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Abstract: With the rapid increase in new energy penetration, the uncertainty of the power system
increases sharply. We can smooth out fluctuations and promote the more grid-friendly integration
of new energy by combining it with energy storage. This paper proposes an evaluation method for
assessing the value of a combined power plant system of new energy and energy storage using robust
scheduling rules. Firstly, the k-means clustering algorithm is improved by using the elbow method in
order to generate typical scenarios that can be used for the operation optimization of the combined
power plant system of new energy and energy storage. Then, a two-stage robust optimization model
of the combined power plant system of new energy and energy storage with a min–max–min structure
is constructed according to the uncertainty of new energy. In this model, the operation constraints
and coordinated control of wind–solar–thermal–storage units are considered. By constructing the
uncertainty set of the new energy output, the overall operating cost of the system is minimized
and uncertainty adjustment parameters are introduced to flexibly adjust the conservatism of the
scheduling rules. Furthermore, based on the column and constraint generation algorithm and strong
duality theory, the original problem can be decomposed into a master problem and subproblems with
mixed integer linear characteristics for an alternating solution, so as to obtain the optimal solution
of the original problem, and finally obtain the robust scheduling rule with the lowest operating
cost under the worst scenario. Finally, based on the wind and solar power output curves and the
output of each unit under the robust scheduling rules, combined with the value estimation method
of the combined power plant system of new energy and energy storage, the value of the combined
power plant system of new energy and energy storage is evaluated. Through the establishment of
models and example analysis, it is proven that raising the quantity of the grid-connected power
generated with new energy will cause an increase in the volatility of the power system; it will also
bring considerable benefits to new energy plants, and the energy storage can improve the stability of
the system. The above can provide references for the subsequent energy storage configuration in the
planning of a combined power plant system of new energy and energy storage.

Keywords: clustering algorithm; combined power plant system of new energy and energy storage;
robust scheduling rules; value assessment

1. Introduction

Under the goal of “carbon peak, carbon neutral”, the use of new energy to reduce
the proportion of traditional fossil energy and reduce the scale of carbon emissions is
predominant in today’s energy development. Wind and solar energy are both forms of new
energy, but both have instability and discontinuity, meaning that it is difficult to output
stable power, and thus large-scale grid connection will have a non-negligible impact on the
grid; therefore, the problem with new energy consumption is highlighted. Energy storage is
a major way to reduce grid fluctuations caused by renewable energy generation, and it will
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play a unique role in the new power system. In order to promote the rapid development
of new energy storage, in July 2021, the National Development and Reform Commission
and the Energy Bureau jointly issued the “Accelerate the promotion of new energy storage
development guiding opinions” [1], which put forward a sound combined power plant
system of a new energy and energy storage project incentive mechanism. In order to
support the construction or sharing mode implementation of new energy storage and new
energy generation projects, a dynamic assessment of the system value and technology level,
including competitive allocation, project approval (for the record), grid timing, system
scheduling and operation arrangements, guaranteeing the number of hours of utilization,
power auxiliary service compensation assessments, etc., to provide appropriate tilt, should
be performed.

On the one hand, the joint operation of new energy units and energy storage pro-
vides an effective strategy to promote the system to consume new energy [2–5]. Jing et al.
developed a mathematical model to optimize a hybrid solar–wind energy system with
storage for a remote island with the genetic algorithm (GA) [5]. Liu et al. presented a
capacity configuration optimization model that takes into account the demand response
of domestic appliances in wind/solar/pumped storage and island microgrids and uses a
particle swarm optimization (PSO) algorithm to obtain the optimal sizing of all the major
pieces of equipment [6]. Li et al. proposed an optimal capacity configuration method for the
grid-connected wind–photovoltaic–pumped–storage joint operation system and solved the
model using the fast and elitist non-dominated sorting genetic algorithm-II (NSGA-II) [7].
The above studies evaluated the economic performance of the combined wind–optical–storage
system and solved the optimal capacity allocation scheme of the system.

However, all of these studies only considered the system economics and did not study
the reliability. Ma et al. took the lowest initial investment cost and contact line fluctuation
as the optimization objectives and used dynamic planning methods to optimally allocate
the energy storage capacity, while guaranteeing the system stability and economy [8].
Nguyen et al. investigated the optimal capacity allocation of the system under a zero-load
shortage rate and evaluated the energy cost of the system [9].

