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Abstract: Current societies must make the necessary plans for effective responses and to reduce
the destructive effects of disasters. For this reason, this research has developed a mathematical
programming model under uncertainty for earthquake relief and response during COVID-19. In
the presented model, the possibility of facility failure is considered according to the intensity of the
earthquake and COVID-19 to increase reliability. The simultaneous occurrence of these disasters
presents unique challenges in ensuring the timely delivery of essential supplies to affected regions.
Distribution centers (DCs) are considered to be of two types: the first type is local DCs, which use
public centers and are close to accident points. These types of centers are prone to failure because they
use public facilities. Another type is the reliable DCs built outside the disrupted area, which have
a very low probability of loss due to spending more money to build them. In addition, to consider
the reliability capabilities, the new model has tried to provide a complete model for transportation
planning by considering the multi-trip mode of vehicles. Moreover, this model considers distance
restriction at the demand point for the first time because of COVID-19 during the earthquake. The
proposed network design aims to offer effective solutions in promptly delivering essential items to
affected areas, thereby enhancing disaster management strategies and minimizing the impact of these
crises on vulnerable populations. Uncertainty is presented using the probability approach based on
the modeling scenario and a case study from the city of Istanbul to illustrate the performance of the
suggested model. Finally, the suggested mode is solved with an Lp-metric and goal programming
(GP) approach. The results show that in this case, the proposed model shows that effective and
efficient aid delivery is possible in terms of time and cost. Therefore, it can help crisis managers
respond by providing the required budget and appropriate logistics planning.

Keywords: humanitarian supply chain; COVID-19 crisis; time window; multi-objective
optimization; reliability

1. Introduction

Despite technological progress, sustainable development faces a significant obstacle
in various countries due to natural disasters like earthquakes, floods, storms, avalanches,
volcanic eruptions, and unnatural ones like war, terrorist attacks, political issues, immi-
gration, and homelessness. The lack of preparation and ineffective response strategies to
these calamities result in severe harm and losses to nations and their assets that might be
impossible to recover [1–4]. Supply chain management goals include meeting demand,
minimizing expenses and investment-related risks through well-known tools, and increas-
ing competitive power in today’s world [5,6]. Disasters are unforeseen and abrupt events
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that exceed a community’s competence to manage and cause significant disruptions in
that community. These occurrences have far-reaching economic, social, environmental,
and political outcomes for society. However, some societies are significantly more prone
to devastating incidents [7]; Turkey is a prime example. Turkey is a developing country
and ranks 19th globally, with a Gross Domestic Product (GDP) of around USD 906 billion.
Unfortunately, the COVID-19 pandemic has also impacted the economy, with the country
sharing a 5.6 percent growth rate in 2022 amidst a challenging external environment and
unconventional monetary policies [8].

Moreover, the country suffered two devastating earthquakes in February 2023, result-
ing in significant physical damage and direct losses estimated at USD 34.2 billion [9]. The
region suffered considerable damage and destruction due to the disaster, with thousands
of houses devastated and essential social amenities, such as roads and dams, damaged
beyond repair. The death toll surpassed 86,000, with over 13,000 individuals still missing.
Approximately 550,000 people were forced to flee their homes due to the disaster.

Turkey has suffered an estimated USD 34.2 in direct physical damages following
two large earthquakes on February 6, equivalent to 4% of the country’s 2021 GDP. The
eventual recovery and reconstruction costs could be twice as high. It warns that GDP
losses associated with economic disruptions will add to the cost of the disaster. Continued
aftershocks are also likely to contribute to increased damage estimates over time. The
earthquakes have left 1.25 million people temporarily homeless, with much of the damage
occurring in 11 provinces in southern Turkey [9]. The earthquake also devastated the
domestic supply chain (SC). According to the Natural Disaster Database, earthquakes
in the 20th century were responsible for the deaths of over 1.8 million people, and in
the years between 1990 and 2010, each event caused 2052 deaths [10,11]. The lack of
preparedness in urban areas has increased vulnerability to devastating and terrifying
earthquakes. Preventing these disasters may not be entirely possible, but appropriate
planning can help communities be better prepared to face challenges [12–16].

To reduce further losses and damages caused by disasters, logistics and related plan-
ning will play a vital role in reducing the suffering of affected individuals. Humanitarian
logistics is demonstrated as planning, implementing, and directing adequate transportation
and keeping the flow of products, resources, and associated data from the point of origin
to the place of utilization to reduce the pain and suffering of vulnerable people. Due
to the risks and uncertainties related to any disaster, managing humanitarian logistics
is very complex. Most researchers provide solutions to humanitarian logistics problems
through modeling and optimization. Governments, the military, civil society, and hu-
manitarian organizations are responsible for humanitarian and emergency actions [11,17].
Each of these organizations has different objectives and relief methods based on their
organizational structure, which can lead to inefficiencies in relief efforts. Adequate and
comprehensive logistics planning results in efficient relief efforts and reduces the suffering
of those affected [18].

This paper provides an integer-mixed framework for disaster supply delivery and aid
to COVID-19 earthquake victims in light of the significance of this issue. The framework
includes a refugee network with a scenario-based approach and a relief goods SC in the
case of an unanticipated disaster during the COVID-19 pandemic [19]. Four conflicting
objectives are considered while determining the ideal network flow for the two chains:
limiting the globalization of the coronavirus, overall logistical cost, and demand satisfac-
tion in the evacuation and relief chains. Furthermore, this approach considers distance
restriction between individuals at the required point for the first time. The following are
the research inquiries:

• What could happen and what factors need to be considered when creating a distribution
network for necessities in the event of COVID-19 and earthquakes occurring simultaneously?

• How can a distribution network be made more efficient to guarantee prompt and effec-
tive delivery of necessities when COVID-19 and earthquakes occur simultaneously?
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The various sections of the article are constructed as follows: Section 2 reviews the
previous studies, Section 3 explains the problem under consideration, and Section 4 illus-
trates the method used for solving the problem. Section 5 presents the case study and the
obtained outcomes of the proposed model, and Section 6 compares the solution method.
Section 7 presents the conclusions and future suggestions.

