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Abstract: Shear strength prediction in FRP-bonded reinforced concrete beams is crucial for ensuring
structural integrity and safety. In this extensive investigation, advanced machine learning algorithms
are harnessed to achieve precise shear strength predictions for rectangular RC beams reinforced
with FRP sheets. The aim of this research is to enhance the accuracy and reliability of shear strength
estimation, providing valuable insights for the design and assessment of FRP-strengthened structures.
The primary contributions of this study lie in the meticulous comparison of various machine learning
algorithms, including Xgboost, Gradient Boosting, Random Forest, AdaBoost, K-nearest neighbors,
and ElasticNet. Through comprehensive evaluation based on predictive performance, the most
suitable model for accurately estimating the shear strength of FRP-reinforced rectangular RC beams
is identified. Notably, Xgboost emerges as the superior performer, boasting an impressive R2 value of
0.901. It outperforms other algorithms and demonstrates the lowest RMSE, MAE, and MAPE values,
establishing itself as the most accurate and reliable predictor. Furthermore, a sensitivity analysis
is conducted using artificial neural networks to assess the influence of input variables. This addi-
tional research facet sheds light on the critical factors shaping shear strength outcomes. The study,
as a whole, represents a substantial contribution to advancing the development of accurate and
dependable prediction models. The practical implications of this work are far-reaching, particularly
for engineering applications in the realm of structures reinforced with FRP. The findings have the
potential to transform the approach to the design and assessment of such structures, elevating safety,
efficiency, and performance to new heights.
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1. Introduction

Concrete structures are extensively employed in the construction industry due to their
high strength and durability. [1]. However, they often experience shear failures, which can
lead to catastrophic consequences. In the pursuit of enhancing the shear strength of concrete
beams, many methods have been developed, among which the external bonding of FRP
composites has emerged as a subject of substantial research and scholarly focus [2]. The use
of FRP composites as an external bonding technique has shown great promise in enhancing
the structural performance of concrete elements, mitigating shear failures, and increasing
their load-carrying capacity [3]. The extant literature exhibits a plethora of scholarly
endeavors exploring the domain of shear strengthening of concrete beams through the
utilization of FRP sheets. This compendium of studies exemplifies the substantial research
endeavors and notable progress achieved within this realm. Encompassing a diverse
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array of subjects, these investigations span experimental inquiries, analytical modeling
approaches, numerical simulations, and the development of design guidelines.

De Maio et al. [4] evaluated the impact of damage on the dynamic characteristics
of RC structures retrofitted with FRP systems. A numerical model, utilizing a cohesive
crack strategy and an embedded truss model, was performed to simulate the damage
progression under quasi-static loading conditions. The dynamic response, specifically
the natural vibration frequencies, was analyzed and compared to numerical and experi-
mental results. The findings demonstrate that the FRP system positively influences both
the static and dynamic behavior of the structures, enhancing their load-carrying capacity
and mitigating natural frequency degradation. A comprehensive literature review on the
utilization of natural fibers and biopolymers in FRP composites for concrete members
was presented by Nwankwo et al. [5]. The study examines various FRP configurations
and strengthening techniques, placing emphasis on the effectiveness of bio-based FRPs
in enhancing the strength of concrete beams and columns. The review emphasizes the
importance of factors such as laminate thickness, FRP anchorage, and member stiffness in
determining the effectiveness of the strengthening process. Furthermore, analytical and
numerical modeling methods are identified as valuable tools for predicting the behavior of
concrete structures bonded with bio-based FRPs. The authors also acknowledge the impact
of environmental factors on bio-based FRPs and discuss the potential for modifying natural
fiber properties through appropriate treatments. Zhou et al. [6] presented a comprehen-
sive review of stochastic multiscale analysis for FRP composite structures. The research
focuses on the uncertainties in FRP structures that are caused by material variations and
manufacturing processes. Key aspects discussed include the source of uncertainty, the
prediction of effective material properties with uncertainties, and probabilistic structural
analysis. Manufacturing weaknesses like fiber misalignment and matrix voids have a
significant influence on the mechanical properties of FRP composites. Techniques based on
micromechanics and probabilistic homogenization are employed to predict and quantify
the impact of microscale uncertainties on overall material behavior. The integration of
probabilistic homogenization and structural analysis enables multi-scale stochastic analysis,
providing more accurate results than single-scale approaches. The review emphasizes the
need for further research to consider realistic uncertainties, propagate non-probabilistic
random variables across scales, and explore nonlinear problems and non-probabilistic
reliability analysis.

Zhang et al. [7] investigated flexural design in RC structures strengthened by hybrid
bonded-FRP. Their study addresses the lack of effective design methodologies for this
strengthening technique. The authors analyze debonding mechanisms and failure modes,
propose a design process, and introduce failure criteria that ensure good ductility. They
develop a predictive model for bearing capacity and verify its accuracy. Numerical analysis
confirms the effectiveness of the fastener design. Pohoryles et al. [8] studied the impact of
slabs and transverse beams on the effectiveness of FRP retrofitting for existing RC structures
under seismic loading. Through experimental investigations conducted on four beam-
column joints, they revealed that the presence of slabs and transverse beams significantly
influences damage progression and failure mechanisms. The retrofit effectiveness is found
to be higher in specimens without slabs and transverse beams, indicating the inadequacy of
focusing solely on joint shear strengthening. These findings caution against overestimating
the effectiveness of retrofitting and emphasize the importance of accurately representing
realistic structures in numerical and experimental assessments for assessing seismic perfor-
mance in RC moment-resisting frames. In another research work, Wei et al. [9] conducted
experiments to investigate the dynamic properties of eight footbridges constructed using
FRP composites. They compare these properties to six additional FRP footbridges as well as
124 non-FRP footbridges. The comprehensive analysis reveals that FRP footbridges exhibit
similar basic frequencies but higher damping ratios compared to conventional materials.
The natural frequencies and damping ratios of FRP footbridges are found to be response
amplitude dependent. The presence of accelerant peaks suggests that FRP footbridges
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exhibit approximately 3.5 times higher responsiveness to resonant excitation compared to
conventional bridges of similar length and mode shape.