On the other hand, the generation power of new energy, such as wind and solar, has
an inherent uncertainty characterized by intermittency and stochasticity, which makes it
difficult to predict accurately. Considering the uncertain schedulability of the new energy
sources’ output power, achieving the economic and reliable operation of the power grid has
become a hot research topic. Planning methods considering uncertainty comprise stochastic
planning, scenario planning, and robust optimization [10,11]. Robust optimization has
received increasing attention because the exact probability distribution of uncertainties is
not required, and only their fluctuation ranges need to be counted [12]. Cho et al. con-
sidered the economic dispatch problem under the scenario of the maximum cost of the
microgrid and distribution network interaction, constructed a min–max robust optimiza-
tion model, and transformed it into a single-layer optimization problem for the solution
using the scenario generation method [13]. Wang et al. built a two-stage robust model
with a min–max–min structure, which considers standby scheduling and the economic
dispatch mode under multiple scenarios of wind power [14]. However, the robust models
in the above literature are unable to flexibly adjust the conservatism of the scheduling
scheme. Chen et al. proposed a distributional uncertainty model where the probability
distribution of load power can vary around a given reference distribution [15]. In addition,
the fluctuation of the real-time electricity price is taken into account in the model, and
regulation parameters are introduced in the objective function to control the robustness of
the optimization scheme.

Meanwhile, the optimal scheduling of power systems considering the uncertainty
of renewable energy operation has also been extensively studied by scholars [16–18]. A
multi-timescale optimal scheduling model based on the wind power uncertainty and
demand response was proposed to address the uncertainty of wind power integration,
and during real-time scheduling, the deviation remaining after intraday scheduling is
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corrected [19]. Lu et al. proposed a multi-agent deep reinforcement learning (MADRL)-
based algorithm with the strategic goal of achieving the real-time optimal scheduling of
ADS, in which the uncertainty of renewable generations (RDGs), loads, and electricity
prices is considered. While there has been significant research on the optimal operation of
renewable energy systems, there is still a gap in proposing a stochastic-based optimization
model that takes into account the uncertainties of both renewable energy resources and
electricity prices simultaneously [20]. Emrani-Rahaghi et al. aimed to address this gap
by introducing a probabilistic scenario-based model that considers both the uncertainties
of renewable energy sources and electricity prices [21]. Integrating the energy storage
system (ESS) optimally is the best solution so far. Al Ahmad derived and generalized a
probabilistic distribution in order to consider the uncertainties of wind generators [22].
Moreover, a mixed integer non-linear optimization problem was constructed comprising
three objective functions to be minimized simultaneously. The objectives comprised the
total operation and planning cost of ESSs, the average voltage deviation, and average power
losses. Lei et al. proposed an optimal operation strategy of hydro-unit level coordinated
peak shaving and economic operation in a hydro–wind–PV hybrid system under uncertain
conditions of wind and PV power [23]. This article described the uncertainty of wind
and PV power using Latin hypercube sampling and scenario reduction methods, and a
two-layer optimization model that considers wind and PV uncertainty is then established.
Han et al. proposed a bi-level scheduling model to maximize the net revenue of the LSE
from optimal DR bidding and energy storage system (ESS) scheduling by considering the
impacts of the uncertainty of the demand response, and an online learning method was
adopted to improve aggregation reliability [24]. Li et al. proposed a near-zero carbon
emission power plant (NZCEP), integrating gas turbines, wind turbines, power-to-gas,
and a carbon capture, utilization, and storage system, and a two-stage data-driven set-
based robust optimization (DSRO) model, including a day-ahead dispatching phase and a
real-time adjustment phase, was applied to ensure the consumption of renewable energy
resources and to develop the optimal operating strategy for NZCEP participation under
the electricity-carbon market [25].

Although the above studies have examined the joint operation of new energy and
storage and the optimal scheduling of the power system taking into account the uncertainty
of the new energy sources, there are no studies on the valuation of the system of “new
energy + storage” power plants. By pricing the system’s capacity, which utilities can use in
the capacity market based on the amount of that capacity they supply to the grid, one can
gain a clearer understanding of the significance and economic advantages of the system. In
order to better utilize the system’s potential advantages, provide relevant stakeholders a
basis for decision-making, and advance sustainable energy, assessing the capacity value
of a NESPS system can provide crucial information for the development of its economic
planning and financial structure. It can also reveal the value of the NESPS system in terms
of its reliability, flexibility, and economics. This will serve as a foundation for decision-
making by pertinent stakeholders and support the growth of sustainable energy sources, as
well as the modernization and transformation of the power system.

Therefore, this paper first determines the number of clusters of the k-means algorithm
based on historical data using the elbow method, so as to obtain typical scenarios. Secondly,
it proposes a robust scheduling rule for the uncertainty of wind power, and then, it improves
the operation model of the combined power plant system of new energy and energy
storage constructed with the objective of minimizing the comprehensive operation cost.
The optimization model is improved, and the column and constraint generation algorithm
and strong dyadic theory are used to transform the original problem into the main problem
and sub-problems with mixed-integer linear forms. Finally, based on the robust scheduling
scheme obtained from the solution, the system value of the combined power plant system
of new energy and energy storage is evaluated by changing the energy storage capacity
and the amount of new energy allowed to be fed into the system, which can be used as
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a reference for the subsequent configuration of energy storage capacity in the combined
power plant system of new energy and energy storage.

