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Abstract: Electric vehicles (EVs) have emerged as a transformative solution for reducing carbon
emissions and promoting environmental sustainability in the automotive industry. However, the
widespread adoption of EVs in the United States faces challenges, including high costs and unequal
access to charging infrastructure. To overcome these barriers and ensure equitable EV usage, a
comprehensive understanding of the intricate interplay among social, economic, and environmental
factors influencing the placement of charging stations is crucial. This study investigates the key vari-
ables that contribute to demographic disparities in the accessibility of EV charging stations (EVCSs).
We analyze the impact of various factors, including EV percentage, geographic area, population
density, available electric vehicle supply equipment (EVSE) ports, electricity sources, energy costs,
per capita and average family income, traffic patterns, and climate, on the placement of EVCSs in
nine selected US states. Furthermore, we employ predictive modeling techniques, such as linear
regression and support vector machine, to explore unique nuances in EVCS installation. By leveraging
real-world data from these states and the identified variables, we forecast the future distribution of
EVCSs using machine learning. The linear regression model demonstrates exceptional effectiveness,
achieving 90% accuracy, 94% precision, 89% recall, and a 91% F1 score. Both graphical analysis and
machine learning converge on a significant finding: Texas emerges as the most favorable state for
optimal EVCS placement among the studied areas. This research enhances our understanding of the
multifaceted dynamics that govern the accessibility of EVCSs, thereby informing the development of
policies and strategies to accelerate EV adoption, reduce emissions, and promote social inclusivity.

Keywords: electric vehicles; environmental sustainability; optimized placement; machine learning;
traffic pattern

1. Introduction

Green developments have become an integral part of modern cities, as rapid urban-
ization has led to increased transportation usage, heightened pollution levels, and critical
environmental issues [1]. To address these challenges, it is imperative to take proactive
measures and implement strict management to control and minimize the emissions released
by vehicles [2]. The research community is currently focused on developing powered cars
with almost zero emissions, making electric vehicles (EVs) a promising solution. EVs,
driven by clean energy sources, emit harmless byproducts instead of exhaust gases, thereby
improving air quality in cities and promoting the health of their residents [3,4]. In addi-
tion to their positive environmental impact, EVs play a vital role in future smart grids by
conserving energy, reducing carbon emissions, and promoting sustainability [5,6]. The
adoption of EVs by consumers has been increasing steadily, with global sales surpassing
10 million in 2022. Furthermore, it is projected that by the end of 2023, approximately
14 million EVs will be sold, accounting for 18% of all vehicle sales throughout the year [7].
Notably, China, Europe, and the United States dominate the global EV market, with the
United States experiencing a 55% increase in sales in 2022, aiming to achieve a 50% market
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share by 2023 through initiatives such as the Inflation Reduction Acts (IRA) and California’s
Advanced Clean Cars II rule [6].

The infrastructure that provides electrical power from a power outlet to an EV charger is
known as EV supply equipment (EVSE), or more commonly, an electric charging station [8,9].
EVSE integrates utility electricity with wiring, connections, and interfaces to supply power
to an EV battery. The power arrangement varies across different regions based on factors
such as frequency, voltage, power grid connection, and transmission protocols [10,11].
Charging levels are categorized by the Electric Power Research Institute (EPRI) and the
Society of Automotive Engineers (SAE) as AC level 1, AC level 2, and DC fast charging
level 3, each with its corresponding functionalities and security systems [12,13]. As the
number of EVs on the roads continues to rise, concerns regarding the availability and
feasibility of charging stations for users become more prominent [14]. In the United States,
only 12% of the required Level 2 charging stations are installed as of 2023 [15]. Furthermore,
there is a lack of charging stations that support multiple brands, creating an inadequate
charging network that fails to accommodate the changing demand patterns associated with
population growth and the increased adoption of EVs in smart cities [16,17]. The limited
accessibility to affordable electric vehicles is a significant issue for a large portion of the
population, particularly those in low-income groups, people of color, and individuals with
disabilities. The availability of EV charging stations is crucial for these individuals to access
job opportunities and meet their basic needs [18,19].

In addition to the challenges related to accessibility, other factors such as high costs,
regional demographics, traffic flow, and environmental conditions pose obstacles to the
widespread deployment of charging stations [20,21]. The proper placement and sizing
of EV charging stations are crucial to mitigating the negative effects associated with EV
adoption. Numerous studies have addressed the optimal placement and configuration of
charging stations, mainly focusing on economic and power-grid principles [22]. It has been
found that it is essential to optimize the installation and scheduling of electric vehicles in
order to encourage the use of electric vehicles (EVs) and to lower carbon emissions. For the
purpose of facilitating EV owners’ vehicle charging, charging stations should be positioned
in easily accessible areas [23]. Similar to the accessibility of conventional fueling stations
for petrol and diesel vehicles, this convenience will motivate more people to switch to
electric vehicles. Better air quality and lower greenhouse gas emission are the outcomes of
having more electric vehicles (EVs) on the road, as it is intrinsically more energy efficient
than internal combustion engine vehicles. The strategic placement of EVs collectively
promotes greener and more sustainable modes of transportation and propels the market
for electric vehicles [24]. However, basing the placement and sizing solely on economic
considerations is neither reasonable nor realistic [25]. Therefore, the primary objective is to
determine an ideal position and sizing for EV charging stations by employing optimization
techniques that minimize overall expenditure while ensuring power system security [26].
Recently, several heuristic optimization techniques have been employed to address the
challenges associated with the location and design of charging stations [27]. These heuristic
methods have the advantage of identifying optimal solutions even in complex problem
scenarios [28,29]. However, further research is necessary to understand the precise causes of
spatial disparities in the availability of charging stations across different cities. Additionally,
maximizing the accessibility and efficiency of charging stations is essential to meet the
growing demand for charging services effectively [30].

