief
Network, which is a simple classifier that uses neural networks, thus providing better
classification accuracy. Our accuracy has proven to be a result of an efficient model design.
The following is our system’s primary contribution:

• Our model combines the pre-processing methodologies with the segmentation tech-
nique to prepare images before passing them to the detection phase to reduce model
complexity.

• We used the newest YOLOv8, which has improved architecture to enhance vehicle
detection in segmented images as it can effectively detect objects of varying sizes.

• To classify vehicles, multiple features, including SIFT, ORB, and KAZE features, are
extracted. Combining scale and rotation invariant, 2D and fast and robust local feature
vectors are effective in classifying vehicles in aerial images.

• The proposed system uses a deep learning-based DBN classifier to achieve higher
classification accuracy.

The following is a list of the remaining sections of this article. Related work analysis
of the current approaches is included in Section 2. The suggested system’s architecture is
presented in Section 3. The experimental portion with a system performance evaluation is
shown in Section 4. Section 5 presents the system’s conclusion and the direction of future
efforts.

2. Related Work

In this section, we presented the most relevant and popular systems designed for
vehicle detection and classifications. Table 1 presents the details of the different models
proposed by the researchers in the literature.

Table 1. Related Work for Vehicle Detection and Classification.

Authors Methodology

Arinaldi et al. [26]

The paper implements two different methodologies for vehicle
detection and classification. The first method uses a Mixture of
Gaussian (MoG), combined with a Support Vector Machine
Classifier (SVM) classifier. The other method only uses faster
Recurrent Convolutional Neural Network (RCNN). However,
there was still a large number of vehicles that were
left undetected.
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Table 1. Cont.

Authors Methodology

Aqel et al. [27]

This study uses the background subtraction method to detect
moving autos. To lower the occurrences of false positives,
morphological corrections are performed. In the end, the
classification is accomplished using the invariant Charlier
moments. The method uses conventional image processing
techniques, that limits its applicability to diverse traffic scenarios.
Also, the background subtraction method will eliminate the cars
which are not in motion, thus reducing the true positives.

Sarikan et al. [28]

The model uses a K-nearest neighbor classifier to automatically
detect and classify vehicles. For feature extraction, windows and
hollow areas of the vehicles are constructed to classify it as a
motorcycle or car. The model is not applicable for broader views
and dense traffic conditions.

Tan et al. [29]

The authors presented a method to classify vehicles using a
Convolutional Neural Network (CNN). It uses an aerial image
dataset. The proposed model firstly determines whether the area
contains any vehicle or not by evaluating motion changes, feature
matching and heat maps. Then, the classification is conducted
using the classification layer of inception-v3 and AlexNet.

Hamzenejadi et al. [30]

This paper presents real-time vehicle detection solution based on
Yolov5. The existing model is improved by adding attention
mechanism and a new concept of ghost convolution. The
experimental results prove the efficiency of the YOLO model in
object detection models.

Ozturk et al. [31]

In this paper, a vehicle detection method has been presented. The
vehicles are detected via miniature CNN architecture combined
with morphological corrections. The model requires intensive
post-processing to achieve good results. Also, the accuracy is not
consistent on other datasets.

Roopa Chandrika et al. [32]

A model for vehicle recognition and classification has been
presented. The model incorporates adaptive background
subtraction along with binary label segmentation to locate
vehicles. The approach is not suitable for stationary car detection
or during traffic jam conditions.

Kumar et al. [33]

A new approach that uses You Only Look Once (YOLO) with
Long Short-Term Memory (LSTM) to detect and classify vehicles.
To reduce the model complexity, the images are segmented into
binary labels in the pre-processing stage. The detected vehicles
are also counted by counting the bounding boxes and classified
into lightweight and heavy-weight vehicles.

Zhang et al. [34]

The paper proposes a method that uses an improved YOLOv3
algorithm to detect vehicles. The pre-trained YOLO network is
trained with a new structure to improve the accuracy of the
detection method. However, YOLOv3 is one of the oldest
versions. The detection results can be improved by using the
newest architectures.

Even though extensive research has been completed in the field of automated traffic
monitoring systems, there is still room for improvement. The detection of vehicles in
aerial images specifically in intensive traffic conditions requires efficient and specialized
architectures to obtain good results. Machine learning methods are not good enough to
differentiate between objects that have motion in their pixels [35,36]. Therefore, YOLOv8 is
the newest and most effective object detector based on convolution layers [37,38]. Moreover,
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combining different feature sets to classify vehicles can contribute to reducing classification
errors.