The purpose of this study is to expand existing research in the following ways. In the
introduction, we outline the main objectives of the study by introducing the background
of the study, through a comprehensive review of the sustainable development literature,
analyze the shortcomings of the existing research, and discuss the latest developments and
trends in more depth. Section 2, using the uncertainty scenario reduction method, replaces
the initial number of scenarios with scenarios built from several scenarios to simulate the
scenarios encountered in the optimized operation of the new energy and energy storage
combined power plant systems. In Sections 3 and 4, we use robust optimization methods
to solve the random properties of the scene output, and for the uncertainty of the new
energy output, we build a two-stage robust optimization model to obtain the least costly
robust scheduling rules in the harshest scenarios. In Section 5, for the two-stage robust
optimization model described above, the column constraint generation algorithm is used
to improve the optimization, effectively reducing the number of iterations and solving
time. In Section 6, an annual wind/photovoltaic integrated scene set is selected to analyze
the typical reduction scenarios and test the effectiveness of the improved algorithm and
model. Section 7 summarizes the results of this study and illustrates its significance
and importance.

2. Scenario Generation and Reduction Method

This section addresses the problems encountered in optimizing the operation of
the combined power plant system of new energy and energy storage. It is necessary to
improve the computational efficiency based on ensuring the accuracy of the original time
sequence of the new energy. The advantages of scene reduction are reflected in the more
complex scenarios that can be generalized by fewer typical scenarios, and the complexity
of the computation is improved by reducing the number of similar scenarios in scenario
generation by means of mathematical algorithms and other tools. In studying the new
power system scheduling planning in line with the “dual carbon” target, as the length
of time in the scheduling interval grows, this results in an exponential increase in the
total number of generated scenarios, with multiple consecutive point-in-time scenarios
producing “dimension disasters”. With the uncertainty scenario reduction method, the
initial number of scene sets is replaced by a set built from a few scenarios. It is possible
that the reduced scenes can achieve the purpose of maximally restoring the initial scenes in
terms of probability.

2.1. K-Means Clustering Algorithm Based on the Elbow Method

The typical scenarios obtained from the combined power plant system of new energy
and energy storage can better describe the probability distribution characteristics of the
initial data because of the large number of clusters, but at the same time, if the number of
clusters is too large, this can result in an increase in the complexity of the calculation of the
subsequent model. For the purpose of improving computational efficiency, it is necessary
to use the method based on the initial data characteristics to find the optimal number of
clusters, and the elbow method has the characteristics of a simple procedure, and correcting
the general k-means algorithm cannot determine the optimal number of shortcomings of the
number of clusters, and therefore, this becomes the mainstream algorithm for determining
the number of clusters.

The specific principle of the elbow method [26] is to define the clustering error (SE)
with the help of the ratio of the average distance within clusters (nSE) and the average
distance between clusters (wSE) in the following form:

SE =
nSE
wSE

(1)
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nSE =
k

∑
i=1

(
∑

ks∈δi

|ks−mi|2/kn

)/
k (2)

wSE =
k

∑
i=1

k

∑
j=i+1

∣∣mi −mj
∣∣2/(k ∗ (k− 1)/2) (3)

where δi is the i-th cluster, ks represents the elements in δi, mi refers to the mean value of
the elements in δi, and kn is the number of elements in δi.

When the number of initial elements increases, the degree of division of each sample
will also become more detailed, and all the clusters will reach a more ideal degree of
aggregation, which will lead to a decrease in the nSE; as the number of initial elements
increases to a certain degree, the wSE is also smaller, but the SE is not necessarily small,
so it is concluded that only when the nSE takes a smaller value, while the wSE takes a
larger value, will it lead to a smaller value of the clustering distance. In the case where
the number of clusters k is smaller than the actual number of clusters, increasing the value
of k and reducing value of wSE will result in a larger drop in the value of nSE, which in
turn will cause a large drop in the value of SE. In the case where the value of k is taken to
be the actual number of clusters, increasing the value of k and slowing the reduction in
nSE will result in only a slight change in the value of wSE, which ultimately results in the
slowing of the drop in SE, and the overall curve takes on an elbow shape, and the value of
k represented by the elbow is the true clustering number.

The k-means clustering algorithm based on the elbow method [27] searches for the
most suitable cluster number in the search range of cluster numbers with the help of the
elbow method, and the main steps are summarized as follows:

Sept 1: Set the number of clusters as k and take any one of all of the initial scenes as the
cluster center K1.
Sept 2: Compare the distance between other scenes and the clustering center K1, and take
the scene with the largest distance from K1 as the new clustering center K2; then, compare
the distance between other scenes outside the two clustering centers and the two clustering
centers, and take the scene with the largest distance as the new clustering center K3, and
repeat the above steps to finally obtain k initial clustering centers.
Sept 3: Redetermine the cluster centers of all clusters by comparing the distances between
the scenes outside the cluster centers and all the cluster centers, and classify these scenes to
the cluster center with the smallest distance from each other.
Sept 4: Use the sum of the squares of the distances between all the scenes and the clustering
center, according to which the scene is classified as the clustering error H. When there is a
situation where the value of the clustering error H subtracted from the clustering center of
two iterations is smaller than a certain convergence accuracy, the iteration ends and the
clustering center of the last iteration is obtained—otherwise, repeat step 3.