Thus, in order to fulfill the research gaps in the literature and to address the abovemen-
tioned problems, this manuscript aims to identify the crucial factors for optimal charging
station placement and scheduling. Furthermore, machine learning approaches, including
the regression model and support vector machine, are utilized to predict the placement
of charging stations in the most densely populated areas with EVs, using historical data
on the key factors. The novelty of the manuscript is that this study helps in determining
the contribution and impact of various factors in the optimal placement and scheduling of
EVCSs. The role of various factors in the optimal placement of electric vehicles is practically
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determined, and by utilizing these factors, a comparison between the different states has
been carried out regarding the optimal electric vehicle charging station placement. This
manuscript is the source of collective data, but by also utilizing these data, the charging
station forecasting has been conducted in nine different states of the US. The optimality
of charging stations has been identified in the comparison of nine states of the US, includ-
ing California, Florida, Texas, Washington, New Jersey, New York, Georgia, Illinois, and
Colorado. The most recent trends in EV adoption in nine different states of the US, includ-
ing charging station placement, temperature impact, electricity generation, and cost and
mean family income, are determined and utilized for forecasting the demand for charging
stations. Moreover, the performance of machine learning models in predicting strategic
placement is also compared, and it is found that the regression model performed well with
90% accuracy and 94% precision. Furthermore, graphical and mapping analysis, along with
machine learning optimization, presents a clear picture of important factors and their role
in placing EVCSs’ existing stations and forecasting the need for future charging stations in
the US states. This study will be beneficial for researchers and stakeholders to determine
which state has the most demand for EVCSs. This will motivate researchers to further
elucidate the optimal placement in these individual states according to the present demand.

In conclusion, this paper is organized as follows: Section 1 provides an introduction
to the significance of electric vehicles and their usage worldwide, charging infrastructure,
and the challenges associated with placement. Section 2 presents a review of the relevant
literature on the optimal scheduling of EVs and charging station placement. Section 3
outlines the problem statement and objectives of this study. Section 4 describes the data
collection process and the methodology employed to achieve the study’s objectives. Section 5
presents a brief summary of the results, and the Discussion in Section 6 elaborates on the
key findings and implications of the proposed strategy as well as the limitations of the
study. Finally, Section 7 concludes the study and highlights future prospects.

2. Previous Approaches

A study was conducted in which the indicators were identified that play an important
role in the sustainable placement of electric vehicles [31]. The long list of parameters
was identified, and then a unified approach consisting of an algorithm and Monte Carlo
simulation was applied to determine the weightage of key indicators in determining the
sustainable placement of EVs. The high-weightage indicators for the optimal scheduling
of EVs consisted of charging demand, economic factors, demographics, and behavioral
and environmental factors. This study helped in selecting the greatest contributing key
indicators of EVs’ optimal placement for this manuscript. Moreover, numerous studies
have investigated the optimal placement of charging stations (CSs) for electric vehicles
(EVs) in various regions worldwide. These studies have utilized various optimization tech-
niques, such as genetic algorithms, particle swarm optimization (PSO), machine learning
algorithms, and linear programming to optimize EVCSs [22,32]. For instance, a Mixed
Integer Linear Programming (MILP) model was developed to determine the best location
and size of charging stations in cities. This model incorporated inputs such as land-use
classifications, recharging descriptions, and traffic patterns to determine the optimal place-
ment and number of charging stations [33]. Another study employed a genetic algorithm
to determine the position and type of recharging outlets while considering budgetary
constraints and optimizing the placement based on the number of travels ending at specific
locations in the city [34]. Additionally, a quantum-based PSO algorithm was utilized as a
multi-objective approach to optimize EVCS placement, considering factors such as grid
stability, maximum coverage, customer demand, and cost reduction [35,36].

In recent years, the introduction of machine learning (ML) has gained popularity in
addressing challenges related to charging infrastructure management. Researchers have
started employing ML-based algorithms to tackle issues such as CS location, charging
demand prediction, and charging time management [37,38]. Machine learning approaches
have proven beneficial in scheduling electric vehicles successfully [39,40]. Several studies
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have explored the predictive power of ML algorithms, including decision trees, supervised
learning, and support vector machines, in assessing optimal charging station locations,
demonstrating improved results with these models [41]. Regression trees, random forest
(RF), and k-nearest neighbors (KNN) algorithms were utilized in one study to classify
households for EV energy consumption [42]. The KNN algorithm was also applied to
determine the energy consumption at charging stations in Los Angeles, California, pro-
viding insights into the charging needs of EVs in specific areas [43]. Logistic regression,
RF, and XGBoost models were employed to determine charging infrastructure in urban
areas, achieving accuracy values greater than 0.8 and an F-score of 0.68 [44]. A modified
form of support vector machine (SVM) was used for CS placement in China, considering
environmental input parameters and yielding better forecasting and evaluation matrices
compared to conventional models [45]. Neural networks were employed in a study to fore-
cast specific CS utilization data based on the station’s actual placement within a network,
providing immediate predictions of average utilization data for proposed architectures
without the need for executing costly models. This approach assists developers in quickly
testing multiple charging infrastructure placements to determine the best design accord-
ing to their goals [46]. Another study compared three regression methods, RF, gradient
boosting (GB), and XGBoost, using supervised ML on a dataset to determine the most
influential variables affecting charging network management. XGBoost outperformed the
other methods, achieving an R2 value of 60.32% and an MAE of 1.11 [47]. In a study on
public charging stations in Nebraska, USA, the charging behavior was examined using
three widely used models: XGBoost, SVM, and RF. The findings revealed that XGBoost re-
gression outperformed the other models in forecasting demand, with an RSME of 6.68 kWh
and an R2 of 51.9% [48]. Another study proposed a technique for projecting immediate
electricity expenses to the 5 min level using an algorithm that incorporates eight artificial
neural networks (ANNs). Each ANN consisted of a hidden layer with 20 neurons. The
integrated ANN model accurately predicted the following day’s power price or time-of-use
(TOU) costing, providing valuable insights for EV planning [49].