2. Literature Review
2.1. Related Work

Current emergency distribution networks vary in distribution level, horizon plan-
ning type, facility location performance, number of groups, mode of transportation, and
infrastructure status. In crisis management, distribution networks should be planned and
structured despite minimal knowledge. While relief distribution aims to provide emer-
gency needs to the population in the shortest possible time and at the lowest possible cost,
the flexibility to respond to dynamic demands may be even more vital. The difficulties in
crisis distribution are caused by an absence of confidence regarding supply and demand, a
lack of predictability about journey times owing to infrastructural obstacles, the channel
of communication breaks, logistics issues, security concerns, and a lack of resources [20].
Previous research in this area can be divided into three categories: location-allocation,
transportation, and a combination of location-allocation and transportation issues. Various
other categorizations have been made after thoroughly reviewing the research in this area.

2.1.1. Location and Allocation

Facility location (FL) is one of the main issues in logistics network design and planning,
in which decision-making regarding the site of facilities and the allocation of customers to
these DCs takes place. FL in crisis management, which includes identifying suitable areas
for shelters, hospitals, warehouses, DCs, evacuation sites, and other places, is essential
for reducing human suffering. Studying FL issues in crisis management is vital to finding
locations. FL can be determined based on two questions: which region should be chosen
for location-allocation?

Equipment selection and when new facilities should be created or existing facilities
should be rebuilt are the issues that Bonham and colleagues considered in their study of
emergency equipment location before and after a disaster. Four deterministic, random,
dynamic, and stable scenarios were examined to test the proposed model. Before a disaster,
the location of shelters and relief warehouses was determined, and after a crisis, the location
of DCs and medical facilities was determined. CS analyzed the types of disasters, decisions,
objectives, constraints, and solution methods for all of these scenarios [21,22]. Cotes and
Cantillo [23] illustrated a model for optimal FL to diminish logistics and deprivation costs.
Important decisions were prepared, such as determining the amount of each product type
necessary for servicing affected communities after a disaster. An exact solution approach
was utilized to solve the problem. Ahmed et al. [24] suggested a novel humanitarian
location-allocation-inventory model by focusing on preventing COVID-19 outbreaks with
IoT-based technology in the response phase of disasters.

Haghi et al. [25] examined a multi-objective (MO) model for distributing goods and
transferring casualties. To approach the actual situation, they considered some uncertain-
ties and utilized a robust optimization method to address them. The epsilon-constraint
approach was employed to solve the model. They also used an SC in Tehran to validate
their model. Rahmani et al. [26] investigated a humanitarian SC model for dealing with
risks in the aftermath of a disaster. They used backup facilities to improve model reliability.
They developed the proposed model using a robust optimization approach under uncertain
conditions. The probability of occurrence and severity of an incident were considered
uncertainty parameters. A Lagrangian approach was utilized to solve the model. They also
used SC to verify their model. Abbasi et al. [27] emphasized the need to employ IoT-based
solutions to stop COVID-19 outbreaks during the crisis response phase in their unique
location-allocation-inventory approach to humanitarian aid. To recommend medical treat-
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ments to COVID-19 patients and stop new illness epidemics, Abbasi et al. [28] developed a
robust system that considered social isolation, resilience, expenses, and travel time.

Tirkolaee et al. [29] introduced a new multi-objective model to design a sustainable multi-
product circular supply chain network during the COVID-19 outbreak. Ghasemi et al. [30]
illustrated stochastic multi-objective mathematical programming for logistic distribution and
evacuation planning during an earthquake. Conges et al. [31] suggested a new version of
future crisis management cells, using virtual reality to provide a dynamic and modular crisis
management cell linked to artificial intelligence.

2.1.2. Transportation

After establishing a logistics network, an emergency delivery plan must be created if
transportation or distribution issues arise. Due to the number and variety of proposals, this
subject is of utmost interest in emergency logistics research. Efforts made in logistics are
more directly related to the unique difficulties of emergency shipping [21].

Usually, when disasters such as earthquakes occur, aid organizations face a short-
age of resources to respond to demand from affected areas. By introducing this issue,
Najafi et al. [32] suggested a robust optimization model to distribute limited resources
efficiently. Their multi-objective model utilizes a multi-purpose transportation system for
goods and evacuee transportation. The objectives of their model aimed to diminish the total
weight of untreated casualties, unmet demands, and the number of vehicles used. Their
proposed model considered uncertain elements such as demand for goods, the number of
deaths, and supply. Maghfiroh et al. [33] studied a multi-state distribution model. They con-
sidered a three-level chain consisting of a supplier, a logistics operations area, and affected
areas. The model considers various stages, including network and infrastructure conditions,
facility access, and transportation methods. The first part of the Objective Function (OF)
focuses on minimizing delivery time, while the second focuses on reducing total costs. In
the context of a COVID-19 epidemic illness, Li et al. [34] considered a network of hub-and-
spoke multimodal transportation for disaster assistance efforts. They started by building a
mixed integer nonlinear programming model using multiple forms of transportation and
various sorts of crisis alleviation. Minimizing costs and minimizing transit time were the
two goals of the system they offered. They also modified the Grey Wolf Optimizer (GWO)
method to address the NP-hardness of the issue under consideration. Safeer et al. [35]
employed a classification-based review methodology to identify various cost functions and
constraints for primary emergency operations in logistics. Haghgoo et al. [36] addressed
both pre- and post-crisis stages in the humanitarian supply chain considering perishability.

2.1.3. Location and Transportation

To hasten the process of humanitarian aid transmission to those impacted by catastro-
phes, it is suggested that some practical features such as budget allocation, procurement, a
flexible supply time horizon, and various vehicle fleet sizes be considered in this model,
which is rarely addressed in flow network models. The design of the distribution network
is a fundamental step in the SC. For this purpose, different decisions must be made at three
strategic, tactical, and operational levels [37]. Location problems and transportation issues
are the two significant steps in managing humanitarian distribution. By reviewing the
literature in this field, it is also proven that location problems directly impact the efficiency
of humanitarian distribution activities. The choice of warehouses and the required capacity
of the centers directly affect the distribution decisions. As a result, the logical next step
in the decision-making procedure is to tackle both of these obstacles from a combined
viewpoint, which involves an examination of the reciprocal linkages between these two
levels of making choices [21]. In the following, some research that includes these two prob-
lems in a combined form is examined. Tofighi et al. [12] presented a new scenario-based
probabilistic-stochastic planning model for humanitarian logistics network design that can
simultaneously deal with uncertainty and various goals of the decision problem. Table 1
shows some new works in this area.
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Table 1. Literature summary.