2.2. Typical New Energy Scenario Generation and Reduction Method

The typical scenario reduction method involves generating typical scenarios that can
be used for the scheduling optimization of a combined power plant system of new energy
and energy storage by analyzing and processing new energy data in a combined power
plant system of new energy and energy storage. For example, for the typical scenario
of PV output in a combined power plant system of new energy and energy storage, the
typical scenario reduction method reduces and recreates the scenarios with the help of
the basic unit of clustering with the unit of days. If the total number of the original PV
output scenarios is M, each day’s PV data are regarded as scenario m (m = 1, 2, . . . M),
and each scenario m contains the PV output data of T time points, it is possible to use an
M × T scenario to describe the output scene. Therefore, the entire PV output scene can be
described with the help of an M × T order matrix. Based on the clustering algorithm, all
the initial scene data are compared and analyzed, the initial M scene data are merged and
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finally reduced to obtain K scenes, a K × T order matrix is used to describe the typical PV
scenes, and there are Nk initial scenes in the kth typical scene. With the help of the typical
scene reduction method, the aim of reducing the number of scenes is achieved, and the
timing of the typical initial data is not changed at the same time due to the fact that the
timing of the data at T time points within the scene is not changed.

A finite number of discrete scenarios are used to represent the operating states of the
wind and light power at T time points in the future, and each scenario corresponds to a
time series of operating states, i.e.,

s =
[
w1(s), w2(s), . . . , wt(s), . . . wT(s)

]T , s ∈ S (4)

wt(s) = Pwt
t (s) + Ppv

t (s) (5)

where s is a certain prediction scenario; S is the set of all prediction scenarios; wT(s) denotes
the superimposed power value of wind and PV in the t-th time period under scenario s;
Pwt

t (s) and Ppv
t (s) are the wind and PV power in the t-th time period under scenario s,

respectively; and ∆T is the value of the flexibility time scale.
Based on the wind and PV power at time t under a certain prediction scenario, the

clustered wind-scenery combination scenario is reduced to a wind and PV treatment
scenario based on the principle of linear proportional sharing, i.e.,

P′wt
t (s) =

s
∑

s=1
Pwt

t (s)

s
∑

s=1
wt(s)

(6)

Pt′PV(s) =

S
∑

s=1
PPV

t (s)

S
∑

s=1
wt(s)

(7)

where P′wt
t and P′PV

t are the wind and PV power values at time t under the decomposed
scenario s.

3. Robust Scheduling Rules

Robust optimization methods [26,27] are used to address the stochastic nature of
the scenery output, i.e., an ensemble is used to portray the uncertainty. The specific
mathematical meaning of x̂ is to denote the degree of fluctuation in the wind power output
at moment t. This degree of fluctuation is based on the predicted value of the wind power
output, which floats up and down within a given deviation interval.

x̂ =
(
x1, x2, · · · , xt

)T , ∀t ∈
(
1, 2, · · · , NT

)
(8)[

P̂wt(t) + P̂pv(t)
]
∗ x̂ = P̂ogg ∗ x̂ = ∆Pogg (9)

where P̂wt(t) and P̂pv(t) denote the predicted values of PV output and load power in
section t, respectively; P̂ogg denotes the predicted aggregated power value of the combined
wind and PV outputs at moment t; and ∆Pogg is the fluctuation value of the wind and solar
outputs introduced by considering the uncertainty [28].

The uncertainty power constraints are expressed as follows:

∆Pαgg ≤ ∆Pg(t) + Pκs(t) + ∆PDR(t) (10)

where ∆Pi(t) is the regulation capacity of the system flexibility unit at moment t,
i ∈ {G, ESS, DR}.

The uncertainty parameter constraints are expressed as follows:
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0 ≤ xt ≤ 1, ∀t ∈ (1, 2, · · · , NT) (11)

where x(t) is the permissible fluctuation ratio of the scenery output at moment t.
For the solution of the uncertainty interval x̂, the optimal robust scheduling interval

x̂ = [x̂min, x̂max] is obtained from the following equation.x̂max =
Pup

g (t)+Pup
ess (t)+Pup

DR(t)
P̂min

agg (t)

x̂min =
Pdn

g (t)+Pdn
ess(t)+Pdn

DR(t)
P̂max

agg (t)

(12)

where x̂min and x̂max are the values of the left and right endpoints of the uncertainty interval,
which are expressed as the minimum and maximum permissible fluctuation deviation of
the wind power output, respectively; and the upward and downward flexibility adjustable
power is provided by the conventional generating units, energy storage, and demand
response, respectively.