All the above studies indicated the important optimization techniques, machine learn-
ing models, and other relevant approaches for EVCS placement and scheduling. The
existing literature indicates that machine learning-based simulation models proved to be
the most effective and suitable approaches for EVCS placement with greater accuracy
and precision. Optimized charging station placement and scheduling for EVs is an evolv-
ing field, but the following existing research gaps in the literature will be addressed in
this manuscript.

• There is a lack of studies that focus on research in multi-objective optimization, which
takes into account cost, convenience, environmental impact, and other considerations
at the same time and has the potential to provide more holistic solutions.

• Lack of development of models that consider the key variables to determine optimal
placement of EVCSs in smart cities.

• Research is needed to develop data analytics and machine learning algorithms that
can adapt to changing electricity demands and the availability of charging stations.

No study is present in the literature that collectively compares the major states of the
US for the optimal placement and scheduling of EVCSs. Also, the literature has limitations
in studying specific important areas like US states, real-time trends in EV adoption, EVCS
placement, and other concerning factors. So, in continuation with the previous approaches,
linear regression and support vector machine models are utilized for predicting the need
for the optimal placement of CSs in various states of the US. This study aimed to determine
the actual role of important indicators suggested by the above study in assessing the
optimal placement in smart cities. The performance of both models in predicting the
optimal placement of electric vehicle charging stations from these indicators is compared
and analyzed.
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3. Problem Formulation

The problem relates to the determination of important factors for the optimal place-
ment of CS and scheduling of EVs in nine important states of the US, which is the
third largest market for electric vehicles. The objectives of the study are given in the
following sub-section.

Research Objectives

• Identify the key factors that significantly influence the optimal placement and schedul-
ing of electric vehicle (EV) charging stations in urban areas. These factors include
population density, area, EV ownership, environmental conditions (such as tempera-
ture and humidity), energy consumption patterns, and energy costs.

• Develop an optimization model that incorporates these key factors to determine the
optimal placement and scheduling of EV charging stations in smart cities. This model
will consider the aforementioned factors to ensure efficient and effective placement
and scheduling strategies.

• This analysis will provide insights into the overall effectiveness and performance of
the proposed ML model for charging infrastructure and compare the effectiveness of
models in assessing the indicators for optimal placement.

• This evaluation will assess the model’s ability to optimize charging infrastructure and
contribute to the sustainability of the transportation sector.

It is important to note that while there have been various studies on EV charging
station placement using machine learning techniques, to the best of the author’s knowledge,
no study has focused on utilizing and comparing the key factors for optimal placement.
A study is present in the literature that only determines the key indicators for optimal
placement, and no study actually utilized these factors for placement determination. Fur-
thermore, despite the United States being the third largest market for electric vehicles, there
is a lack of research that comparatively analyzes EV patterns across different states within
the country. This study aims to address these gaps by determining the optimal placement
of EV charging infrastructure based on key factors. To achieve this, machine learning
algorithms, specifically linear regression and support vector machines, were employed to
determine the optimal EV charging station placement based on the identified key factors.
The study will provide valuable insights as to which states require EV charging stations
the most based on current demand. The suggested model was evaluated using various
performance metrics, including precision, accuracy, F1 score, and Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), to ensure its effectiveness and reliability.

4. Research Methodology

The research methodology encompasses various components, including the study
area, data collection, data analysis, machine learning model development, and evaluation
of these models. The flowsheet diagram illustrating the research methodology is presented
in Figure 1.

4.1. Study Area

To assess the impact of different factors on the charging infrastructure of electric
vehicles (EVs) and determine the optimal placement of charging stations (CSs), the study
area chosen was the United States. The United States is the third largest country globally,
with a total land area of 9,147,420 km2. It consists of 50 states and has a current population
of 340,269,759, with a population density of 37 per km2 and an urban population percentage
of 82.9% (odometer, 2023; worlddata.info, 2023) [50].

Considering the United States’ status as a developing country and its substantial share
of the world’s population (4.23%), it was deemed appropriate to focus on the 9 major states
of the US. These states, namely California, Florida, Texas, Washington, New Jersey, New
York, Illinois, Georgia, and Colorado, were selected based on their high electric vehicle
percentages and were considered representative of the world’s smart cities. The study

worlddata.info
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aimed to analyze the impact of various factors within these states on the placement of CSs.
Figure 2 highlights the selected states of the US.

Figure 1. Flowsheet of methodology.

The selection of these states was based on their diverse geographical and environ-
mental conditions. The indicators that were utilized for the optimal placement of electric
vehicles are the key indicators of sustainable locations (KISLs) and were the highest con-
tributing factors in this regard, as identified by Carra et al. [31]. By carefully considering
factors such as electric vehicle ratio, ownership, existing charging infrastructure, envi-
ronmental factors, electrical energy consumption, cost, and traffic flow, we ensured a
comprehensive representation of different conditions to study their influence on optimal
CS placement.

4.2. Data Collection

Data were collected regarding the total area, population density, total no. of EVs and
percentage increase of electric vehicles in each selected state, number and type of charging
stations and EVSE ports, temperature, humidity, electricity generation and electricity cost,
EV incentives, traffic flow and average and mean income of families in each state. All these
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factors are important in optimizing electric vehicles in any state, as suggested by Carra
et al. [51]. Data regarding these factors were collected from different as given below.