Authors
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Tofighi et al. (2016) [12] X X X X X X - X Meta-
Heuristic

Cotes and Cantillo (2019) [23] X X X - Exact
Yang and Wang (2020) [19] X X X X COVID-19 Exact
Maghfiroh et al. (2020) [33] X X X X X X - X Heuristic

Shokr et al. (2021) [38] X X X X - Exact
Zokaee et al. (2021) [39] X X X X X Earthquake X Exact

Babaee-Tirkolaee et al. (2022) [29] X X X X X COVID-19 X Meta-
Heuristic

Hosseini-Motlagh et al. (2023) [40] X X X X COVID-19 X Exact

Li et al. (2023) [41] X X X X X COVID-19 Meta-
Heuristic

Ehsani et al. (2023) [42] X X X X X X COVID-19 X Exact

This Study X X X X X X X X X X Earthquake
COVID-19 X Exact



Sustainability 2023, 15, 15900 6 of 23

2.2. Research Gap and Contributions

This paper designed the SC for humanitarian aid. This humanitarian relief supply
chain design has several contradictory problems, but these problems should be solved
using mathematical tools. Creating suitable camps to accommodate the victims is difficult
in times of floods or earthquakes. This point is significant. We must pay attention to their
relief, but the important thing is that in the era of COVID-19, gathering people may be
dangerous; the gathering of several people in one relief camp is against health protocols.
In the age of COVID-19, health organizations strictly recommend social distancing and
hygiene protocols. The fundamental question arises: how should the crisis be managed if a
flood and an earthquake occur during the COVID-19 pandemic? A practical example is the
recent earthquake in Turkey. How should this SC design be structured?

In the event of an unforeseen catastrophe during the COVID-19 pandemic, the frame-
work incorporates a relief goods SC and an evacuation network. The optimal network flow
for the two chains was investigated by considering four competing objectives: demand
satisfaction in the relief chain, demand satisfaction in the evacuation chain, total logistical
cost, and preventing the spread of the coronavirus. The humanitarian products SC was
divided into three tiers: suppliers, relief camps, and afflicted locations. The flight chain was
divided into evacuated camps and impacted areas. The framework has been strengthened
by considering many pathways between both places and the disruption of camps and trails
owing to catastrophes.

Moreover, the multi-objective mixed-integer programming (MOMIP) issue was solved
mathematically, and the results were compared with two methods. The mathematical frame-
work was effectively evaluated during the catastrophe and produced real-life information.
This is an urgent concept with several facets.

In general, the contributions of this study include:

• Considering reliable support DCs for affected population centres to improve reliability.
• Providing a bi-objective mathematical model to minimize the time spent transporting

relief goods and related logistics costs is also considered.
• The uncertainties related to earthquake probability, earthquake magnitude, and the

probability of DC destruction are considered using a scenario-based approach.
• Public facilities and establishments are considered DCs.
• Turkey has been used as a case study to describe the model’s performance and the

application of the described method.
• Considering distance restriction between people at the demand point.
• Reusing vehicles during the time horizon and in each period is considered.

3. Problem Statement

Our model includes the prominent SC members, consisting of a central warehouse,
DCs, and affected areas. Figure 1 shows the levels of this SC. Each part of our SC has one
or more relationships with the next part, and based on this, we have channels in our SC
that we can accurately represent in the mathematical model. For example, each distributor
has a relationship with all the central warehouses. Relief goods are sent through DCs, and
each affected area has a relationship with all DCs. Two DCs are considered in the proposed
model, the first of which can fail and use public facilities. The second type cannot fail and
is more expensive to build. Suppose the affected areas are assigned to the first type of DC
as the leading supplier. In that case, they must also be assigned to the second type of DC as
a backup. However, suppose they are given to the second type of DC as the main DC. In
that case, there is no need for a backup DC because these DCs have a very low probability
of failure.

On the other hand, transportation constraints, such as vehicle capacity and the number
of vehicles, were considered in the mathematical model. This study also considered
the possibility of multi-trip states for carriages [43]. Since it is impossible to ensure the
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timely distribution of relief goods using a single mode of transportation, multimodal
transportation is used in real-life situations during relief distribution. In this study, air and
land transportation were also used. The goals of the proposed model were to minimize the
time spent transporting relief goods, which is very important in crises, and to minimize the
cost of building central warehouses.
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3.1. Assumptions

• The capacity of distribution and backup centers is specified, but the capacity of central
warehouses is considered unlimited.

• The uncertainties of the model, including the probability of an earthquake, the like-
lihood of failure of local DCs, and demand, were modeled using a probabilistic
scenario-based approach.

• If the supply of goods through the main DC is not possible, goods will be supplied
through backup centers.

• Goods have priority, reflected in the cost of a shortage of goods.
• Each vehicle can make multiple trips during the time horizon and in each period.
• Two methods of land and air transportation are used to transport goods.
• Vehicles are homogeneous in each transportation mode.
• The number and location of affected areas are identified.
• The possibility of shortages exists.
• The capacity of vehicles is specified.
• The distances between nodes are identified.
• Multiple periods are considered in the model.
• Multiple types of goods are considered in the model.