4. Robust Optimal Scheduling Model for a Combined Power Plant System of New
Energy and Energy Storage

This section addresses the uncertainty of new energy output. Using the box-type
uncertainty set model to portray the new energy power uncertainty, considering the power
generation characteristics of wind, light, fire, and energy storage units, to minimize the over-
all operating costs of the system, a two-stage robust optimization model of min–max–min
structure is established. Robust scheduling rules with the lowest operating costs for the
harshest scenarios are available. The model takes into account the operating constraints
and coordination control of each unit in the system and introduces uncertainty adjustment
parameters, which can adjust the conservatism of the scheduling scheme flexibly. Based on
the column constraint generation algorithm and strong dual theory, the original problem
can be solved alternately by decomposing it into the main problem and the sub-problem
with the linear feature of a mixed integer.

4.1. Optimization Objectives

Considering the power generation characteristics of wind–optical–thermal–storage
units and the system operation constraints, the operating objective of the system is to
minimize the comprehensive operating cost, which mainly includes the operating cost of
the thermal power system and the operating cost of the power station’s energy storage,
among which the operating cost of the thermal power system consists of the cost of the
thermal power unit’s coal consumption and the cost of pollutant emission, and the cost of
the power station’s energy storage mainly consists of the cost of the charging/discharging
of the energy storage.

minC = min
{

Cope + Cs
}

(13)

where C is the comprehensive operating cost, Cope is the system thermal power operating
cost, and Cs is the charging and discharging cost of energy storage.

The system thermal power running cost is calculated as follows:

Cope = C f uel + Ch (14)

where C f uel is the cost of coal consumption and Ch is the cost of pollutant emissions.

(1) Coal consumption cost

The coal consumption cost of thermal power unit i at moment t is expressed as a
quadratic function of the output:

Cg,i,t = ag.iP2
g,i,t + bg,iPg.i.t + cg.i (15)
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where Pg,i,t is the active output of thermal power unit i at moment t, and ag,i, bg,i, cg,i, are
the fuel coefficients of thermal power unit i.

(2) Pollutant emission cost

Fh = GS · B · ESP + GN · B · ENP + GC · B · ECP (16)

where Fh is the penalty cost of emitting SO2, NOX, and CO2; ESP, ENP, and ECP are the
emission penalty coefficients corresponding to the economic cost per unit mass of SO2,
NOX , and CO2, respectively; B is the amount of coal consumed; and GS, GN , and GC are the
amounts of SO2, NOX , and CO2, respectively, produced per unit mass of coal combustion.

The cost of energy storage charging and discharging is calculated using Equation (17):

Cs(t) = Ks

[
Pdis

s (t)/η + Pch
s (t)/η

]
∆t (17)

where KS is the discounted unit charge/discharge cost; Pch
s (t) and Pdis

s (t) denote the storage
charging/discharging power at time t, respectively; and η is the charge/discharge efficiency
of the storage.

4.2. Constraints

The model constraints include constraints on the operating characteristics of the units,
such as thermal power and energy storage, as well as constraint limitations on system
operation, as follows:

(1) Thermal power unit constraints

Thermal power units in the operation process are mainly subject to the unit power
and climbing slippage rate and other constraints. The thermal power unit operation power
constraints and climbing constraints are as follows:

Ug,i(t)Pmin
g,i ≤ Pg,i(t) ≤ Ug,i(t)Pmax

g,i (18)

−RD ≤ Pg,i(t)− Pg,i(t− 1) ≤ RU (19)

where RU and RD are the upper and lower limits of the climbing slope of the thermal
power unit, respectively; Pg,i(t− 1) is the active power output of thermal power unit i at
the moment of t − 1.

(2) Energy storage constraints

The constraints to be satisfied by energy storage during the operation mainly include
energy storage charging and discharging power constraints, energy storage charging and
discharging quantity balance constraints, residual capacity constraints of energy storage in
each time period, and energy storage charge state constraints.

The energy storage charging and discharging power constraints are as follows:

0 ≤ Pdis
s (t) ≤ Us(t)Pmax

s
0 ≤ Pch

s (t) ≤ [1−Us(t)]Pmax
s

(20)

where Pmax
s is the maximum allowable charge/discharge power of the energy storage.

Us(t) denotes the charge/discharge state of the energy storage, where a value of 1 means
discharge and a value of 0 means charge.

The energy storage charging and discharging capacity balance constraint is as follows:

η
NT

∑
t=1

[Pch
s (t)∆t]− 1

η

NT

∑
t=1

[Pdis
s (t)∆t] = 0 (21)

The energy storage charging and discharging quantity balance constraint ensures
that the capacity of the energy storage is equal at the beginning and end moments of the
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scheduling, which is conducive to the cyclic scheduling of the energy storage, and NT is
the scheduling period, which takes the value of 24 h.