Figure 2. Selected states of the US as study area.

1. National Household Travel Survey (NHTS) (United States): This dataset provides
information on travel behavior, vehicle ownership, and household demographics. It
can be used to analyze the factors influencing EV adoption and charging demand
in urban areas. Data access: [NHTS Data] (https://nhts.ornl.gov/) (accessed on
5 Septemeber 2023).

2. US Department of Energy (DOE)—Alternative Fuels Data Center (AFDC): This source
provides comprehensive data on existing EV charging stations, including their loca-
tions, charging capabilities, and usage statistics. Data access: [AFDC Station Locator]
(https://afdc.energy.gov/stations/#/analyze) (accessed on 10 Sepetmber 2023).

3. OpenStreetMap (OSM): This crowdsourced mapping platform can obtain geograph-
ical information on road networks, land use, and points of interest, which are es-
sential for the placement analysis of charging stations. Data access: [OSM Data]
(https://www.openstreetmap.org/) (accessed on 31 August 2023).

4. National Oceanic and Atmospheric Administration (NOAA)—Climate Data Online
(CDO): This dataset contains historical weather data, which can be utilized to esti-
mate renewable energy generation potential and influence the placement of charging
stations. Data access: [NOAA CDO] (https://www.ncei.noaa.gov/access/search/
data-search/global-summary-of-the-day) (accessed on 2 Sepetmber 2023).

4.3. Experimental Setup

The investigation was carried out using Python version 3.8, and Google Colab had
access to 16 GB of RAM for the tests. Access to N.V.I.D.I.A. GPUs and CPUs is freely
accessible through the Google Colab platform, and these resources may significantly boost
the pace at which simulations are conducted and the ultimate efficiency of the experiments.
Furthermore, Google Colab has an easy-to-use interface and integrates well with Python,
making it a useful tool for investigating and processing code. The platform provides a
large amount of RAM for the trials (16 gigabytes), allowing it to handle larger datasets and
memory-intensive operations.

Graphical analysis methods, such as line graphs and Pi-charts, were employed to
analyze the data and identify key factors influencing the optimal placement of CSs. These
graphical representations facilitated an understanding of the impact and relationships
among various factors, contributing to the optimization process.

Data splitting, a common approach in machine learning (ML), involves dividing the
dataset into at least two subsets, usually training and testing sets. The purpose of data

https://nhts.ornl.gov/
https://afdc.energy.gov/stations/#/analyze
https://www.openstreetmap.org/
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
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splitting was to evaluate the performance of ML models on unseen data. In this study,
the dataset was split into two halves, with 80% of the data utilized for training the ML
models and the remaining 20% used for model evaluation. In the process of developing
and accessing machine learning models, such as support vector machine (SVM) and linear
regression, splitting data into training and testing sets is essential. To make sure the model
generalizes well, the performance of the model on untested data is evaluated. First, the
dataset is prepared by cleaning, initial processing, and arranging it to make sure any
missing value is handled and the data are in accurate format. The data are split on the basis
of the size of dataset and the problem to be identified. This removes the uncertainty of
input data. To make sure that the data effectively reflect the problem that we are trying
to address and are appropriate for training a machine learning model, data validation is
essential. In order to guarantee the consistency and quality of the dataset, data validation
entails preparation and checking of data. The missing numbers, outliers, and inconsistent
data are first eliminated or corrected in order to clean up the data. In order to evaluate the
accuracy or completeness of data, any discrepancies or input data errors were searched.
Then, data processing is carried out in validation process by scaling, normalizing, or
transforming features and standardizing units that make the data appropriate for machine
learning algorithms.

4.4. Model’s Architecture

This section contains information regarding the machine learning models utilized to
find the optimal placement of EVCSs by utilizing the collected input data regarding the
states of the US. Two different models of different natures are utilized in this study, and the
comparison of their effectiveness has been made in optimal placement and scheduling of
EVCSs. These two models work independently irrespective of each other and are utilized to
determine their effectiveness towards the quantitative linear data of indicators for assessing
the optimal placement of charging stations in smart cities. The results have suggested which
model is the best-suited model for this kind of data. The linear regression model is utilized
in this study because of its simple interpretability nature. It enables us to comprehend
the relationship between influencing factors and EVCS placement. This computationally
simple model entails understanding which factor has the most significant impact. However,
SVM is a flexible option for effectively placing charging stations in increasingly intricate
urban environments due to its advantages in managing complex, non-linear interactions,
versatility to high-dimensional data, and generalization to various scenarios. Where
complicated spatial and geographical patterns may impact EVCS placement, SVM is better
able to identify non-linear connections. SVM copes well with high-dimensional data when
placement decisions are based on multiple considerations. By using alternative kernel
functions (such as linear, polynomial, and radial basis functions) to adjust to diverse
distributions of information and relationships, SVM offers versatility. As both models
work independently, the effectiveness of both models for optimized EVCS placement and
scheduling is compared and determined in this manuscript.

4.4.1. Linear Regression

Regression-based optimization is a strategy that integrates regression analysis with
optimization techniques to determine the best values for particular parameters or vari-
ables [50]. It is frequently utilized when you have data points and wish to establish the
link between the input parameters and an output variable, then use that correlation to
optimize the output variable [52]. It is especially beneficial when an intricate relationship
between factors cannot be stated using simple mathematical formulae. Regression analysis
can be useful for determining the optimum location for electric vehicle (EV) charging
stations. The purpose is to identify the best places for CS to increase utilization, access, and
convenience [53].