Ferracuti [10] proposed a model for retrofitting RC frames using FRP wrapping specifi-
cally for columns subjected to axial loading and cyclic bending, which is a common scenario
in seismic areas. The present models for FRP-bonded RC frames primarily consider pure
axial loads, neglecting the effects of cyclic bending. The proposed model takes into ac-
count the strain gradient effect caused by bending loads, which significantly affects the
confinement level of the frame. The validation of the model was established through a com-
prehensive comparison of its results with the experimental data obtained from cyclic tests.
Additionally, the model is incorporated into open-source software, enabling its utilization
for conducting pushover analyses on an existing RC frame. This analysis investigates
various retrofitting strategies aimed at improving column ductility in response to lateral
forces. A novel numerical method for seismic assessment of RC structures, considering
both bare and FRP-retrofitted conditions was proposed by Markou et al. [11]. The method
incorporates a damage factor in the steel constitutive material model, which accurately
represents the accumulated damage in the surrounding concrete and accounts for bar
slippage. Experimental validation is performed using full-scale cyclic tests on deficient RC
joints wrapped with CFRP, showing good agreement between the proposed model and
observed nonlinear behavior. The results highlight the method’s robustness and accuracy
in capturing extreme nonlinearities, providing a basis for reliable numerical tools and
design guidelines for seismic evaluation of structures pre- and post-earthquake events.
Furthermore, Ding et al. [12] introduced a novel vibration-based approach for detecting
debonding in FRP-strengthened structures using an evolutionary model. The study ad-
dresses the limitations of conventional nondestructive testing methods by proposing a
global vibration-based method that can identify debonding conditions even at locations
far from the sensors. Experimental tests on an FRP-strengthened cantilever steel beam
were conducted, simulating debonding scenarios through a stepwise bonding procedure.
By extracting natural frequencies and mode shapes and employing model updating with
l0.5 regularization, the proposed algorithm accurately locates and quantifies the debonding
condition. The integration of K-means clustering in the Q-learning approach enhances the
optimization process.

Zeng et al. [13] presented the development and flexural behavior of FRP bar-reinforced
ultra-high-performance concrete (UHPC) plates with a grouting sleeve connection. By
incorporating FRP bars and steel grouting sleeves, the innovative connection method offers
a dependable solution for the prefabrication construction of UHPC structures reinforced
with FRP bars. Through comprehensive flexural tests, the impact of the connection mode
and the type of reinforcing fiber embedded in the UHPC is thoroughly examined. The
findings demonstrate that the proposed system ensures reliable performance, as failure
occurs outside the connection zone. Also, Wu et al. [14] introduced a novel approach
for modeling and predicting the mechanical behavior of FRP-wrapped slabs through the
development of two multilayer composite plates. These elements integrate the substrate,
and FRP sheet into a single element, effectively addressing the challenges associated with
geometric irregularities and time-varying adhesive properties. By offering the capability
to simulate irregular structures and achieve enhanced accuracy, these elements enable the
accurate analysis of various strengthening systems.

In light of the potential catastrophic consequences associated with shear failures in
concrete structures, there is an urgent need to explore innovative approaches that can en-
hance their shear strength. Among the promising research avenues, the implementation of
machine learning (ML) models arises as a compelling solution [15–17]. These models have
the potential to provide invaluable insights into the intricate behavior of FRP-strengthened
RC beams by leveraging the power of data-driven analysis.

This study addresses a significant research gap in the body of knowledge by improving
our understanding of and ability to predict the shear strength of concrete beams wrapped
with FRP. Shear failures in concrete structures can have detrimental effects, such as struc-
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tural harm or safety risks. This study aims to provide engineers with reliable tools for
evaluating the shear strength performance of FRP-strengthened RC beams by investigating
novel approaches and utilizing the power of ML models.

The use of FRP composites as an external bonding technique has shown great promise
in improving the structural performance of concrete members, mitigating shear failures,
and increasing their load-carrying capacity. However, accurately predicting the shear
strength of FRP-strengthened concrete beams is a complicated task due to the intricate
interplay between various wrapping techniques and fiber types.

The application of FRP in enhancing the shear capacity of reinforced concrete beams
offers a pathway to mitigate reliance on conventional materials like steel, known for its
substantial environmental footprint. Optimizing existing structures with innovative mate-
rials such as FRP advocates for sustainable resource utilization and a reduction in carbon
emissions. The focus on Durability extends beyond lessening environmental impact to
encompass the longevity of structures. Emphasizing the bolstering of the shear capacity of
RC beams correlates with the potential for prolonged infrastructure lifespan. This extension
diminishes the necessity for frequent repairs and reconstructions, practices known for their
resource-intensive and environmentally adverse consequences. Furthermore, the research
addresses Waste Reduction, a crucial aspect of sustainable building practices. Introducing
FRP for retrofitting existing structures holds promise in minimizing the demolition and
disposal of outdated constructions. This strategy adheres to sustainability principles by
curbing construction-related waste and mitigating associated environmental repercussions.
Moreover, the study contributes to Energy Efficiency, a pivotal element in sustainable
construction. Retrofitting RC beams with FRP enhances building performance, making
structures more resilient to natural disasters and adverse conditions. This fortification
diminishes the energy consumption and resources typically required for reconstruction.