The residual capacity constraint of the energy storage in each time period is as follows:

Emin
s ≤ Es(0) + η

t

∑
t′=1

[
Pch

s
(
t′
)
∆t
]
− 1

η

t

∑
t′=1

[
Pdis

s
(
t′
)
∆t
]
≤ Emax

s (22)

where ES(0) is the capacity of energy storage at the initial moment of scheduling, and Emax
s

and Emin
s are the maximum/minimum residual capacities of energy storage allowed in

the scheduling process. The main purpose of this constraint is to prevent the overcharg-
ing/overdischarging of the energy storage and to extend the service life of the energy
storage [29].

The energy storage charge state constraint is as follows:{
SOC(t) =

[
E(0) +

(
ηPch(t)− 1

η Pdis(t)∆t
)/

Ebat.max

]
SOCmin ≤ SOC(t) ≤ SOCmax

(23)

where ∆t is the time step, taken as 1 h; E(0) is the initial power of the energy storage;
SOCmax and SOCmin are the upper and lower limits of the charge state of the energy
storage, respectively; and η is the efficiency of energy storage charging and discharging.

(3) System operation constraints

The system operation constraint is mainly the system power balance constraint:

Pdis
s (t)− Pch

s (t) + PG(t) + upν(t) + uw(t) = PL(t) (24)

where upv(t) and uw(t), respectively, are the uncertain variables of PV and wind power in
the t-th time period.

4.3. Improved System Optimization Model Based on Robust Scheduling Rules

The objective of the robust optimization model of the system, improved based on
robust scheduling rules, is to find the economically optimal scheduling scheme when the
uncertain variable u changes towards the worst-case scenario within the uncertainty set U.
The equivalent robust optimization model is as follows:

minx

{
maxu∈Uminy∈Ω(x,u)cTy

}
s.t. x =

(
x1, x2, · · · , x2×NT

)T

xi ∈ {0, 1}, ∀i ∈ (1, 2, . . . 2× NT)

(25)

where the minimization in the outer layer is the first stage problem with the optimization
variable x, and the maximum minimization in the inner layer is the second stage problem
with the optimization variables u and y, where the minimization problem is equivalent
to the objective function shown in Equation (26), which denotes the minimization of the
operating cost:

min
NT

∑
t=1

[
Cope + Cs

]
(26)

The expressions for x and y are shown in Equations (27) and (28).

x =
[
Us(t)

]T (27)

y =

[
Pg,i(t), PW(t), Ppν(t),

Pdis
s (t), Pch

s (t)

]T

, t =
(
1, 2 · · ·NT

) (28)
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where Ω(x, u) denotes the feasible domain of the optimized variable y given a set of (x, u)
with the following expression:

Ω(x, u) :=


y|

Dy ≥ d,→ γ
Ky = 0,→ λ

Fx + Gy ≥ h,→ v
Iuy = u,→ π

 (29)

where γ, λ, ν, π denote the dyadic variables corresponding to each constraint in the mini-
mization problem of the second stage.

For each given set of uncertain variables u, Equation (25) reduces to a deterministic
optimization model, and the purpose of the max structure in the second-stage optimization
problem of the two-stage robust model is to find the worst-case scenario that results in the
largest operating cost.

5. Solution Algorithm Based on C&CG

For the above two-stage robust optimization model, the column constraint generation
(C&CG) algorithm is used to solve the model [30]. Similar to the Benders decomposition
algorithm, the C&CG algorithm also obtains the optimal solution of the original problem
by decomposing the original problem into a master problem and sub-problems and solving
them alternately. The difference between the two is that the C&CG algorithm continuously
introduces variables and constraints related to the subproblems during the process of
solving the main problem, which can obtain a more compact lower bound on the value of
the original objective function, thus effectively reducing the number of iterations.

The decomposition of Equation (25) yields a master problem in the form of the following:

minxα,
s.t.α ≥ cTyl

Dyl ≥ d
Kyl = 0

Fx + Gyl ≥ h
Iuyl = u∗l
∀l ≤ k

(30)

where k is the current number of iterations, yl is the solution of the subproblem after the lth
iteration, and u∗l is the value of uncertain variable u in the worst scenario obtained after the
l-th iteration.

The form of the subproblem after decomposition is as follows:

max
u∈U

min
y∈Ω(x,u)

cTy (31)

According to the strong dual theory, it can be transformed into max form and merged
with the outer max problem to obtain the following dual problem:

max
u∈U,γ,λ,ν,π

dTγ + (h− Fx)Tν + uTπ

s.t. DTγ + KTλ + GTν + IT
u π ≤ c

γ ≥ 0, ν ≥ 0, π ≥ 0

(32)