Linear regression is a quantitative technique for modeling the connection between one
or more independent factors (features) and one or more dependent variables. With charging
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station placement, linear regression can be utilized to determine the link between numerous
parameters influencing charging station utilization and the expected demand [54].

Consider a simple situation in which two variables are independent, such as electric
vehicles (X1) and area of state (X2), with EVCS usage (Y) as the dependent variable, Bo is
the intercept, B1 is the coefficient for variables that determine the variable influence on Y,
and ε is the error term. The linear regression model can be represented as

Y = βo + β1 × X1 + β2 × X2 + ε, (1)

We used statistical software and computer libraries (such as Python’s scikit-learn)
to execute the calculations and fit the regression to our data. We expand this concept to
several independent variables and more advanced regression methods.

4.4.2. Support Vector Machine

A supervised ML strategy called a support vector machine (SVM) is applied to clas-
sification or regression challenges. It works well when a sharp difference exists between
various classes or data points [55]. Support vector machines (SVMs) could be used to
position charging stations. SVM regression can assist in predicting projected charging
station utilization based on various parameters when it comes to placement [56]. SVM
regression is used to identify the function that matches the data the best while maintaining
a specific margin between the data points. Finding the hyperplane with the largest margin
around the data points will enable us to anticipate a continuous output variable (charging
station usage).

We fit the data points as closely as possible to select the optimum hyperplane for the
SVM regression while still permitting some error. The model was made in which Y is
the dependent variable that belongs to charging stations, X is the independent variable
indicating indicators (EVs, area, temperature, energy dissipation, cost), w is the weight
factor, b is the bias term, and ε is the error term that allows deviation from the hyperplane.
The SVM regression model is represented mathematically by the following formula:

Y = w × X + b + ε, (2)

We utilized the machine learning model (scikit-learn in Python) to perform the calcula-
tions and fit the SVM model. SVM is utilized to deal with complex relations with variables.

4.5. Model’s Validation

An important stage in the model development strategy is model evaluation. It enables
you to assess the effectiveness of your model, pinpoint its weak points, and make wise
judgments about whether to deploy or modify it. In this study, the performance of a
model was assessed using the well-known machine learning assessment metrics accuracy,
precision, Recall, F1-score, ROC-AUC, and Confusion matrix [57,58]. Accuracy estimates
the proportion of properly predicted occurrences to all instances in problems involving cat-
egorization. Although it’s a simple measure, it might not be appropriate in situations where
there are class disparities. Precision calculates the ratio of accurate positive predictions
to all positive predictions. It is employed to evaluate the model’s capacity for producing
precise positive predictions. Recall calculates the ratio of genuine positive predictions to
real positive occurrences. It is helpful in determining whether a model can account for
every positive example. F1 score integrates recall and precision into a single statistic. It
is helpful when we need to optimize both precision and recall because it offers a balance
between the two. The accuracy, precision, recall values and F1 score are calculated using the
following equations. The confusion matrix plot is used to examine the model’s efficiency. It
gives a tabular display of the predictions that were falsely positive, falsely negative, and
true positive & negative. For a thorough examination of the model’s performance, it is
helpful. Using helpful metrics and confusion matrices, we can evaluate the overall number
of correctly and erroneously identified classes and precision, recall, accuracy, and F1 scores.
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TPA being the True positive of Class A, TPB is the True positive of class B and TPC is
the true positive of class C with true positive value TP, false positive value FP and false
negative value FN, the accuracy, precision, recall and F1 score is determined by utilizing
the following equations.

Accuracy = TPA + TPB + (TPC/Total), (3)

Precision = TP/(TP + FP), (4)

Recall = TP/(TP + FN), (5)

F1 Score = 2 (Precision × Recall)/(Precision + Recall), (6)

4.6. Mapping Analysis

Mapping analysis was carried out to elucidate the location of the CSs in the particular
state. The maps were collected from the Department of Energy, US alternative fuel data
centers. This analysis was done to gain more insight into the present charging stations and
to forecast the optimal placement of EVCSs for the future. The analysis of already present
and expected corridors to link the cities was also carried out and elaborated in this study.

5. Results

The results of the applied methodology are briefly described in this section. First, the
data analysis was carried out with the help of graphs to determine the impact or contribu-
tion of various factors on the electric vehicles and the charging station infrastructure.

5.1. Data Analysis

Data analysis was carried out with the help of graphs and pie charts to determine the
detailed impact of each factor on electric vehicle charging stations. Various key factors take
part in the optimal placement of EVCSs.

Graphical Analysis

First, the overall percentage increase of electric vehicles in the US is elaborated with
the help of a graph, as shown in Figure 3. The graph indicates that the percentage of
battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV) has continuously
increased over the years. The percentage of BEV is far greater than PHEV, and to 2050,
the percentage will reach almost 12% compared to 2012. Therefore, there is an entire need
for CSs for BVC shortly. So, the optimal placement of these charging stations is also an
important concern that needs to be focused on to fulfill the present and future requirements.