3.2. Sets

i Set of warehouses during both earthquakes and COVID-19 disasters i ∈ {1, 2, . . . , I};
g Set of DCs during the both earthquakes and COVID-19 disasters g ∈ {1, 2, . . . , G};
g′ Set of reliable DCs that can be used as a backup during both earthquakes and COVID-19 disasters g′ε{1, 2, . . . , G′};
o Set of damaged points for earthquake and COVID-19 disasters o ∈ {1, 2, . . . , O};
m Set of vehicles m ∈ {1, 2, . . . , M};
Vim Set of vehicles of type m in the warehouse i ;
Vgm Set of vehicles of type m in the DC g ∈ G ∪ G′;
nm Set of number of trips of each vehicle type m in each period t n ∈ {1, 2, . . . , N};
s Set of scenarios s ∈ {1, 2, . . . , S};
t Set of time periods for earthquakes and COVID-19 disaster; t ∈ {1, 2, . . . , T}
l Set of goods l ∈ {1, 2, . . . , L};

3.3. Model Parameters

θi Fixed cost of establishing a warehouse i;
θg Fixed cost of establishing the DC g ∈ G ∪ G′;
al Size of the product, which includes the volume and weight of the product;
dolst The demand of good l in damaged point o in scenario s in period t during the earthquakes and COVID-19 disasters;
bg The capacity of DC g ∈ G ∪ G′;
cigm The cost of each transportation unit from warehouse i to the DC g ∈ G ∪ G′ by vehicle type m;
cgom The cost of each transportation unit from DC g ∈ G ∪ G′ to the damaged point o by vehicle type m;
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timeigm Transfer time of products from the warehouse i to the DC g ∈ G ∪ G′ by vehicle type m;
timegom Transfer time of products from the DC g ∈ G ∪ G′ to the damaged point o by vehicle type m
ps Probability of scenarios during both earthquakes and COVID-19 disasters;
pgs Probability of destruction of the DC g ∈ G under scenario s;
Φl Shortage cost of products l during the two earthquakes and COVID-19 disasters;
qm The capacity of vehicle type m, which includes the volume and weight capacity of the vehicle;
αig Distance from warehouse i to DC g ∈ G ∪ G′;
αgo Distance between the DC g ∈ G ∪ G′ to the damaged point o;
mdo Maximum allowable distance between people in damaged point o;
disso Distance between people in damaged point o;
ψ Large positive number;

3.4. Decision Variables

zist If the central is selected in the scenario s in the period t is 1; otherwise, 0
zzgst If DC g ∈ G ∪ G′ is selected in scenario s in period t is 1; otherwise, 0
yigst If DC j ∈ J ∪ J′ is selected to the warehouse i in scenario s in period t is 1; otherwise, 0
xgost0 If the damaged point o be assigned to the DC g ∈ G in scenario s in the period t 1; otherwise, 0
x′gost0 If the damaged point o is assigned to the DC g ∈ G′ as the leading supplier in scenario s in period t is 1; otherwise, 0
xgost1 If damaged o is assigned to the DC g ∈ G′ as a backup supplier in scenario s in period t is 1; otherwise, 0

qmnv
iglst

The quantity of product l that transfers from the central warehouse i to the DC g ∈ G ∪ G′ by vehicle type m
around n ∈ Nm with vehicle v ∈ Vmi in scenario s in period t;

q′mnv
iglst

The quantity of the backup product l that is transported from the warehouse i to the DC g ∈ G′ by vehicle
type m in round n ∈ Nm and by vehicle v ∈ Vmi in scenario s in period t;

qmnv
glost

The quantity of the product l that is transported from the DC g ∈ G ∪ G′ to the damaged point o by vehicle
type m in round n ∈ Nm and by Vehicle v ∈ Vmi in scenario s in period t;

Bolst Shortage amount of commodity l at incident point k in scenario s in period t;

wmnv
golst

If the route g ∈ G ∪ G′ is taken by vehicle type m in round n ∈ Nm or with vehicle v ∈ Vmi in scenario s in
period t is 1; otherwise, 0

wmnv
iglst

If the route i to g ∈ G ∪ G′ is taken by vehicle type ‘m at round n ∈ Nm or by Vehicle v ∈ Vmi in scenario s in
period t is 1; otherwise, 0

3.5. Mathematical Model

The first OF (1) minimizes the total distribution time between central warehouses,
DCs, and demand points during the two earthquakes and COVID-19 disasters. The second
OF (2) minimizes the total cost, consisting of warehouse construction costs, unmet demand
costs, and transportation costs of relief items from reliable and local DCs during the both
earthquakes and COVID-19 disasters.

minZ1 = ∑
s

ps

(
∑
i

∑
g∈G∪G′

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmi

timeigmwmnv
igls

+ ∑
g∈G∪G′

∑
o

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmi

timegomwmnν
golst

) (1)

Constraint (3) is an equilibrium constraint for the DC inventories. Constraints (4)
and (5) are demand constraints, indicating that relief items sent to each demand point
cannot exceed the demand quantity. Constraint (6) guarantees that the backup warehouse
will meet the required demand if the primary DC is destroyed. Constraint (7) calculates
the shortage of relief items at demand points. Constraints (8) and (9) limit the maximum
storage capacity of relief items at DCs. Constraints (10) and (11) indicate that each demand
point is allocated to a reliable or local DC if a regional DC is chosen as the primary supplier,
it must also be allocated to a dedicated DC as a backup. No backup warehouse is needed
if a proper DC is selected as the primary supplier. Constraints (12) and (13) ensure that
no relief items will be moved from that center if a DC is not reopened or not allocated.
Constraints (14) and (15) guarantee that no relief items will be transported to the end of
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a demand point not allocated to a DC. Constraints (16) to (17) represent the maximum
capacity of vehicles. Constraints (18) to (22) are used to determine if the route is traversed
by a vehicle of type m or not. Constraint (23) illustrates the maximum allowable distance
between people at the demand point. Constraints (24) and (25) represent the types of
variables used.

minZ2 = ∑
s

ps

[
∑
i

∑
t

θizist + ∑
g∈G∪G′

∑
t

θizzgst

+∑
o

∑
l

∑
t

Φl Bolst

+ ∑
g∈G′

(
∑
i

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmg

cigmαigqmnυ
iglst + ∑

o
∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmg

cgomαgoqmnυ
golst

)

+ ∑
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(
1− pgs

)(
∑
i

∑
l

∑
m

∑
t

∑
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∑
ν∈Vmg

cigmαigqmnυ
iglst

+∑
o

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmg

cgomαgoqmnυ
golst

)

+

 ∑
g′∈G′

∑
i

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmi

cig′mαig + ∑
o

∑
l

∑
m

∑
t

∑
n∈Nm

∑
ν∈Vmg′

cg′omαg′oqmnυ
g′olst

]