3. Proposed System Methodology

The proposed architecture identifies vehicles in the images and classifies them into
multiple vehicle classes. Primarily, the videos are first converted into frames. Pre-processing
procedures are applied to the images, i.e., defogging for noise reduction, and then Gamma
correction is used to modify the intensity of the images for improved detection. On the
filtered images, FCM segmentation is applied to separate the foreground and background
objects [39–41]. The detection is performed using the YOLOv8 algorithm. After vehicle
detection, SIFT, ORB, and KAZE features were extracted [42–44]. On this feature vector,
the DBN classifier was trained to classify each detected vehicle into its corresponding class.
The proposed system design is shown in Figure 1.
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Figure 1. Proposed architecture for vehicle detection and classification.

3.1. Images Pre-Processing

Noise reduction is required in the obtained image to remove additional pixel informa-
tion, since the extra pixels make detection more difficult [45–47]. Only the most appropriate
filter that incorporates defogging techniques is applied to the specific noise for good re-
sults [48]. The defogging method determines the amount of noise present in each pixel of
the image, then eliminates it as follows:

G(x) = X(x)Y(x) + Z(1− p(x)) (1)

where x specifies the location of the pixel, Z is the fog density, and Y(x) is the transmission
map. Figure 2 shows the defogged images.
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Figure 2. Defogging results over the VEDAI and VAID datasets (a) original Images (b) defogged
images.

In the next step, Gamma correction [49,50] is used to alter the denoised image’s
intensity since the region of interest can be detected most effectively when the brightness is
high [51]. The power-law for gamma correction is given as:

Vo = TVγ
I (2)

where T is a constant that is typically equal to 1, VI is the input’s non-negative values with
power γ whose range can be between 0 and 1. Vo represents the resultant image [52–55].
Figure 3 displays the denoised, intensity-adjusted image with the plot. The gamma-
corrected images are given in Figure 3.
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3.2. Fuzzy C-Mean Segmentation

In this section, the foreground objects are separated from the background to reduce
the complexity of the images. For this purpose, we used the FCM segmentation technique,
that groups the image pixels into one or more clusters [56]. In FCM segmentation, the
pixels which belong to more than one cluster are known as fuzzy logic [57,58]. While
grouping the pixels, the objective function is optimized during numerous iterations of
the process [59,60]. The clustering centers and membership degrees have been regularly
changed during the iterations [61]. A finite collection of N elements Q = q1, q2, . . ., q is
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divided into a set of M clusters via the FCM method. Each element of the vector wj, where
j = 1, 2, . . ., N, has n dimensions [62,63]. We define a technique to divide Q into M clusters
using the cluster centers c1, c2 . . . , cm in the centroid set c [64]. In the FCM technique, h is a
representative matrix that shows each element’s participation in each cluster [65,66]. It can
be well-defined as:

h(j, y), 1 ≤ j ≤ N; 1 ≤ y ≤ M (3)

where the membership value of the element qj with cluster center cy is represented by
h(j, y). We are more certain that the element qj belongs to the y cluster if the value of h(j, y)
is higher [67,68]. Moreover, when calculating the performance index Lf, the weighted sum
of the distance between the components of the relevant fuzzy cluster and the cluster center
is calculated [69,70].

Lf = (h, c) = ∑v
i=1 ∑y

a=1 ht
ia‖ qi − ca ‖2, 1 < t < ∞ (4)

where ca is the ath cluster center, qi is the ith pixel, v is the cluster number, y is the number
of pixels, and t is the blur exponent [71–75]. The following formula is used to update the
membership function:

ht
ia =

1

∑m
h=1

(
dis2

ia
dis2

ha

) 2
t−1

(5)

where the distance between the cluster centroid ca and the pixel qi is supplied by dis2
ia,

and the membership matrix is represented by ht
ia, which ranges (0, 1). The point of cluster

centroid is calculated as follows:

ca =
∑N

j=1 ht
ijqj

∑N
j=1 ht

ij
(6)

When a pixel gets close to the cluster center to which it belongs, it receives a high
membership value, and vice versa. The result of FCM segmentation is seen in Figure 4.