Figure 3. Percentage of EVs in the US.
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To find the optimal placement from the selected states, it is very important to consider
the total number of EV percentages in these states. Therefore, the Pi graphs have been
plotted that compare the area, EVs, charging stations, electricity generation and electricity
cost, and average income of families of each state, as shown in Figure 4. This analysis is
carried out in order to compare with the linear regression model of machine learning that
will also determine the relation between the factors and the charging station placement. By
analyzing the relationship between the variables and charging stations, we can identify or
predict the demand for optimal placement. Similarly, the machine learning model further
elucidates this relation of factors with charging stations and gives the output in the form
of state that demand for charging stations. This graphical analysis has its contribution
in determining the model’s performance. By considering these factors for the optimal
charging station placement, policymakers can give priorities to areas with little charging
coverages. The amount of EVs on the road today can help policymakers determine if more
charging stations are necessary. In order to keep up with demand, strategies can give
priority to expanding the infrastructure for EV charging. To maximise the effectiveness
of their efforts, policymakers must also take into account the distinctive features of their
respective regions. The graphs show California has the greatest number of electric vehicles
(54% pi area) and charging stations (47% pi area). While comparing the other states, Florida
and Texas have the second greatest number of electric vehicles and charging stations.
Washington and New Jersey have an equal ratio of EVs and EVCSs, but New York has
only 5% EVs, and stations are 11% compared to the other states. Similarly, Illinois, Georgia,
and Colorado have fewer EVs and EVCSs. When the other factors of these states were
compared to determine the optimal state for CS placement, it can be seen that Texas has
the greatest area and electricity generation compared to all other states. At the same time,
the electricity cost is also low in Texas, with a greater average family income. Low-priced
power makes it easier to deploy EVs since it lowers the cost of charging for EV owners and
may encourage a higher adoption rate. The ideal location for EVCS placement considers
the regions with reasonable prices. Moreover, it’s critical that the local energy infrastructure
can accommodate the extra demand caused by EV charging. If not properly handled, high
concentrations of EVs charging concurrently could put pressure on the grid. For optimal
outcomes, locations with adequate grid capacity or plans to upgrade their infrastructure to
support EV charging requirements should be chosen.

By considering the average ratio of EVs, present charging stations, area, electricity
generation, and cost, we can infer that Texas would be the optimal state for charging station
placement in the future. The percentages of all the key factors according to the pi-chart for
comparison are also given in Table 1 below.

The impact of temperature was also investigated and found that temperature has
a considerable impact on EV charging efficiency. High surrounding temperatures can
aggravate thermal control concerns, while low temperatures might raise the battery’s
resistance and reduce the charging effectiveness. Charging time rises when the temperature
drops, especially at low battery SOC. The ideal location should consider temperature
control, favoring regions with temperate climates that increase EV efficiency and range.
The temperature pattern of the selected states is shown in Figure 5.

As the graph indicates, Texas has a temperature in the normal range, making it an
optimized state for EVCS placement. Moreover, Florida has high temperatures that affect
electric vehicles’ charging efficiency. Moreover, Washington has a low temperature that
causes an increase in charging time for EVs. The results indicate that, these indicators play
an important role in determining the optimal charging station placement as suggested by
the previous study [57]. The graphical analysis of the statical data indicated the optimal
placement of the EVCSs in Texas, and this optimization was also confirmed by machine
learning, as given below.
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Figure 4. Key factors analysis in selected states.

Table 1. Percentage of variables from pie charts.

States % of Area % of EVs % of
EVCSs

% of
Energy
Genera-

tion

% of
Energy

Cost

Mean
Family
Income

California 19 54 47 12 18 12

Florida 8 10 9 14 10 9

Texas 32 9 9 30 8 10

Washington 8 6 6 7 8 12

New
Jersey 1 5 3 4 13 13

New York 6 5 11 8 15 12

Illinois 7 4 4 13 9 11

Georgia 7 4 5 8 9 10

Colorado 12 3 6 4 10 11
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Figure 5. Temperature (f) in selected states.

5.2. Machine Learning Analysis

This study used two optimization algorithms, linear regression and support vector
machine, to find the optimal placement and scheduling of EVCSs. The model evaluation
utilized the precision, accuracy, F1 score, and AUC-ROC curve. The following results by
various models indicated the optimal placement of charging stations in states.

5.2.1. Linear Regression Model

When the linear regression was applied to the input variables described in the method-
ology, the outcomes resulted in the graph, as shown in Figure 6 below. Given that regression
is linear, both positive and negative consequences were anticipated and shown to exist.
All estimates can be compared because they were all produced using the same approach
and methodology. The results are given in the form of a bar graph. The graph generated
after applying the optimization algorithm for the EVCSs placement in the selected states
indicated that Texas would be the most optimized state for further placement of charging
stations from all the given states by considering the input key factors. These results follow
the analysis results, which depict the model’s certainty and performance.

Texas indicated the highest results for optimized placement depending on the above-
mentioned parameters. Then Washington would be the second most optimized state,
followed by New Jersey and New York when analyzed by utilizing data of total electric
vehicles, already present stations, EVSE ports, area, average power generation and cost,
temperature, and the average income of families in each state. The confusion matrix of the
applied regression is shown in Figure 7.

With the help of this confusion matrix, the precision, accuracy, recall, and F1 scores
were calculated. The linear regression model indicated 90% accuracy, 94% precision, 89%
recall, and 91% F1-score when evaluated from the confusion matrix.

5.2.2. SVM Model

The SVM model was utilized to identify the most important key factors in determining
the optimized placement of charging stations. The key features for the optimization are
shown in Figure 8 below. The figure indicated that the number of already present charging
stations in the various states, temperature, and area or population of the states proved to
be beneficial factors in evaluating the optimal placement of the charging stations.
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Figure 6. Linear regression optimization.

Figure 7. Confusion matrix of linear regression.

Optimized placement of charging stations was also evaluated with the help of a
support vector machine by considering these key factors as input variables. The output
was obtained in the form of the following Figure 9.

Feature 1 indicates the population, and Feature 2 represents the area of the states. We
can see that there is no clear hyperplane between the data, indicating that the data are
high-dimensional. The high-dimensional non-linear or kernel parameters were applied to
map the data to the higher dimensional space where the separation would be possible. The
results were obtained as shown in Figure 10.
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Figure 8. Important features.