(2)

s.t

∑
i

∑
m

∑
n∈Nm

∑
ν∈Vmi

qmnν
iglst + ∑

i
∑
m

∑
n∈Nm

∑
ν∈Vmi

q′mnν
iglst

∀g ∈ G′ , l, s, t (3)
= ∑

o
∑
m

∑
n∈Nm

∑
ν∈Vmg

qmnν
golst

∑
i

∑
m

∑
n∈Nm

∑
ν∈Vmi

qmnν
iglst = ∑

o
∑
m

∑
n∈Nm

∑
ν∈Vmg

qmnν
golst ∀g ∈ G, l, s, t (4)

∑
m

∑
n∈Nm

∑
ν∈Vmg

qmnν
golst ≤ dolst.x

′
gost0 ∀g ∈ G, o, l, s, t (5)

∑
i

∑
m

∑
n∈Nm

∑
ν∈Vmg

q′mnν
iglst ≤ ∑

o
∑

g∈G
x gost0.xg′ost1.dolst.pgs ∀g ∈ G′ , l, s, t (6)

Bolst = max

(
0.dolst − ∑

g∈G∪G′
∑
m

∑
n∈Nm

∑
Vmg

qmnν
golst

)
, ∀g ∈ G , l, s, t (7)

∑
i

∑
m

∑
n∈Nm

∑
ν∈Vmg

∑
l

qmnν
iglst + ∑

i
∑
m

∑
n∈Nm

∑
ν∈Vmi

∑
l

q′mnν
iglst = bg ∀g ∈ G′ , s, t (8)

∑
i

∑
m

∑
n∈Nm

∑
ν∈Vmi

∑
l

qmnν
iglst ≤ bg ∀g ∈ G, s, t (9)

∑
g ∈G

xgost0 + ∑
g∈g′

x′gost0 = 1 ∀o, s, t (10)

∑
g∈G′

xgost1 = ∑
g∈G

xgost0 ∀o , s, t (11)

∑
g∈G∪G′

yigst ≤ ψzist ∀ i, s, t (12)

∑
I

yigst ≤ zzgst ∀g ∈ G ∪ G′, s, t (13)

qmnν
iglst ≤ ψyigst ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (14)

q′mnν
iglst ≤ ψyigst ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (15)

∑
l

alqmnν
iglst ≤ qm ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (16)

∑
l

alq′
mnν
iglst ≤ qm ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (17)

∑
l

alqmnν
golst ≤ qm, ∀k, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (18)

wmnv
golst ≤ ψqmnν

golst, ∀k, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (19)

wmnv
golst ≤ qmnν

golst
1
ψ ∀k, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (20)
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wmnv
iglst ≤ ψ qmnν

iglst ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (21)

wmnv
iglst ≤ qmnν

iglst
1
ψ ∀i, g ∈ G ∪ G′, l, s, t, m, n ∈ Nm, v ∈ Vmi (22)

disso.x′gost0 ≤ mdo ∀g, o, s, t (23)

xgost0, x′gost0, zist, zzgst,yigst ∈ {0, 1} ∀i, g ∈ G ∪ G′, l, s, t (24)

qmnν
iglst, qmnν

golst, q′mnν
iglst, Bolst ≥ 0 ∀i, g ∈ G ∪ G′, o, l, s, t (25)

3.6. Linearity

An optimization strategy for linearizing nonlinear functions is called “linearization
according to auxiliary variable”. The method entails adding an auxiliary variable and
matching the auxiliary equality condition for each function’s intermediate nonlinear factor.
The product of two variables, one of which is continuous and the other binary, is represented
by the auxiliary variable. Using this method, a nonlinear optimization issue may be
converted into a linear one that can be solved more quickly.

The following are some essential details about linearization based on an auxiliary variable:

• In issues related to optimization, the method is used to linearize nonlinear functions.
• A matching auxiliary equality constraint and an auxiliary variable are introduced for

each intermediate nonlinear component of the function [44].
• A nonlinear optimization problem can be made linear by using this strategy.
• Linearization based on an auxiliary variable is a commonly employed method in optimization.

The effective linearization method according to the auxiliary variable may be applied
to tackle challenging optimization issues. It is extensively utilized in many disciplines,
including as a tool for finance, engineering, and economics [44–47].

Due to the non-linearity of Constraints (7) and (8), we linearize them by introducing
the following and associated variables and replacing them with the following constraints:

t′gg′ost Binary auxiliary variable for linearization

S+
olst Continuous auxiliary variable for linearization

S−olst Continuous auxiliary variable for linearization

olst Binary auxiliary variable for linearization

t′gost ≤ 1
2

(
xgost + x′go1st

)
∀g ∈ G, g′ ∈ G′ , o, s, t (26)

t′g.g′ .o.s.t ≤
(

xgost + x′go1st

)
− 1 ∀g ∈ G, g′ ∈ G′ , o, s, t (27)

∑
i

∑
m

∑
n ∈ Nm

∑
v ∈ Vmi

q′mnν
iglst ≤ ∑

k
∑
j∈J

t′gg′ost.dkolst.pgs ∀g ∈ G′ , l, s, t (28)

Bolst = S+
olst, ∀o, s, l, t (29)

S+
olst − S−olst = dolst − ∑

g∈G∪G′
∑
m

∑
n∈Nm

∑
ν∈Vmg

qmnν
golst ∀o, s, l, t (30)

S+
olst ≤ ψ.olst ∀o, s, l, t (31)

S−olst ≤ ψ.(1− olst) ∀o, s, l, t (32)

4. Solution Methods
4.1. Goal Programming

A subset of multi-objective optimization, or multi-criteria decision analysis (MCDA),
is goal programming (GP). Targets are defined for a collection of constraints, extending
or generalizing linear programming. By translating several objectives into goals with
present target values and weights, the technique may manage multiple objectives. Goal
programming is utilized for three different kinds of analyses:

• Ascertain the resources needed to accomplish a desired set of goals.
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• Assess the extent to which the objectives have been met in relation to the resources
at hand.

• Offer the most fulfilling solution given the different resources available and the goals’
relative importance.

Pre-emptive and lexicographic models are the two fundamental types of goal pro-
gramming. Minimizing a deviation in a higher priority level is much more significant than
any deviations in lower priority levels. In pre-emptive goal programming, the undesirable
deviations are sorted into many priority levels. There is a definite priority ordering among
the objectives in lexicographic goal programming [48].