2. Materials and Methods

This study aims to examine the effectiveness of ML models in predicting the shear
strength of concrete beams externally bonded with FRP. The analysis includes a com-
prehensive database containing various types of wrapping techniques and fiber types
commonly used in FRP strengthening applications. The database includes three types of
wrapping techniques: U-wrap (U), side bonded (SB), and closed wrap (F). Each of these
techniques provides a distinct method of applying FRP composites to concrete beams,
thereby influencing their shear behavior. Furthermore, the database includes four types
of fibers: carbon fiber-reinforced polymer (CFRP), basalt fiber-reinforced polymer (BFRP),
glass fiber-reinforced polymer (GFRP), and polyethylene terephthalate fiber-reinforced
polymer (PET-FRP). These fiber types have varying mechanical properties, which adds to
the variability in shear performance of FRP-strengthened concrete beams.

The comprehensive database used in this study, which includes various wrapping
techniques and fiber types, allows for an in-depth analysis of the factors influencing shear
behavior, as presented in Appendix A. In pursuit of accomplishing the objective of shear
strength prediction, we employ a range of ML models, each incorporating state-of-the-art
methodologies. These models include eXtreme Gradient Boosting (Xgboost), Random
Forest (RF), Adaptive Boosting (Adaboost), ElasticNet, K-nearest neighbors (KNN), and
Gradient Boosting (GB). Using these models, we aim to develop accurate and reliable predic-
tion frameworks that will aid engineers in assessing the shear strength of FRP-strengthened
RC beams. The ML models were implemented using Python 3.7. The following Python
libraries were used: NumPy, SciPy, Pandas, Matplotlib, and TensorFlow. The study aims
to provide engineers with reliable tools that will help in the design and evaluation of
FRP-strengthened beams, thereby improving the safety and performance of structures.

The significance of this study extends across multiple dimensions. Firstly, it addresses
the critical issue of mitigating the risks associated with shear failures in concrete structures,
thereby contributing to overall structural safety. Secondly, the use of ML models provides
a robust and efficient solution for predicting shear strength, outperforming traditional
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methods and providing more precise and reliable assessments. This advancement has the
potential to revolutionize the field of FRP strengthening, empowering engineers to make
informed decisions regarding the design and performance evaluation of FRP-strengthened
RC beams. Additionally, the comprehensive database employed in this research enhances
the applicability and generalizability of the developed prediction frameworks, making them
relevant to a wide range of practical scenarios. Overall, this study significantly contributes
to advancing the understanding and implementation of FRP strengthening techniques,
thereby promoting the development of resilient and sustainable concrete structures.

2.1. Extreme Gradient Boosting

XGBoost is a powerful ensemble learning algorithm that has gained widespread
popularity in ML and data science applications. It belongs to the family of gradient-
boosting algorithms, which are known for their high predictive accuracy and robustness
in handling a variety of data types and complexities. XGBoost stands out for its efficiency
and effectiveness in handling structured data, as well as its ability to handle missing
values, making it a versatile tool for a wide range of applications, including classification,
regression, ranking, and even more complex tasks like user-defined custom objectives. The
algorithm is built on the principles of boosting, which involves combining the predictions
of multiple weak learners (typically decision trees) to create a strong learner. It sequentially
builds a series of trees, each attempting to correct the errors of the previous ones. This
iterative process allows XGBoost to continually refine its predictions, resulting in a highly
accurate model [18].

The advantages of the Xgboost algorithm can be summarized as follows:

1. High Predictive Accuracy: XGBoost often outperforms other ML algorithms in terms
of predictive accuracy. It effectively reduces bias and variance, leading to models that
generalize well to new, unseen data.

2. Efficiency and Scalability: XGBoost is engineered for efficiency and speed. It employs
a number of optimization techniques, including parallelization and approximation
algorithms, which make it highly scalable and capable of handling large datasets.

3. Feature Importance: XGBoost provides a feature importance score, allowing users to
understand which features have the most impact on the model’s predictions. This
information is crucial for feature selection and understanding the underlying relation-
ships in the data.

4. Robustness to Overfitting: The algorithm includes regularization terms, such as L1
(Lasso) and L2 (Ridge) penalties, which help prevent overfitting. This ensures that
the model does not become overly complex and remains capable of generalizing to
unseen data.

5. Handling Missing Values: XGBoost has a built-in mechanism to handle missing values
during the training process, reducing the need for extensive data preprocessing.

The disadvantages of the Xgboost algorithm can be summarized as follows:

1. Black-Box Nature: Like many ensemble methods, the interpretability of XGBoost
models can be a challenge. Understanding the exact decision-making process within
the model can be complex, especially when dealing with a large number of features
and trees.

2. Resource Intensive: Although XGBoost is efficient, it can be computationally demand-
ing, especially when training very large models on limited hardware. This may limit
its practicality in resource-constrained environments.

3. Sensitivity to Hyperparameters: The proper tuning of hyperparameters is crucial for
achieving optimal performance with XGBoost. This process can be time-consuming
and may require some expertise.

4. Limited Support for Unstructured Data: XGBoost is designed primarily for structured
data. It may not perform as effectively when applied to unstructured data types, such
as text, images, or audio, without appropriate feature engineering.
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5. Potential for Overfitting: While XGBoost is designed to mitigate overfitting, it is not
immune to it. Improper hyperparameter tuning or the use of very complex models can
still lead to overfitting issues. Regularization techniques must be applied judiciously.

In summary, XGBoost is a highly effective algorithm known for its predictive accuracy,
efficiency, and robustness. However, it may require careful tuning and may not be the best
choice for all types of data or applications. Researchers and practitioners should consider
its advantages and disadvantages in the context of their specific use case.

2.2. Random Forest

RF is an ensemble learning method that is used in both classification and regression
tasks [19]. It operates by constructing multiple decision trees during the training phase
and outputs the class (in classification tasks) or mean prediction (in regression tasks) of
the individual trees. During the training process, RF randomly selects a subset of features
and a subset of the training data for each tree, which helps in reducing overfitting. It then
builds multiple decision trees based on these subsets. In the case of classification, each tree
’votes‘ for a class, and the class with the most votes is considered the final prediction. For
regression, the predictions of the individual trees are averaged to obtain the final output.