3.3. Vehicle Detection via YOLOv8

For vehicle detection, we used the YOLOv8 algorithm. YOLOv8 is an efficient single-
shot detector that can be used for detection, segmentation, and classification tasks [76].
Furthermore, it requires fewer parameters for training [77–80]. Based on the CSP concept,
the C2f module replaces the C3 module, whereas the YOLOv8 backbone is mostly the
same as the YOLOv5 backbone [81,82]. The C2f combines C3 and ELAN to create the C2f
module, building on the ELAN concept from YOLOv7, so that YOLOv8 might continue to
be portable while obtaining more comprehensive gradient flow information [83]. The SPPF
module was still utilized at the end of the backbone, and three Maxpools of size 5 × 5 were
sequentially applied before each layer was concatenated to ensure the precision of objects
of varying scales while also maintaining a low weight [84].

The feature fusion approach still employed by YOLOv8 in the neck section is PAN-
FPN, which improves the fusion and usage of feature layer data at numerous scales. The
neck module is made up by combining the final decoupled head structure, numerous
C2f modules, and two upsamplings [85–88]. The final component of the neck in YOLOv8
was constructed using the same concept as the head in YOLOx. It increased accuracy by
combining confidence and regression boxes. Moreover, it is an anchor-free model which can
directly detect the object’s center. In order to expedite Non-Maximum Suppression (NMS), a
challenging post-processing step that sorts through potential detections following inference,
anchor-free detection lowers the number of box predictions. The detected vehicles using
the YOLOv8 are given in Figure 5.
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3.4. Feature Extraction

This section describes a method for extracting various features. The feature set com-
prises three different features: SIFT, KAZE, and ORB.

3.4.1. SIFT Features

We used the Scale Invariant Feature Transform (SIFT) technique to obtain important
features [89–91]. SIFT reduces an image’s information to a set of points that can be used to
identify recurrent patterns in other pictures [92]. Scale and rotation invariant features are
retrieved using SIFT [93–95]. Figure 6 shows the steps of SIFT feature extraction.
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3.4.2. KAZE Features

In order to extract KAZE features, a Gaussian kernel is convolved with an input
image [96]. The convolved image is used to construct an image gradient histogram, and
computer code is used to calculate the contrast parameters [97]. Values for the contrast
parameter and evolution time are used to calculate the nonlinear scale space as follows:

tj+1 =
(

I − f j + 1− f j∑m
i=1 Bi

(
tj
))−1

tj (7)

to determine the response of the scale normalized determinant of the Hessian at various
levels to identify interesting locations, we use the formula:

FHess = σ2
(

txxtyy − t2
xy

)
(8)

The second-order cross-derivative is presented as txy, the second-order horizontal
derivative as txx, and the vertical derivative is given as tyy. The extracted KAZE features
are shown in Figure 8.
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3.4.3. ORB Features

The Oriented FAST and Rotated BRIEF (ORB) is an efficient feature extractor. To
identify key points, it uses the FAST (Features from Accelerated Segment Test) keypoint
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detector [98–100]. It makes more complex use of the BRIEF (Binary Robust Indepen-
dent Elementary Features) description. Additionally, it is dimensionally and rotationally
invariant [101]. The patch moment is obtained as follows:

muv = ∑ xuyvl(j, k) (9)

where u and v represent the intensities of the picture pixels at the j and k locations. Moreover,
the mass center is calculated by using the following formula.

W =
m10

m00
,

m01

m00
(10)

The patch orientation is obtained by:

θ = atan(m01, m10) (11)

The final extracted feature is seen in Figure 9.
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3.5. Classification via DBN

A Deep Belief Network (DBN) classifier is being used to classify vehicles. A deep
neural network serves as a DBN’s building block, which is composed of layers of latent
variables connected only between the layers as a whole and not between the units within
each layer [102]. For the creation of DBN, Restricted Boltzmann Machines (RBN) act as
the fundamental building blocks [103]. A layer of RBN’s visible and hidden units combine
to form a two-layer structure [104]. The collective energy arrangement of the two units is
calculated as:

Enr(MN, WM, θ) = −∑D
i=1 rMivi −∑F

j=1 aHjhj −∑D
i=1 ∑F

j=1 sj MNiWMj

= > −rT MN − aTWM−MNT MWM
(12)

where θ =
{

rMi, aWj, seij
}

, aHj and rMi stand for the bias conditions of the visible and
hidden components, respectively. The hidden j and visible component i are given different
weights by seij. The following determines the combined unit’s configuration:

Pr(MN, WM, θ) =
1

PC(θ)
exp(−Enr(MN, WM, θ)) (13)

QC(θ) = ∑ MN ∑ WM Enr(MN, WM, θ) (14)

where QC(θ) denotes a regularisation constant. In the network, the energy function acts
as a probability distribution, and Equation (12) can be used to modify the training vector.
It is not recommended to use the RBN’s hidden layers alone to extract features from the
data [105–109]. The output of the RBN from layer one serves as the input for layer two,
and layer two’s output serves as the input for layer three. A hierarchical approach to
DBN, which is created by the hierarchical layer-by-layer RBN structure, is more effective in
extracting characteristics from the dataset [110–112]. The DBN architecture is displayed in
Figure 10. Also, Algorithm 1 shows the steps in classification via DBN.
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Algorithm 1: Classification via DBN

Input: I : I = {i1, i2, . . .. . ., in}; image fames
Output: C = (n0, n1, . . . . . . , nN): the classification;
D← []: Vehicle Detections
F← []: Feature Vector
Method:
Video = VideoReader (‘videopath’)
img_frame = read (video)
for k = 1 to size (img_frame)

resize_img = imresize (img_framek, 768 × 768)
seg_img = FCM (resize_img)

D← YOLOv8 (seg_img)
for s = 1 to size D

F← SIFT (Ds)
F← KAZE (Ds)
F← ORB (Ds)
veh-class = DBN (F)

end for
return veh-class

return img_frame
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4. Experimental Setup and Evaluation

Experiments were conducted on a computer with the specs Intel Core i5-7200U
2.30 GHz processor, 8 GB RAM, and x64-based Windows 10. Results were obtained
using Google Colab. The system examined the proposed architecture’s performance on
three benchmark datasets called: VEDAI, and VAID datasets. To evaluate the dependabil-
ity of our suggested system, the k-fold cross-validation is applied on all three datasets.
This section describes the dataset, details the trials, and compares the system to other
state-of-the-art technologies.

4.1. Dataset Description
4.1.1. VEDAI Dataset

The VEDAI [113] is a public dataset for vehicle detection in aerial imagery. It was
proposed in 2015. The collection aids researchers in locating cars in aerial photographs.
The dataset contains miniature automobiles with a variety of properties, including variable
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lighting conditions, shadows, and obstructed objects. In this dataset, vehicles are classi-
fied into nine separate categories: “car”, “truck”, “pick-up”, “plane”, “tractor”, “boat”,
“camping car”, “van”, and the “other” category. The average number of cars is 5.5, and
they take up around 0.7% of the total number of pixels in each photograph. It also includes
a common technique for replicating and contrasting the findings of other studies. Figure 11
shows some of the images from the VEDAI dataset.
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4.1.2. VAID Dataset

The VAID dataset [114] included 6000 vehicle photos that were divided into seven cate-
gories, including minibus, truck, cement truck, sedan, pickup, bus, trailer, and truck. These
images were taken by a drone in various lighting situations. The drone was positioned
between 90 m and 95 m above the ground. Images taken at 23.98 frames per second have a
resolution of 2720 × 1530. Ten locations in southern Taiwan’s traffic and road conditions
are included in the dataset. The traffic images show an urban setting, a suburban city, and
a university campus. Figure 12 shows sample photos from the VAID dataset.
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4.2. Performance Metric and Experimental Outcome

The studies demonstrated the efficiency of the proposed system after we analyzed
its performance across the two datasets. Figures 13 and 14 represent the classification
accuracies of both the datasets. Tables 2 and 3 demonstrated the vehicle detection accuracies,
precision, recall, and F1-score. Tables 4 and 5 illustrates the confusion matrices for the
VEDAI and VAID dataset achieving an accuracy of 95.6% and 94.6%, respectively. The
experiments were repeated to assess the effectiveness of the findings. The comparison of
our system with other widely used research models is shown in Table 6.
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Table 2. Overall accuracy, precision, recall, and F1-score for vehicle detection over the VEDAI dataset.