There exists a bilinear term uTπ in Equation (32), and the u∗ corresponding to the
optimal solution of this dual problem is a pole of the uncertainty set U; that is to say, when
Equation (32) is taken to its maximum value, the value of the uncertain variable u should be
the boundary of the fluctuation interval. In addition, in the “new energy + storage” power
plant system, when the wind power and photovoltaic outputs are taken as the minimum
value of the interval, the operating cost of the system is higher, which is more in line with
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the definition of the “worst-case” scenario. By introducing auxiliary variables and relevant
constraints to linearize it, the sub-problem can be obtained in the form of the following:

max
B,B′ ,γ,λ,v,π

dTγ + (h− Fx)Tv + ûTπ + ∆uT B′

s.t. DTγ + KTλ + GTv + IT
u π ≤ c

0 ≤ B′ ≤ πB
π − π(1− B) ≤ B′ ≤ π

NT
∑

t=1
Bwt ≤ Γwt

NT
∑

t=1
Bpv ≤ Γpv

(33)

where ∆u =
[
∆umax

wt (t), ∆umax
pv (t)

]T
and B′ =

[
B′wt(t), B′pv(t)

]T denote the introduced
continuous auxiliary variable and the upper bound of the dyadic variable, respectively,
which can be taken as a sufficiently large positive real number.

After the above derivation and transformation, the two-stage robust model is finally
decoupled into the main problem Equation (30) and sub-problem Equation (33) with a
mixed-integer linear form, which can then be solved using the C&CG algorithm, and the
flow is shown in Figure 1.
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6. Results & Discussions
6.1. Example Description

This paper analyzes a regional power grid in China as an example, which contains
conventional thermal power units, wind turbines, photovoltaic units, energy storage units,
etc. The installed capacities of the three conventional thermal power units are 1200 MW,
1600 MW, and 1600 MW, respectively, and the maximum outputs of the thermal power
units are their respective configured capacities, with the minimum outputs being 0 and
the maximum ramp rates being 600 MW/h, 800 MW/h, and 800 MW/h, respectively.
The installed capacity of the wind turbine is 2000 MW, and the installed capacity of the
photovoltaic unit is 140 MW; the configured capacity of the energy storage is 2000 MWh,
the maximum and minimum charge states allowed during the scheduling process are 0.9
and 0.1, respectively, the maximum charging or discharging power is 400 MW, and the
charging and discharging efficiency is 0.96. The program is coded on the MATLAB 2022a
platform, the Gurobi called with the YALMIP toolkit is utilized as the solver.

A new energy-rich province in the northwest region of China was used as an example
of typical scene generation. The research data for the year’s wind power and photovoltaic
output of the original scene data were obtained, with a total of 365 time-series scenes
throughout the year. We applied the k-means clustering algorithm described in the previous
section to the comprehensive dataset for the scene reduction analysis to build a typical
reduction scene and used the elbow method to determine the number of clusters and the
clustering error as the number of clusters changed, as shown in Figure 2. It can be seen in
the figure that when the number of clusters is less than three, the clustering error decreases
more, and when the number of clusters is greater than three, the clustering error decreases
at a significantly slower rate. According to the principle of the elbow method, the optimal
number of clusters of the sample data is three, that is, producing three scenes.
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A set of data under typical daily scenarios of wind power and photovoltaic power is
selected, as shown in Figures 3 and 4, to simulate and validate the robust optimization model.

An analysis of Figures 3 and 4 reveals that after clustering, the scenarios of wind
power output and photovoltaic output can be divided into three categories: high, medium,
and low. The proposed k-means clustering algorithm based on the elbow method in this
paper effectively handles the uncertainties of wind power and photovoltaic output while
controlling the number of scenarios as much as possible. In the robust optimization model,
under the condition of acceptable computational complexity, the impact of the uncertainties
in renewable energy output on the capacity value of the combined power plant system of
new energy and energy storage can be adequately considered.
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6.2. Robust Scheduling Scheme

The wind power uncertainty regulation parameter is set to 12, and the PV uncertainty
regulation parameter is set to 9, which means that during the optimization process, the
wind power output will be at the minimum of the prediction interval in 12 periods, the
PV power output will be at the minimum of the prediction interval in 9 periods, and the
rest of the periods will be equal to the predicted value. Based on the proposed robust
scheduling rules, the maximum permissible fluctuation of wind and PV outputs in the
“new energy + storage” power plant is 20% of the predicted value, and the predicted/actual
wind and PV output curves are shown in Figures 5 and 6, respectively. Figure 7 shows the
convergence curve of the upper and lower bounds of the objective function in the iterative
process of the column-constraint-generation algorithm, which shows that the algorithm is
fast and has good convergence.
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The final scheduling optimization results for each unit under the robust scheduling
rule are shown in Figure 7. Among them, for the charging and discharging power of energy
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storage, the negative half-axis in the figure indicates that the energy storage is in a charging
state, and the positive half-axis indicates that the energy storage is in a discharging state,
which demonstrates that the energy storage unit is charged during the period with a low
price of electricity and discharged during the period of the peak load or the peak price
of electricity, so as to play the role of shaving peaks and filling valleys and balancing the
power generation and consumption.