The advantages of the RF algorithm can be summarized as follows:

1. High Predictive Accuracy: RF is renowned for its remarkable predictive accuracy.
Combining the predictions of multiple decision trees effectively reduces overfitting,
providing more reliable and accurate results compared to single decision trees.

2. Robustness to Outliers: RF is robust against outliers and noisy data, as individual
decision trees can be sensitive to extreme values. The ensemble nature of RF mitigates
the impact of such anomalies on the overall model.

3. Feature Importance: RF can evaluate the importance of features in the dataset. It
assigns a relevance score to each feature, aiding in feature selection and providing
insights into which attributes contribute most to the model’s predictions.

4. Handling Missing Data: It can handle missing data without extensive data preprocess-
ing. Using surrogate splits, RF can make predictions based on available information,
making it more resilient to incomplete datasets.

5. Reduction in Overfitting: RF reduces the risk of overfitting, a common problem in
decision trees, by introducing randomness through feature subsampling and boot-
strapping. This helps the model to generalize better to unseen data.

6. Parallelization: RF can efficiently utilize parallel processing, as individual trees can be
constructed independently. This makes it suitable for large datasets and computation-
ally intensive tasks.

7. Interpretability: While not as interpretable as a single decision tree, RF can provide
insights into feature importance and how the model makes predictions, aiding in
model understanding and feature engineering.

The disadvantages of the RF algorithm can be summarized as follows:

1. Complexity: The ensemble of multiple decision trees can make the RF model complex,
potentially requiring more memory and computational resources compared to single-
decision trees.

2. Computational Cost: Training an RF model can be computationally expensive, espe-
cially for large datasets or a high number of trees in the forest.

3. Black-Box Nature: RFs are less interpretable compared to individual decision trees,
making it challenging to understand the inner workings of the model, especially when
dealing with a large number of trees.

4. Not Suitable for Linear Relationships: RF may not perform as well as linear models
when the underlying relationship between features and the target variable is linear, as
it is inherently a non-linear model.
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5. Overhead in Hyperparameter Tuning: Tuning the hyperparameters of an RF, such
as the number of trees and the depth of the tree, can be time-consuming and require
careful experimentation to achieve optimal performance.

In conclusion, RF is a powerful and versatile ensemble learning method with several
advantages, including high predictive accuracy, robustness, and feature importance analy-
sis. However, it also has its disadvantages, such as complexity, computational cost, and
reduced interpretability, which should be considered when choosing this method for a
specific ML task.

2.3. AdaBoost

AdaBoost is an ensemble learning method used in classification and regression
tasks [20]. It works by combining the predictions of multiple weak learners (typically
decision trees) to form a strong learner. The key idea behind AdaBoost is to sequentially
train a series of weak models, giving more weight to misclassified samples in each iteration.
Therefore, subsequent models focus more on previously misclassified data points, leading
to a refined and accurate prediction.

The advantages of the AdaBoost algorithm can be summarized as follows:

1. High Accuracy: AdaBoost often yields high predictive accuracy compared to individ-
ual weak learners. This is because it focuses on misclassified samples and iteratively
improves the model’s performance.

2. Versatility: AdaBoost can be applied to various types of weak learners, not just
decision trees. This makes it adaptable to different types of data and problem domains.

3. Reduced Overfitting: AdaBoost tends to reduce overfitting compared to training a
single complex model. It does this by combining multiple weak models, each focusing
on different aspects of the data.

4. Handles Noisy Data Well: AdaBoost can handle noisy data and outliers to some
extent. Since it gives more weight to misclassified samples, it tends to focus on
difficult-to-classify data points.

5. Feature Selection: AdaBoost implicitly performs feature selection by assigning more
importance to features that are more informative in the context of the problem.

The disadvantages of the Adaboost algorithm can be summarized as follows:

1. Sensitivity to Noisy Data: While AdaBoost can handle some level of noise, it can still
be sensitive to outliers or extremely noisy data. In extreme cases, it may overfit to the
noise.

2. Computationally Intensive: Training an AdaBoost model can be computationally
intensive, especially when using a large number of weak learners or complex base
models.

3. Less Interpretable: The final ensemble model produced by AdaBoost may be less
interpretable compared to individual weak models. It may not provide clear insights
into the relationships between features and the target variable.

4. Less Effective on Complex Relationships: AdaBoost may struggle with datasets where
the underlying relationships are highly complex or not well-captured by simple weak
models.

5. Requires Sufficient Data: AdaBoost may not perform well on very small datasets or
datasets with insufficient diversity. It relies on a variety of weak models to be effective.

Overall, AdaBoost is a powerful ensemble method that can significantly improve the
performance of weak base learners. However, like any ML algorithm, its effectiveness
depends on the characteristics of the data and the problem at hand [21].

2.4. ElasticNet

ElasticNet is a linear regression method that combines both L1 (Lasso) and L2 (Ridge)
regularization techniques [22]. It is used for variable selection and to mitigate issues arising
from multicollinearity in regression analysis. It employs a linear combination of both
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L1 and L2 penalties, which allows it to select a subset of important features while still
benefiting from the grouping effect of L2 regularization. This is achieved by minimizing
the sum of squared differences between observed and predicted values, subject to a penalty
term that is a combination of both the L1 and L2 norms of the regression coefficients.

The advantages of the Adaboost algorithm can be summarized as follows:

1. Variable Selection: ElasticNet can perform variable selection by encouraging some of
the coefficients to be exactly zero, effectively removing irrelevant features from the
model. This is especially beneficial when dealing with high-dimensional datasets,
where feature selection is critical.