One of the fundamental methods for creating paradigms in which the decision-maker
(DM) tries to accomplish several objectives at once is general programming (GP). Like other
approaches, GP may be expressed in mathematical models that are linear or nonlinear.

Achieving the level of desire set in a goal depends on the possibilities, resources,
limitations, etc. In practice, the decision-maker may or may not achieve the level of desire
set. In many cases, there may be differences between the desires, inclinations, and desires
of the decision-maker and what can be achieved in practice. This rate of difference in ideal
planning models is measured by a variable called the variables of deviation from the ideal.
We display the variables deviating from the ideal with d+i and d−i . For better information,
seee below.

A goal’s ability to be attained relies on available options, assets, constraints, etc. The
decision-maker may or may not actually fulfil their degree of desire. In numerous instances,
there could be discrepancies between the decision-maker’s preferences, desires, goals, and
what can be accomplished. A variable known as the factor of departure from the ideal is
used to quantify this rate of variation in ideal planning systems. With d+i and d−i , we show
the variables that deviate from the ideal. See the material under for further details:

The states The variables deviating from the ideal Description

First d+i = d−i = 0 Full achievement of the goal

Second d+i 6= 0, d−i = 0 Overtaking of the goal.

Third d+i = 0, d−i 6= 0 Failure to achieve the goal

Fourth d+i 6= 0, d−i 6= 0 This is not possible

In this research, to implement the GP approach, the mathematical model is first
solved as a single objective, and f ∗i is determined. Next, the number of negative de-
viations from each OF is calculated. Finally, the total deviations are minimized shows
in Equations (33)–(35) [49].

MinZGP = d−1 + d−2 , (33)

f ∗1 = z1 + d−1 − d+1 , (34)

f ∗2 = z2 + d−2 − d+2 , (35)

4.2. Lp-Metrics Approach

Lp spaces, function spaces that are defined by a natural generalization of the p-norm
for finite-dimensional vector spaces, are a key component of the Lp-metrics strategy, a
mathematical idea. Lebesgue spaces, often known as Lp spaces, are a crucial class of Banach
spaces used in functional analysis and topological vector spaces.

The Lp-metric is a norm metric on Rn (or on Cn), defined by ||x − y||p, where the
Lp-norm ||. ||p is defined by ||x||p = (n∑ i = 1|xi|p)1/p. The Lp-metric technique
has a wide range of applications in measure and probability spaces, physics, statistics,
economics, finance, engineering, and other fields, as well as in a variety of sciences such as
physics, mathematics, and computer science [50].
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The metric distance is used in Lp-metrics to compute the distance between the current
and ideal outcomes. Xu and Cao [51] proposed Equation (36) to solve “the more, the better”
difficulties using an anti-ideal method.

LP =


k

∑
j=1

wj

 f j

(
x∗j
)
− f j(x)

f j

(
x∗j
)
− f j

(
xj
)
p

1/p

(36)

The compatible Lp function is minimized to provide optimal solutions. Equation (36)
can be used to determine the compatible Lp function as a normalized form for various
objectives with different dimensions. p represents the importance of the decision-maker
according to the relevant departure values while deciding. In this investigation, p was
taken to be equal to 2. To find the best solution, each OF is independently solved using the
appropriate restrictions ( f j

(
x∗j
)

).
In other words, the maximum was changed into minimization when the reverse

OFs were solved. We then used these numbers to minimize the Lp model based on
these restrictions. The Equation (36) is finally completed to produce the ideal values and
Lp deviations.

The importance of the j-the aim is indicated by the value of wj (∑j wj = 1), and a
gradual-priority weighted technique is used to explore the whole solution space and find
Pareto-optimal (PO) answers [52].

5. Case Study

An Mw 7.8 earthquake on 6 February 2023, at 04:17 TRT impacted northern and
western Syria and southern and central Turkey. Gaziantep was 37 km to the west and north
of the earthquake. The earthquake’s highest Mercalli strength was XII at Antakya and the
area surrounding the epicenter. At 13:24, a Mw 7.7 earthquake struck in its wake. The
second earthquake had its epicentre 95 kilometres to the north of the first. There were tens
of thousands of fatalities and extensive damage [53–55].

About 507,000 dwelling units were inside those seriously damaged and fallen struc-
tures, which highlights the enormity of the immediate housing requirements for those
displaced by the earthquake. Millions of individuals now urgently required access to
essentials, including shelter, food, clean water, and sanitation, due to the earthquake’s
escalation of the impacts of the continuing war in Syria. Turkey’s two main fault zones
constitute one of the most seismically active areas on the globe. An earthquake is one of
the most harmful natural hazards [55–58].

Direct Relief and World Vision were among the organizations that provided disaster
relief to those affected by the earthquake Figure 2 shows the location of the latest earthquake
in Turkey, depicted schematically. Some information about the case is in Tables 2–7 and the
results are in Tables 8 and 9.

Table 2. Characteristics of faults and research scenarios.

Earthquake Scenario Scenario1 Scenario2 Scenario3 Scenario4

Fault Location 1 Location 2 Location 3 Location 3

Length 68 74 32 20

Width 22 45 12 9

Severity of occurrence 3.5 8.5 60.1 7.1

Probability of occurrence 0.40 0.66 0.14 0.5
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Table 3. Characteristics of relief goods.

Commodity Volume (m3) Weight (kg) Shortage Cost ($)
Discharge

Time/Loading Time
(Minutes)

Non-consumable 0.2 38 25 0.1

Consumable 0.17 5 77 0.03
Sustainability 2023, 15, x FOR PEER REVIEW 15 of 26 
 

 

Figure 2. Schematic of the location of the recent earthquake in Turkey [59–61]. 

Table 2. Characteristics of faults and research scenarios. 

Earthquake Scenario Scenario1 Scenario2 Scenario3 Scenario4 

Fault Location 1 Location 2 Location 3 Location 3 

Length 68 74 32 20 

Width 22 45 12 9 

Severity of occurrence 3.5 8.5 60.1 7.1 

Probability of occurrence 0.40 0.66 0.14 0.5 

Table 3. Characteristics of relief goods. 

Commodity Volume (𝐦𝟑) Weight (kg) Shortage Cost ($) 

Discharge 

Time/Loading Time 

(Minutes) 

Non-consumable 0.2 38 25 0.1 

Consumable 0.17 5 77 0.03 

Table 4. Vehicle characteristics. 