6.3. System Value Assessment

By changing the configuration of the storage capacity, from 0% and gradually increas-
ing to 40%, we obtain the power station revenue and energy storage cost curve, as shown
in Figure 8, where the new energy feed-in power × new energy feed-in tariff = power
station revenue. In the allocation of storage, the power station revenue is reduced as the
allocation of the storage capacity increases, and it increases when the allocation of the
storage capacity reaches a certain level. Robust scenarios of wind power consumption
tend to be saturated, and the power station revenue increase is no longer obvious, while
the cost of energy storage planning with the increase in storage capacity monotonically
increases. The two lines intersect at one point, and after the intersection point, the cost of
energy storage planning will exceed the power station revenue, and the economic benefit
enhancement brought about by energy storage planning will disappear. Therefore, in
Figure 8, the intersection of the two lines will be recorded as the optimal allocation capacity
of energy storage; at this time, the allocated storage capacity of about 25%, and the power
plant revenue is 16.25 million yuan.
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In order to study the impact of grid-allowed new energy feed-in power on the reve-
nue of new energy power plants and to compare it with the impact of the distribution 
storage capacity on the revenue of power plants at the same time, in this paper, the 
amount of new energy allowed to be fed into the grid from 55% to 80% is varied, i.e., the 
value of x obtained in Section 2 is varied. And at the same time, the distribution and stor-
age capacity in increments from 0% to 30% is also varied. Then, the combinatorial schemes 
corresponding to these ratios are solved based on the robust modeling. Finally, calculating 
the power plant revenue under the scenario corresponding to the rationing combination 
based on the power plant revenue equation proposed above, the evolution curve is ob-
tained as shown in Figure 9. 
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In order to study the impact of grid-allowed new energy feed-in power on the revenue
of new energy power plants and to compare it with the impact of the distribution storage
capacity on the revenue of power plants at the same time, in this paper, the amount of
new energy allowed to be fed into the grid from 55% to 80% is varied, i.e., the value
of x obtained in Section 2 is varied. And at the same time, the distribution and storage
capacity in increments from 0% to 30% is also varied. Then, the combinatorial schemes
corresponding to these ratios are solved based on the robust modeling. Finally, calculating
the power plant revenue under the scenario corresponding to the rationing combination
based on the power plant revenue equation proposed above, the evolution curve is obtained
as shown in Figure 9.
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Above all, although raising the amount of permitted feed-in power will cause an in-
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Figure 9. Curve of power plant revenue and energy storage costs under different distribution and
storage capacities.

From Figure 10, it can be clearly seen that as the proportion of the allowed new energy
on-grid power increases, i.e., the x obtained in Section 2 increases, the volatility of the
new energy increases, and the total output in the new energy robust scenario is increased,
which is still within the range of the grid’s consumption. And the result is that the revenue
of the power plant is increased with the proportion of the allowed new energy on-grid
power. This level of growth can reach nearly 60 million RMB/(5%). In contrast, the increase
in allocated storage capacity is weakly correlated with plant revenue growth, at about
0.5 million RMB/(5%). This is due to the flexible power regulation of thermal power units
to the extent that the system itself has enough capacity for new energy consumption.
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Above all, although raising the amount of permitted feed-in power will cause an
increase in the volatility of new energy grid-connected output and increase the possibility
of wind and light abandonment, it will also bring considerable benefits to new energy
power plants. And the main role of energy storage is not to improve the output yield of
new energy power plants, but to improve the stability of the system.

7. Conclusions

In view of the volatility of the power system caused by the high proportion of new
energy sources, such as wind power and photovoltaic power, this paper takes the combined
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power plant system of new energy and energy storage as an example and establishes an
optimal system dispatch model based on the robust scheduling rule, which takes into
account the uncertainty of the new energy output and adopts the columns and constraints
generation algorithm (C&CG) to obtain a robust scheduling scheme. The value of the
combined power plant system of new energy and energy storage is evaluated.

Through the example analysis in Section 6 and value assessment, it can be concluded
that the proposed model takes into account the uncertainty of new energy output based
on the robust scheduling rules after representing the new energy output as an uncertainty
set, and the “worst-case” scenario of the combined power plant system of new energy and
energy storage can be obtained by solving the two-stage robust optimization model. By
solving the two-stage robust optimization model, we can obtain the robust scheduling
scheme that minimizes the operating cost of the combined power plant system of new
energy and energy storage under the “worst-case” scenario, and the scheduling scheme is
more in line with the actual operation of the system. The combined power plant system of
new energy and energy storage optimizes the output of conventional units after joining
the system, effectively increasing the value gain of system operation and meeting the
requirements for building a new type of power system under the “dual carbon” goal. New
energy and energy storage can each grow their value gains as efficiently as 60 million
RMB/(5%) and 0.5 million RMB/(5%). Then, although raising the amount of permitted
feed-in power will cause an increase in the volatility of new energy grid-connected output
and increase the possibility of wind and light abandonment, it will also bring considerable
benefits to new energy power plants. And the main role of energy storage is not to improve
the output yield of new energy power plants, but to improve the stability of the system.
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