2. Balancing L1 and L2 Regularization: The α parameter allows for fine-tuning the
balance between L1 and L2 regularization. This flexibility enables ElasticNet to
capture the advantages of both Lasso (sparsity) and Ridge (stability).

3. Robust to Multicollinearity: ElasticNet can handle multicollinearity, a situation where
independent variables are highly correlated, by shrinking and selecting groups of
correlated variables simultaneously. This aids in stability and interpretability.

4. Generalization: ElasticNet often yields models that generalize well to new, unseen
data. It can prevent overfitting by adding a regularization penalty to the loss function,
which is crucial for dealing with noisy or limited data.

The disadvantages of the ElasticNet algorithm can be summarized as follows:

1. Complexity in Choosing Hyperparameters: Selecting appropriate values for hyper-
parameters can be challenging. The optimal combination depends on the specific
problem, and choosing the wrong values may lead to suboptimal results.

2. Computational Cost: Its objective function involves both the L1 and L2 regularization
terms, which makes it computationally more expensive than simple linear regression.
This cost can be significant for large datasets.

3. Less Interpretability: Although ElasticNet provides a balance between L1 and L2
regularization, the resulting models may be less interpretable than simple linear
regression models. This is because some coefficients may be shrunken towards zero
or other coefficients, making their individual interpretation less straightforward.

In conclusion, ElasticNet is a powerful regression technique, offering a compromise
between Lasso and Ridge regressions. Its ability to handle feature selection, multicollinear-
ity, and regularization makes it a valuable tool in various ML and statistical applications,
but careful parameter tuning is required to make the most of its advantages.

2.5. K-Nearest Neighbors

KNN algorithm is a non-parametric and instance-based supervised learning method
used for both classification and regression tasks [23]. In this method, the prediction of a
target variable for a given data point is determined by identifying the K training examples
that are closest to it in the feature space. The predicted value is then computed based on
the average (for regression) or majority vote (for classification) of the KNN.

The advantages of the KNN algorithm can be summarized as follows:

1. Simplicity and Intuitiveness: KNN is relatively easy to understand and implement.
It does not involve complex mathematical computations or assumptions about the
underlying data distribution.

2. No Training Phase: Unlike many other ML algorithms, K-NN does not require a
training phase. This means that the model is readily available for prediction once the
data is available.

3. Flexibility to Data Distribution: KNN can be applied to both linear and non-linear
relationships between features and the target variable. It is not sensitive to the
underlying data distribution.

4. Adaptability to New Data: As new data points become available, the KNN model can
be easily updated to incorporate this new information.
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The disadvantages of the KNN algorithm can be summarized as follows:

1. Computational Complexity: The main computational cost of KNN arises from the
need to compute distances between all pairs of data points. As the dataset grows, this
can become computationally expensive.

2. Sensitivity to Feature Scaling: The performance of KNN can be influenced by the
scale of the features. Therefore, it is essential to normalize or standardize the features
before applying this algorithm.

3. Memory Consumption: KNN requires storing the entire training dataset in memory,
which can be impractical for very large datasets.

4. Optimal K Selection: Choosing the appropriate value of K (the number of nearest
neighbors to consider) can be challenging. A suboptimal choice of K may lead to poor
model performance.

5. Imbalanced Data: In classification tasks with imbalanced classes, KNN may be biased
towards the majority class since it gives equal weight to all neighbors.

6. Lack of Interpretability: KNN does not provide explicit information on the underlying
relationships between features and the target variable. It does not offer coefficients or
feature importance scores.

7. Vulnerability to Noisy Data: Outliers and noisy data points can significantly impact
the performance of KNN, potentially leading to incorrect predictions.

In summary, while KNN offers simplicity and adaptability to various data distribu-
tions, it is important to consider its computational requirements and sensitivity to parameter
choices when applying it in practice.

2.6. Gradient Boosting

GB is a powerful ensemble learning technique used in supervised ML tasks, partic-
ularly for regression and classification problems [24]. It builds an additive model in a
forward stage-wise manner, where each new model attempts to correct the errors made by
the previous models. This is achieved by fitting a weak learner, typically a decision tree
with limited depth, to the residuals (the differences between the observed and predicted
values) of the previous model.

The advantages of the GB algorithm can be summarized as follows:

1. High Predictive Accuracy: GB often yields highly accurate predictions. GB incre-
mentally improves its performance by iteratively addressing the shortcomings of
the model, ultimately achieving superior performance compared to individual weak
learners.

2. Handles Heterogeneous Data: It is robust to different types of data (categorical or
numerical) and can handle a mix of predictor variables effectively.

3. Feature Importance: GB provides a measure of feature importance, indicating which
variables are most influential in making accurate predictions.

4. Handles Missing Data: It can handle missing data in a dataset without the need for
imputation techniques. It does this by using the information from available predictors.

5. Robust to Outliers: It is less sensitive to outliers in the data compared to other
algorithms.

The disadvantages of the GB algorithm can be summarized as follows:

1. Computationally Expensive: Training a gradient boosting model can be computa-
tionally expensive, especially when dealing with large datasets and complex weak
learners.

2. Prone to Overfitting: Without proper hyperparameter tuning, gradient boosting
models can overfit the training data, leading to poor generalization performance on
unseen data.

3. Requires Careful Hyperparameter Tuning: Selecting the right hyperparameters is
crucial for achieving optimal performance. This process can be time-consuming and
may require domain knowledge.
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4. Less Interpretable: Unlike simpler models like linear regression, the inner workings
of a gradient boosting model are more complex and less interpretable, making it
challenging to explain the predictions to non-technical stakeholders.

5. Less Efficient for High-Dimensional Data: GB may not perform as well in situations
with a very large number of features, as it may struggle to effectively capture the
interactions among them.

In summary, GB is a powerful ensemble learning method known for its high predictive
accuracy and versatility in handling different types of data. However, it requires careful
parameter tuning and may not be the most efficient choice for very high-dimensional
data [25].