Figure 9. Optimization through SVM (low-dimensional).

The results indicated fewer charging stations in the more populated states with greater
areas. The results suggested the more optimized charging stations in the states with greater
electric vehicles, area, and population. The confusion matrix of the model is shown in
Figure 11 below.

When the support vector machine model was evaluated with the help of evaluation
matrices, the results demonstrated that this model showed less optimal results than the
linear regression with only 35% accuracy, 27% precision, 38 recall matrix, 32% F1 score, and
35% ROC-AUC curve.

5.3. Mapping Analysis

The total number of charging stations in Texas was also analyzed using mapping
analysis, as shown in Figure 12. The green dots in the figure below represent Texas’s electric
vehicle charging stations. It can be seen that the present stations are mostly situated on the
north side of Texas, and very few are present on the other side. This means there is a need
to optimize the placement of CS and the scheduling of EVs inside Texas to satisfy the needs
of the people. Areas with significant traffic volumes, such as crowded metropolitan centers,
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business districts, shopping malls, and office buildings, should be selected strategically
for charging stations. High-traffic locations ensure that many potential EV customers may
quickly reach charging stations while making their daily commutes or going about their
usual business.

Figure 10. High-dimensional optimization through SVM.

Figure 11. Confusion matrix of SVM.
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Figure 12. Mapping analysis of EVCSs in Texas.

The already present corridors that link one city of Texas with another are also men-
tioned on the map with dark green lines. The suggested corridors are also evaluated by
light green lines in Figure 13. These corridors will allow people in both cities to share the
stations. This also suggests the optimal placement of electric vehicle charging stations.

Figure 13. Mapping analysis of present and expected corridor (AFDC) in Texas.

6. Discussion

The key findings and limitations of this study are discussed in this section. This
section elaborates on the results and the implications of the findings for policymakers,
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stakeholders, and the general public. The comparison of the findings of this manuscript
with the previous methods is also made in this section to indicate the capability of the
proposed model. Moreover, the limitations or drawbacks of the proposed model are also
discussed, along with the future directions for research.

6.1. Key Findings and Implications

This study aimed to determine the optimal placement of electric vehicle charging
stations (EVCSs) in smart cities by considering various factors in nine selected US states.
The investigation focused on factors such as EV percentage, area, population density, EVCS
ports, energy demand and production, energy cost, and temperature. The graphical analysis
involved generating line graphs and pie charts to compare variables and key factors among
the selected states and their influence on EV placement and scheduling. The findings
revealed that California had the highest number of EVs and charging stations in the US,
while Florida and Texas showed the highest increase in EV adoption after California. Texas
exhibited the highest optimization potential for future EV placement when considering
factors like area, energy demand and production, average income, and temperature. The
analysis also highlighted that moderate-temperature areas are more suitable for charging
stations and EVs compared to regions with high or low temperatures. This indicates the
significant contribution of various factors in determining the optimal spatial distribution
for electric vehicles. In order to ascertain the relationship between the factors and the
position of the charging station, this analysis is performed in comparison with the machine
learning linear regression model. We are able to determine or forecast the need for ideal
placement by examining the correlation between the factors and charging stations.

The statical data of the key factors are utilized as input data in both machine learning
models, including linear regression and support vector machine. The efficiency of both
models is compared for these data. In linear regression, by taking into account the input
important factors, the graph produced by using the optimization method to locate EVCSs
in the chosen states showed that Texas would be the most optimal state for the subsequent
placement of charging stations out of all the states provided. These findings show the
performance and certainty of the model, and they come after the analysis results. When
compared to the graphical analysis, the findings of the linear regression model are also
supported by its findings. This demonstrates the feasibility and efficiency of the proposed
model for strategic placement. SVM showed that while determining the optimal location
for the charging stations, the number of charging stations that are currently in place in
each state, the temperature, and the area or population of each state proved to be useful
considerations. The high-dimensional non-linear or kernel parameters were used in SVM
to map the high-dimensional data to the higher dimensional space where separation would
be feasible. For this type of data, the linear regression model proved to be more efficient
than SVM with higher accuracy and precision. The evaluation matrices for both models are
given in Table 2 below.

Table 2. Evaluation matrices for machine learning.

Model Accuracy Precision Recall F1-Score

Linear Regression 90% 94% 89% 91%

SVM 35% 27% 38% 32%

Linear regression exhibited the advantage of high accuracy and precision as compared
to the various models of the literature in the optimal placement of EVCSs, as indicated in
Table 3 below.



Sustainability 2023, 15, 16030 19 of 23

Table 3. Comparison of model with previous studies.

Author Model Findings Reference

Verma et al., 2015 KNN, RFA
79.28% and 84.95% accuracy indicated by KNN
and RFA for forecasting household
plug-in vehicles.

[42]

Majidpour et al., 2014 KNN
KNN showed better prediction of energy
consumption by EVs with 1 h granularity and 24
h horizon of prediction.

[43]

Straka et al., 2020 Logistic regression, GB, RF All models showed more than 80% accuracy in
prediction of CSs. [44]

Zhang et al., 2018 Fuzzy clustering (FC), LSSVM,
Wolf pack algorithm (WPA)

FC-WPA-LSSVM indicated higher forecasting
ability of e-bus charging stations load with
2.07–2.29 RMSE

[45]

Ramachandran et al., 2018 Neural networks 0.2–0.3% error in predicting power statistics for
individual EVSEs [46]

Lucas et al., 2019 RF, GB, XGBoost XGBoost outperformed for estimating idle time
on CSs with 1.11 mean absolute error. [47]

Almaghrebi et al., 2020 XGB, SVM, RF XGB had greater efficiency in predicting
charging demand with RMSE of 6.68 kW/h. [48]

This study Linear regression, SVM

Linear regression outperformed in optimized
placement of EVCSs with 90% accuracy and
94% precision.
This study elaborates on the factors influencing
CS demand.