Vehicles 
Weight Capacity 

(tons) 

Volumetric Capacity 

(𝐦𝟑) 
Speed (km/h) Cost ($) 

Kind of one 1.2 30 100 8 

Kind of two 5 61 70 3 

Table 5. Facility specifications. 

 
Central 

Warehouse 
Local DC Backup DC 

Capacity 2 5000 4000 

Construction cost 1.1 0.20 0.8 

Table 6. The percentage of destruction of the local DC. 

Earthquake Scenario Scenario1 Scenario2 Scenario3 Scenario4 

District 15 22 17 21 15 

Figure 2. Schematic of the location of the recent earthquake in Turkey [59–61].

Table 4. Vehicle characteristics.

Vehicles Weight Capacity (tons) Volumetric Capacity (m3) Speed (km/h) Cost ($)

Kind of one 1.2 30 100 8

Kind of two 5 61 70 3

Table 5. Facility specifications.

Central Warehouse Local DC Backup DC

Capacity 2 5000 4000

Construction cost 1.1 0.20 0.8

Table 6. The percentage of destruction of the local DC.

Earthquake Scenario Scenario1 Scenario2 Scenario3 Scenario4

District 15 22 17 21 15

District 16 30 10 15 12

District 18 40 20 30 15

District 19 30 10 20 16

District 20 60 40 56 39



Sustainability 2023, 15, 15900 14 of 23

Table 7. The amount of demand for incident points.

Damaged Points Scenario1 Scenario2 Scenario3 Scenario4

1 3300 2088 7176 5621

2 5791 1122 6611 2011

3 4210 1081 8058 6344

4 1010 520 7622 5031

5 1329 850 5445 4310

Table 8. The pareto solutions for the GP method.

First OF Second OF

1.75 × 1010 7.62 × 1012

2.13 × 1010 5.40 × 1012

3.55 × 1010 4.30 × 1012

3.92 × 1010 3.20 × 1012

4.90 × 1010 2.00 × 1012

5.80 × 1010 2.09 × 1012

6.80 × 1010 1.01 × 1012

8.81 × 1010 1.00 × 1012

Table 9. The pareto solutions for the Lp-metric method.

First OF Second OF

1.33 × 1010 9.62 × 1012

2.10 × 1010 8.20 × 1012

4.15 × 1010 7.30 × 1012

5.98 × 1010 6.27 × 1012

7.10 × 1010 4.03 × 1012

7.89 × 1010 4.09 × 1012

8.82 × 1010 2.81 × 1012

9.82 × 1010 1.99 × 1012

The Lp-metric approach is one approach to finding Pareto-optimal answers to a multi-
objective optimization issue. While dealing with issues that have several variables and
restrictions, as well as when the objective functions are linear, it is very helpful.

The outcomes of the search demonstrate that Pareto solutions are investigated in a
variety of domains, including multi-objective optimization, linear programming, vector
optimization problems, and polynomial vector optimization issues. Different approaches to
obtaining Pareto solutions have been proposed by researchers, including the conventional
constraint technique and stochastic global optimization algorithms. Studies have also
been conducted on proper Pareto solutions, a subset of Pareto solutions that satisfy extra
requirements. The Pareto frontier for two OFs using the Lp-metric and GP techniques is
shown in Figures 3 and 4. Table 9 shows the Pareto solutions for the Lp-metric method.
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Figure 4. Pareto frontier of two OFs with the Lp-metric method.

Multi-objective optimization problems can have Pareto-optimal solutions found using
the GP approach. The Pareto principle may be used to pinpoint the most crucial GP goals
and limitations. In order to maximize a system’s overall performance and produce the
greatest results, GP focuses on a select few crucial factors.

Pareto solutions are those for multi-objective optimization problems where no alterna-
tive solution can enhance one goal without making at least one other objective worse. To
put it another way, Pareto solutions are non-dominated solutions, meaning that no other
option is superior across the board.

6. Comparing Solution Methods

The best result was achieved using Lingo software on a Core5 machine running at
21.2 GHz Intel. With the help of the Lp-metric and GP methodologies, the sample test
issues are optimized in this part. Z represents the values acquired in the Lp-metric. The
values acquired by the Lp-metric technique for the first and second goals are represented
by a number of single objective (SO) values, f1 and f2, and a number of optimum multi-
objective values are generated by contrasting these values independently. ZGP in Table 10
displays the overall unfavourable deviation. After reviewing the calculation results, we
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compared the average values of the OFs using a variety of techniques. Figure 5 displays
the pareto border.

Table 10. Using GP and Lp-metrics to achieve the results.

Number of Test Problem Size of Test Problem ZGP

(
f*

1

)
ZGP

(
f*

2

)
ZLP

(
f*

1

)
ZGP

(
f*

2

) CPU Time
(for GP.)

CPU Time
(for Lp.)

P1 Small 8.27631 × 105 54,640.18 8.2893 × 1010 45,483.172 14.8 12.4

P2 Small 4.27232 × 106 158,069 2.11 × 1011 115,527.3 15.1 12.5

P3 Medium 2.56632 × 108 190,281.2 4.13 × 1011 226,506.2 17.4 13.7

P4 Medium 4.32509 × 107 617,904.7 5.14 × 1011 281,904.7 18 15

P5 Medium 5.70672 × 107 785,247 6.79 × 1011 372,507.2 23 20
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Figure 5. First OF is compared between the two methods.

Figure 6 illustrates how different methods give different values to the same goals for
different problems. Problems with larger dimensions show more differences in goal values.

All of the problems have a much longer solution time when using the GP method, as
shown in Figure 7. In this problem, equality constraints are a major cause of complexity as
they increase the number of variables. A simple additive weighting (SAW) method was
implemented to determine the best method.
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Figure 7. An analysis of the CPU time for the different methods.

In Table 11, each method is ranked according to its weight. It represents the optimal
average values across different issues in the table. The solution time hurts weight determi-
nation because the goals are presented in their maximized state. Thus, it is an effective way
to gain weight. After reviewing the solution methods, the Lp-metric method was found to
have the best performance. Therefore, parameter analysis should be performed using the
Lp-metric approach.