3. Experimental Database

This study presents a rigorously curated experimental database encompassing
196 beams, meticulously obtained from 29 conducted experimental studies [26–53]. The
experimental database encompasses a comprehensive range of data attributes, including
the following parameters: width (b) and effective depth (d) of the concrete beams, concrete
compressive strength (fc), yield strength of steel reinforcement (fy), transverse steel ratio
(Asv), spacing of transverse reinforcement (Sv), shear span to effective depth ratio (a/d),
types of fiber employed, and experimental scheme details. Additionally, the database
includes information about the types of fiber used, experimental scheme details, as well as
the elastic modulus (Ef), ultimate strain (εfrp), tensile strength (ffrp), total thickness (n × tf),
width (wf), spacing (sf), height (hf), and angle of inclination (β) of the FRP strips. Lastly, the
database also encompasses the shear capacity of beams (Vexp). These essential parameters
collectively form a comprehensive representation of the experimental data and facilitate
a holistic understanding of the shear behavior of concrete beams externally bonded with
FRP. Table 1 provides a summary of the collected database. All the mechanical parameters
shown in Table 1, except for ‘Shear Capacity Contribution by FRP,’ are used as prediction
inputs. The output of the prediction model is the ‘shear capacity contribution by FRP’.

Table 1. Overview of the comprehensive database utilized for AI-based models.

Variables Notation Unit Min Mean Std. Max
Beam Width b mm 75.00 180.40 52.02 406.00
Beam Effective Depth d mm 120.00 297.40 101.82 660.00
Concrete Compressive Strength fc MPa 13.30 34.13 12.20 71.00
Yield Strength of Steel Reinforcement fy MPa 240.00 458.20 90.47 665.30
Transverse Steel Ratio Asv % 0.00 0.12 0.11 0.41
Spacing of Transverse Reinforcement Sv mm 0.00 147.70 131.21 400.00
Shear Span to Effective Depth Ratio a/d --- 1.00 2.78 0.55 4.08
Elastic Modulus of FRP Ef GPa 5.30 200.95 109.80 392.00
Ultimate Strain of FRP εFRP --- 0.00 0.02 0.01 0.07
Tensile Strength of FRP fFRP MPa 112.00 3073.52 1151.52 4500.00
Total Thickness of FRP n × tf mm 0.07 0.38 0.35 1.50
Width of FRP Strips wf mm 1.00 42.94 74.07 304.80
Spacing of FRP Strips Sf mm 1.00 124.61 218.08 1195.00
Height of FRP Strips hf mm 150.00 323.52 115.90 720.00
Angle of Inclination of FRP Strips βeta ◦ 45.00 84.57 14.62 90.00
Shear Capacity Contribution by FRP Vexp kN 3.90 58.86 48.97 343.20

Moreover, the correlation matrix analysis, as depicted in Figure 1, provides valuable
insights into the interrelationships between Vexp and the various parameters, offering a
comprehensive understanding of the factors influencing the shear capacity contribution by
FRP reinforcement in RC beams wrapped with FRP. Among the variables showing positive
correlations with Vexp, the effective depth (d) exhibits the strongest positive interaction with
a coefficient of 0.55, indicating that an increase in the effective depth of the concrete beams
is associated with a higher shear capacity contributed by FRP reinforcement. Additionally,
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the height of FRP strips (hf) demonstrates a positive correlation with Vexp, with a coefficient
of 0.46. Similarly, the width of the beams (b) and the shear span to effective depth ratio
(a/d) show positive correlations, with coefficients of 0.40 and 0.20, respectively. Other
variables, such as Sv, fc, n × tf, wf, fy, and ffrp, also exhibit positive correlations with Vexp,
albeit with relatively smaller coefficients ranging from 0.01 to 0.13.
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On the other hand, certain variables display negative correlations with Vexp. The
ultimate strain of FRP (εfrp) exhibits a negative correlation with a coefficient of −0.02,
suggesting that higher ultimate strain values of FRP are associated with a lower shear
capacity contribution. Similarly, the spacing of FRP strips (sf), elastic modulus of FRP (Ef),
transverse steel ratio (Asv), and the angle of inclination of FRP strips (β) also show negative
correlations with Vexp, with coefficients of −0.10, −0.10, −0.16, and −0.24, respectively.
These negative correlations indicate that higher values of these variables are associated
with a decrease in the shear capacity contributed by FRP reinforcement.

4. AI-Based Analysis

Python was used to perform AI-based analysis, including model training and evalu-
ation. Table 2 presents a comprehensive comparison of the algorithms based on various
evaluation metrics. R2 values for each algorithm obtained indicate the goodness of fit
between predicted and actual shear strength values. The Xgboost model achieved the
highest R2 value of 0.901, demonstrating its strong predictive capabilities. This result
signifies that approximately 90.1% of the variance in the shear strength can be explained
by the Xgboost model. It outperforms other algorithms in terms of predictive accuracy
and provides reliable estimations for the shear strength of rectangular RC beams retrofitted
with FRP sheets. The GB algorithm also exhibits satisfactory performance with an R2 value
of 0.828. This value indicates that around 82.8% of the variability in the shear strength can
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be attributed to the predictions of the GB model. Although slightly lower than Xgboost, it
still demonstrates a strong correlation between the predicted and observed shear capacity
values. The RF and AdaBoost models yielded R2 values of 0.747 and 0.746, respectively.
These values indicate that these models can explain approximately 74.7% and 74.6% of
the variability in shear strength, respectively. While these algorithms are reasonably good
predictors, they have a slightly lower correlation than Xgboost and GB. The R2 values for
the KNN and ElasticNet algorithms, on the other hand, are 0.506 and 0.468, respectively.
These values indicate that the predictions from these models explain approximately 50.6%
and 46.8% of the variability in shear strength, respectively. These algorithms have lower
predictive capabilities than the other models.