As Texas is considered the most demanding state for the optimal placement and
scheduling of EVCSs, the mapping analysis is carried out to demonstrate the presence of
already present stations, and the expected corridors have also been identified where the
utilization of the stations will be maximum. Machine learning models, specifically linear
regression (LR) and support vector machine (SVM), were utilized to address the challenges
of determining the geographical convenience for EVCS placement. The findings suggested
the need for fair distribution by installing stations in the underrepresented areas of Texas.
Additionally, the analysis considered the present and upcoming corridors in Texas that
connect different cities.

This study and its findings can become the basis for stakeholders and petitioners who
are willing to develop charging stations to promote the usage of electric vehicles. The study
can be further proceeded to identify the optimal placement of EVCSs within all the desired
states. This study will open the doors for many other further studies on optimal charging
station placement.

6.2. Limitations of Study

The proposed methodology has limitations as well. This strategy did not take into
account other important factors like traffic flow and consumer behavior in optimal charging
station placement. This strategy indicated the recent general demand for EVCS placement
in various smart states of the US. The proposed models have not been utilized to determine
the optimal placement in an individual state, but this can be implemented in future studies.
Only two machine learning models are used in this study for optimization. Other models
can also be implemented for this purpose, and their effectiveness in optimal placement
determination can be identified.

6.3. Future Prospects

The proposed models can be implemented in real-world studies due to the advantages
they offer. The real-world usage of linear regression in smart cities with vast networks of
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possible charging station placements is possible due to its ability to be scaled up for larger
regions and more data without demanding substantial computational resources. SVM may
produce precise predictions for data points that have not yet been seen because it often
possesses strong generalization properties. This is crucial when modeling the locations of
charging stations across various regions or addressing upcoming modifications to urban
infrastructure. This study provides insights into the demand for charging stations in each
state and can serve as a foundation for future studies on EV forecasting. Researchers, poli-
cymakers, and analysts can utilize the findings for optimized charging station placement
in individual states. Furthermore, other machine learning models like KNN, XGBoost,
and ANN will be employed to further enhance EV optimal placement and scheduling.
By leveraging the power of machine learning, we anticipate building charging networks
that are responsive to the evolving demands of both the energy grid and electric vehicle
customers, thus improving decision-making and accommodating changing conditions.

7. Conclusions

This study aimed to determine the optimal placement of electric vehicle charging
stations (EVCSs) in smart cities by considering various factors in nine selected US states.
The investigation focused on factors such as EV percentage, area, population density, EVCS
ports, energy demand and production, energy cost, and temperature. Two approaches,
including machine learning and graphical analysis, were employed for forecasting and
analysis. In order to assess variables and important criteria among the chosen states and
their impact on EV placement and scheduling, a graphical analysis was performed. Accord-
ing to the findings, California has the greatest number of EVs and charging stations in the
US, while Florida and Texas witnessed the largest increase in EV adoption after California.
Based on acreage, energy output and consumption, average income, and temperature,
Texas showed the best optimization potential for future EV placement. This graphical
analysis will help the petitioners, policymakers, and government officials to consider the
trend of EV adoption in different states. By considering these factors for optimal charging
station placement, policymakers can give priority to areas with little charging coverage.
Strategies can be made to prioritize extending the infrastructure for EV charging in order
to meet demand. Machine learning models, specifically linear regression (LR) and sup-
port vector machine (SVM), were utilized to address the challenges of determining the
geographical convenience for EVCS placement. The LR model demonstrated high accuracy
and efficiency in predicting optimal placement and outperformed the SVM model with
90% accuracy and 94% precision. The SVM model helped identify the most crucial factors
for optimization, emphasizing the multidimensional nature of the data and the role of each
factor in forecasting optimal charging station placement. These models will also support
future studies on the optimal placement of charging stations in other regions, contributing
to sustainable transportation and low carbon emissions.

This study will help in enabling more sophisticated models for optimal charging
station placement and scheduling in future studies. These models can also incorporate
real-time data on traffic patterns, electricity demand, and user behavior to optimize the
location. Future smart city charging station placement and scheduling will be dynamic,
influenced by changing urban planning, increased sustainability consciousness, and tech-
nology breakthroughs. The role of EVs and charging infrastructure will become more and
more crucial as cities continue to deal with the issues of urbanization and environmental
impact, with new possibilities and rising difficulties.
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Abbreviations

Description of all variables.

Variables Description
EV Electric Vehicle
EVCSs Electric Vehicles Charging Stations
EVSE Electric vehicle supply equipment
EPRI Electric Power Research Institute
SAE Society of Automotive Engineers
MILP Mixed Integer Linear Programming
PSO Particle Swarm Optimization
ML Machine Learning
RF Random Forest
KNN K-Nearest Neighbor
GB Gradient Boost
SVM Support Vector Machine
ANN Artificial Neural Networks
MAE Mean Absolute Error
RSME Root Mean Square Error
TOU Time of user
AUC-ROC Area Under the Receiver Operating Characteristic Curve
NHTS National Household Travel Survey
DOE Department of Energy
AFDC Alternative Fuels Data Center
OSM OpenStreetMap
NOAA National Oceanic and Atmospheric Administration
TPA True positive of Class A
TPB True positive of Class B
TPC True positive of Class C
TP True positive
FP False positive
FN False Negative
BEV Battery electric vehicles
PHEV Plug-in hybrid electric vehicles
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