Table 11. Ranking the solutions methods.

Methods SAW Criteria Ranking

Lp-metric 0.441206 1

GP 0.371205 2

7. Sensitivity Analysis

In this section, we performed sensitivity analysis on several parameters to validate
the proposed model. This sensitivity analysis aims to investigate the impact of parameter
changes on the optimal solution. Only the desired parameter changes for sensitivity
analysis, while the other parameters are considered constant. This study selects essential
problem parameters such as demand for relief items, cost of transportation, and probability
of local DC failure for sensitivity analysis.

7.1. Demand

For the demand parameter, different coefficients were considered, while other parame-
ters were assumed to be constant. The amount of change in each OF concerning the shift in
demand parameter is shown below.

In Figures 8 and 9, both OFs increase with increased demand. The second OF related
to costs seems logical to grow with increased demand due to transportation costs and, in
the case of demand satisfaction failure, the cost of shortages that arise. Also, an increase
in demand in the first OF may result in more vehicles or round trips for each vehicle,
increasing distribution time for both factors.

7.2. Transportation Cost

According to Figure 10, an increase in the transportation cost parameter leads to an
increase in the value of the second OF, representing the total cost. However, according to
our research, changing the transportation cost parameter does not affect the first OF.
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7.3. Failure Rate Percentage

The amount of change in each OF concerning the difference in the local DCs failure
rate percentage is shown below.

As seen in Figure 11, an increase in the local DCs’ failure rate percentage leads to a
decrease in the second OF related to the associated costs. With an increase in the probability
of failure for local DCs, non-reliable centers will not be built, and only reliable DCs will be
constructed, resulting in reduced costs. On the other hand, as seen in Figure 11, the increase
in the local DCs’ failure rate percentage leads to a rise in the first OF, which represents the
time required to transport relief items. This seems logical due to the long distances between
reliable DCs and the incident locations compared to local DCs.
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7.4. Maximum Allowable Distance between People

Figure 12 shows that an increase in the demand point k parameter’s maximum per-
mitted distance between individuals causes the value of the second OF, which represents
the overall cost, to grow. Additionally, fewer people were impacted by COVID-19. Our
research indicates that altering this parameter has no effect on the first OF.
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8. Managerial Insights

The supervisor can think about the following aspects to offer perceptions or recom-
mendations from a management viewpoint to assist the government to swiftly establishing
suitable disaster relief arrangements:

1. In the event of a crisis, it is essential to give first priority to the distribution of resources
like labour, supplies, and tools. The author can make recommendations for creating a
system for allocating resources that takes into account things like population density,
the extent of the damage, and the urgent needs of impacted communities. As a result,
resources may be distributed by the government where they are most needed.

2. Effective inter-stakeholder collaboration is crucial to disaster management. The man-
agement might suggest a strong communication system that facilitates real-time
information exchange between governmental institutions, relief groups, and commu-
nities that were impacted. Coordination, decision-making, and the efficient use of
resources may all benefit from this.

3. The manager can stress how crucial it is for local government officials and non-
governmental organizations (NGOs) to work together on disaster assistance. These
organizations frequently possess important information about the surroundings, avail-
able resources, and impacted areas. Government agencies can better understand local
conditions and enable more specialized assistance efforts by forming partnerships.

4. The manager might emphasize the importance of making data-driven decisions while
managing a crisis. The government can learn about the level of damage, population
relocation, and resource needs by utilizing technologies like satellite photography,
remote sensing, and data analytics. Better decision-making, resource planning, and
efficient allocation may all be aided by this data-driven strategy.

5. Regulatory roadblocks and ineffective bureaucracy can impede aid operations in times
of crisis. By reducing paperwork, simplifying procedures, and using effective approval
mechanisms, the author can recommend streamlining administrative operations. This
can hasten relief efforts and guarantee that impacted populations receive aid on time.

6. Finally, management should emphasize how crucial it is to make investments in
catastrophe preparedness measures. The government may reduce the effect of future
catastrophes by investing in early warning systems, holding exercises, and proactively
creating disaster response plans. When comparable situations develop, having a
long-term outlook on disaster management can assist in expeditiously and suitably
arranging resources.

The author may add to the body of knowledge on issue modeling and optimization
methods by taking into account various management viewpoints and making observations
or recommendations. This will give a comprehensive approach to disaster relief plans.

9. Conclusions and Future Suggestion

Crises and disasters are unpredictable and leave irreparable human and financial
damage. All efforts in logistics planning and other activities aim to reduce suffering and
provide better relief to affected people. In the proposed mathematical model, considering
unforeseen factors results in more effective relief efforts. The research results ensure that the
level of satisfaction with meeting the needs of affected individuals is at its highest. In the
event of severe earthquakes and the destruction of existing infrastructure, the conditions
for the relief chain are maintained. The proposed MOMIP mathematical model examined
the costs incurred during relief operations and aimed to minimize these costs. One of these
measures is considering the possibility of vehicles needing to travel again during relief
operations, which reduces transportation costs over the entire period. From a management
perspective, the model’s results can be used to allocate appropriate budgets to deal with
significant incidents. Considering the conflicting objectives, the results led to the maximum
estimation of demands arising from the incident in the shortest possible time and with an
appropriate budget in the proposed CS. Given the dual objective of the model, it can be
concluded that the model is beneficial for relief efforts. GP and Lp-metric methods have
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been suggested to solve the model. These methods are the best for solving multi-objective
problems (MOPs) and have been used to solve the proposed model in this research, and
Lp-metric outperformed the GP approach in this study. As such, for sensitivity analysis,
the GP approach was conducted. According to the results, by considering the maximum
allowable distance between people, the total cost increased, but it decreased affected people
during COVID-19. Moreover, by increasing demand, total cost, and delivery time increased.

Due to the high solution time of large test problems, it is suggested to use a metaheuris-
tic method for solving them in large dimensions. In addition, the routing problem has not
been addressed in this study, and considering the routing problem and the reliability of
the routes can be used in future research. Moreover, predicting demand with machine
learning algorithms can be helpful in future research to control demand fluctuation. Fur-
thermore, using Industry 4.0 technology, such as blockchain, can enhance the deployment
of humanitarian SC due to its ability to control demand data.
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