Table 2. Evaluation metrics for algorithm comparison.

Model RMSE MSE MAE R2

XGBoost 20.065 402.608 13.856 0.901

GB 26.454 699.823 18.427 0.828

RF 32.148 1033.504 21.275 0.747

AdaBoost 32.163 1034.457 24.163 0.746

KNN 44.888 2014.893 26.398 0.506

Elastic Net 46.566 2168.379 30.654 0.468

Additional evaluation metrics, such as Root Mean Squared Error (RMSE), Mean
Squared Error (MSE), and Mean Absolute Error (MAE), were computed to further assess
the performance of the algorithms. The RMSE values calculate the average difference
between predicted and actual shear strength values. The lower the RMSE, the more precise
the predictions. The Xgboost model had the lowest RMSE of 20.065, followed by the GB
model, which had an RMSE of 26.454. The RMSE values for the RF and AdaBoost models
were 32.148 and 32.163, respectively. The KNN and ElasticNet algorithms demonstrated
higher RMSE values of 44.888 and 46.566, respectively. These values suggest that the
Xgboost and GB models yield more precise predictions compared to the other algorithms.
Additionally, the MSE values were calculated to quantify the overall prediction error. The
Xgboost model yielded the lowest MSE value of 402.608, followed by the GB model with a
value of 699.823. MSE values for the RF and AdaBoost models were 1033.504 and 1034.457,
respectively. KNN and ElasticNet algorithms had higher MSE values of 2014.893 and
2168.379, respectively. Furthermore, the MAE values were calculated to determine the
average absolute difference between the predicted and actual shear strength values. The
Xgboost model demonstrated the lowest MAE value of 13.856, followed by the GB model
with a value of 18.427. The RF and AdaBoost models yielded MAE values of 21.275 and
24.163, respectively. The KNN and ElasticNet algorithms resulted in higher MAE values
of 26.398 and 30.654, respectively. These metrics collectively demonstrate the superior
performance of the Xgboost model, followed by GB, RF, and AdaBoost models, while KNN
and ElasticNet exhibit relatively lower predictive accuracy. The performance comparison is
visually depicted in Figure 2, where bar plots illustrate the MAE, MSE, R2 Score, and RMSE
values for each model.

Figure 3 provides a visual representation of the relationship between the predicted and
actual shear strength values for rectangular RC beams wrapped with FRP sheets using a
range of ML algorithms. The x-axis represents the true shear strength values in kilonewtons
(kN), while the y-axis represents the predicted shear strength values. The scatter plot
serves as a visual representation of the extent to which the predicted values align with the
actual values. Ideally, a perfect alignment would result in a cluster of data points tightly
distributed along the diagonal line, indicating a high degree of concordance between the
predicted and experimental shear strength values. Conversely, greater dispersion and
deviations from the diagonal line signify a weaker correlation and less accurate predictions.
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Upon careful examination of the scatter plot, it becomes evident that the Xgboost
model exhibits the most remarkable predictive capabilities among the examined algorithms.
The data points cluster densely around the diagonal line, implying a substantial agreement
between the predicted and actual shear strength values. This noteworthy alignment
underscores the Xgboost model’s capacity to discern underlying patterns within the dataset
and provide reliable predictions for the shear strength of the beams wrapped with FRP
sheets. Likewise, the GB algorithm demonstrates a reasonably strong correlation between
the predicted and observed values, albeit somewhat less precise when compared to Xgboost.
The data points exhibit a moderate clustering pattern around the diagonal line, indicating
that the GB model adeptly captures the inherent relationships within the data, thereby
yielding predictions of shear strength with a commendable level of accuracy. Regarding the
RF and AdaBoost algorithms, the scatter plot exhibits a moderate alignment between the
predicted and actual values. Although there are some deviations from the diagonal line,
the overall clustering of data points suggests that the RF and Adaboost models can provide
reasonably accurate predictions for shear strength estimation. However, for the KNN, and
ElasticNet algorithms, the scatter plots indicate less pronounced alignments between the
predicted and actual values. The data points exhibit more significant deviations from the
diagonal line, indicating a weaker correlation and less accurate predictions for the shear
strength of the beams. In summary, the scatter plot figure validates the R2 values obtained
for each algorithm, further emphasizing the performance of the Xgboost algorithm in
accurately predicting the shear strength of rectangular RC beams strengthened with FRP
sheets. The GB, RF, and AdaBoost models also show promising performance while the
KNN and ElasticNet algorithms exhibit relatively lower predictive accuracy.

The analysis of prediction errors, visually depicted in Figure 4, yields valuable in-
sights into the efficacy of the ML algorithms in accurately estimating the shear strength of
rectangular RC beams bonded with FRP sheets. Figure 4 illustrates the disparity between
the predicted and actual shear strength values. Remarkably, the Xgboost model exhibits
significantly smaller prediction errors compared to the other algorithms, indicating its supe-
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rior predictive capabilities. This observation substantiates previous findings, underscoring
the Xgboost model’s exceptional accuracy in estimating the shear strength of rectangular
RC beams wrapped with FRP sheets. Conversely, the remaining models demonstrate
comparatively larger prediction errors, suggesting relatively less precise predictions.
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Under careful examination of Figure 5, depicting the residuals, we delve into the analysis
of the disparities between the predicted and experimental values. Consistently, the Xgboost
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model displays the smallest residuals, with values closer to zero, indicating minimal bias in
its predictions. In contrast, the residuals for the other models exhibit a broader distribution,
implying a higher degree of variability and potential bias in their predictions.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 27 
 