Vehicle Class Precision Recall F1-Score

Pickup 0.985 0.967 0.975
Tractor 0.991 0.987 0.988
Vans 0.941 0.958 0.949
s 0.907 0.910 0.908
Truck 0.934 0.971 0.952
Camping Car 0.956 0.945 0.950
Plane 0.977 0.936 0.956
Boat 0.965 0.971 0.968
Others 0.962 0.934 0.947

Mean 0.957 0.953 0.955
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Table 3. Overall accuracy, precision, recall, and F1-score for vehicle detection over the VAID dataset.

Vehicle Class Precision Recall F1-Score

Sedan 0.963 0.974 0.968
Minibus 0.986 0.965 0.975
Truck 0.975 0.989 0.982
PickupTruck 0.988 0.946 0.967
Bus 0.941 0.978 0.959
Cement Truck 0.944 0.912 0.927
Trailer 0.973 0.956 0.964
Car 0.945 0.901 0.922

Mean 0.964 0.953 0.958

Table 4. Confusion matrix for vehicle classification by proposed approach on the VEDAI dataset.

Vehicle Class Pickup Tractor Vans Car Truck Camping
Car Plane Boat Others

Pickup 0.98 0 0 0 0 0 0 0 0
Tractor 0.02 0.97 0 0 0 0.01 0 0 0
Vans 0 0.01 0.95 0.02 0 0.02 0 0 0
Car 0 0 0.04 0.93 0 0.02 0 0 0.01

Truck 0 0.03 0 0 0.97 0 0 0 0
Camping Car 0.02 0 0.03 0.02 0.01 0.92 0 0 0

Plane 0 0 0 0 0 0 0.96 0 0.04
Boat 0 0 0 0 0 0 0.01 0.95 0.04

Others 0 0 0 0 0 0 0.01 0.02 0.97
Mean = 95.6%

Highlights show the score for correct classification for each class.

Table 5. Confusion matrix for vehicle classification by proposed approach on the VAID dataset.

Vehicle Class Sedan Minibus Truck Pickup
Truck Bus Cement

Truck Trailer Car

Sedan 0.98 0.01 0.01 0 0 0 0 0
Minibus 0 0.95 0.02 0 0.03 0 0 0

Truck 0 0.01 0.99 0 0 0 0 0
Pickup Truck 0 0.01 0 0.96 0.02 0 0.01 0

Bus 0.01 0.02 0 0 0.97 0 0 0
Cement Truck 0.01 0 0 0 0 0.99 0 0

Trailer 0.01 0 0 0.01 0 0.01 0.98 0
Car 0.03 0.01 0.01 0 0 0 0.02 0.93

Mean = 94.6%

Highlights show the score for correct classification for each class.

Table 6. Comparison of the proposed method with conventional systems over VEDAI and VAID
Datasets.

Methods VEDAI VAID

Wang et al. [115] 93.96 -
Mandal et al. [116] 51.95 -
Terrail et al. [117] 83.50 -
Wang et al. [118] 91.27 -

Lin et al. [114] - 89.3
Rafique et al. [1] 92.2 -
Hou et al. [119] 75.54 -

Our proposed Model 95.6 94.6
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The results and comparison with other models show that our model performs well in
detection and classification of the vehicles in aerial images. Additionally, YOLOv8 is an
efficient algorithm in detecting objects of different sizes and appearance. Moreover, the
classification accuracy can be improved further by extracting more useful features that are
based on the texture and shape of the objects.

5. Conclusions

This study proposes an innovative method for identifying and categorizing vehicles
in aerial image sequences. The model preprocesses the aerial images for noise removal
before the detection phase. To reduce the complexity, all the images are segmented using
the FCM segmentation technique. The vehicle detection task is accomplished using the
YOLOv8 algorithm. All the detected vehicles are subjected to SIFT, KAZE, and ORB feature
extraction. The extracted feature is then used to train the DBN classifier to classify vehicles
into their corresponding classes. The proposed technique has produced promising results
over both datasets. The accuracy attained over the VEDAI dataset is 95.6%, and on VAID it
was 94.6%.

The proposed system needs to be trained with more vehicle classes. Also, more
features can be added to improve the classification accuracy of the vehicles. In the future,
to increase the efficiency of our system and make it a standard for all traffic environments,
we intend to add more features and reliable algorithms.
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