the x-axis suggests fewer and more concentrated residuals. For example, the red line rep-
resenting the XGBoost algorithm is located at the bottom of the y-axis and exhibits a nar-
row span along the x-axis, indicating a lower density and more accurate predictions.Com-
paring the histograms, we find that the Xgboost model demonstrates a distribution of re-
siduals that is more concentrated around zero, suggesting reduced bias and improved 
accuracy. This aligns with the previous evaluation metrics, reinforcing the notion that the 
Xgboost model outperforms the other models in predicting the shear strength of rectan-
gular RC beams wrapped with FRP sheets. Conversely, the histograms for the remaining 
models exhibit wider distributions of residuals, indicating a relatively higher degree of 
variability and potential bias in their predictions. The insights gained from the analysis of 
Figure 6 further corroborate the superiority of the Xgboost model in accurately estimating 
the shear strength. Its ability to generate predictions with smaller residuals and a nar-
rower distribution underscores its capacity to capture the underlying patterns in the data 
more effectively. Overall, the examination of the distribution of the residuals depicted in 
Figure 6 supports and reinforces the conclusion that the Xgboost model is the most accu-
rate and reliable predictor among the models evaluated in this study. 

 
Figure 5. Residual analysis of predicted vs. actual values in Shear strength estimation for FRP-
strengthened concrete beams. 

Figure 5. Residual analysis of predicted vs. actual values in Shear strength estimation for FRP-
strengthened concrete beams.

Overall, the visual analysis of the prediction error and residual plots aligns with the
earlier quantitative evaluation metrics, further validating the superior performance of the
Xgboost model. The smaller prediction errors and tighter distribution of residuals observed
for Xgboost provide strong evidence of its ability to accurately capture the underlying
patterns in the dataset. Consequently, the Xgboost model emerges as a reliable tool for
predicting the shear strength of rectangular RC beams wrapped with FRP sheets, offering
significant practical utility in engineering applications.

It is important to note that these visual representations serve as complementary
evidence to the previously discussed numerical evaluation metrics. Together, they provide
a thorough assessment of the models’ performance and support the conclusion that the
Xgboost model excels as the most accurate and reliable predictor in this study.

The analysis of the residual distribution, as depicted in Figure 5, provides further
understanding of the models’ performance in predicting the shear strength of the beams.
The histograms in Figure 6 showcase the distribution patterns of the residuals for each
model. The shape, spread, and central tendency of the residuals offer crucial information
regarding the accuracy and precision of the predictions made by the models. Examining the
histograms, we observe that the residuals exhibit varying distributions for different models.
A desirable characteristic is a distribution centered around zero, indicating minimal bias in
the predictions. Additionally, a narrower spread of the residuals implies higher precision in
the model’s predictions. In the visual representation, alongside the colored lines, multiple
rectangular boxes are present along the x-axis (residuals), each corresponding to a specific
algorithm employed in the analysis. The positioning of these boxes along the x-axis
provides insight into the distribution and magnitude of residuals for each algorithm. A
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lower placement along the y-axis suggests a higher density of residuals, while a higher
placement indicates a lower density. In essence, a box located lower on the y-axis signifies
a more concentrated distribution of residuals for that particular algorithm.
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To aid in clarity, a colored line is assigned to each algorithm. The position of the
colored lines serves as an additional visual cue to interpret the overall performance of
each algorithm. A colored line positioned lower along the y-axis and with a shorter
span along the x-axis suggests fewer and more concentrated residuals. For example, the
red line representing the XGBoost algorithm is located at the bottom of the y-axis and
exhibits a narrow span along the x-axis, indicating a lower density and more accurate
predictions.Comparing the histograms, we find that the Xgboost model demonstrates a
distribution of residuals that is more concentrated around zero, suggesting reduced bias
and improved accuracy. This aligns with the previous evaluation metrics, reinforcing
the notion that the Xgboost model outperforms the other models in predicting the shear
strength of rectangular RC beams wrapped with FRP sheets. Conversely, the histograms for
the remaining models exhibit wider distributions of residuals, indicating a relatively higher
degree of variability and potential bias in their predictions. The insights gained from the
analysis of Figure 6 further corroborate the superiority of the Xgboost model in accurately
estimating the shear strength. Its ability to generate predictions with smaller residuals
and a narrower distribution underscores its capacity to capture the underlying patterns
in the data more effectively. Overall, the examination of the distribution of the residuals
depicted in Figure 6 supports and reinforces the conclusion that the Xgboost model is the
most accurate and reliable predictor among the models evaluated in this study.

5. Sensitivity Analysis by ANN

Numerous approaches exist for depicting the significance of input parameters con-
cerning the target variable. For instance, Zaitseva et al. [54] introduced a novel method
for assessing the importance of attributes in classification tasks. The study acknowledges
that various factors and input data quality can influence the effectiveness of classification
techniques. Their method, based on Importance Analysis from reliability engineering,
measures the sensitivity of input attributes in the classification process, highlighting which
attributes have the most significant impact on classification results. The importance of
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attributes is determined using a specialized index known as structural importance. The au-
thors demonstrate the method’s application using a Fuzzy Decision Tree, which considers
uncertainty in the initial data, but it is adaptable for use with other classifiers as well.

Determining the relative importance of input variables on selected outputs can be
achieved by analyzing neural network weights. Neural networks employ weights to
quantify the contribution of each input variable to the final output. These weights represent
the strength of connections between the input variables and the neurons in the network’s
hidden layers. To assess the relative importance of input variables using neural network
weights, the first step is to train the neural network. During the training process, the
weights are adjusted iteratively to minimize the error between predicted outputs and
experimental outputs. Once the network is trained, the weights associated with each input
variable can be examined.

The magnitude of the weights is indicative of the relative importance of the corre-
sponding input variables. Larger weights suggest a stronger influence of the input variable
on the output. Positive weights indicate a positive relationship, while negative weights sig-
nify a negative relationship. It is often beneficial to normalize the weights before comparing
their relative importance. Normalization techniques, such as dividing the weights by their
sum or scaling them to a specific range, can facilitate fair comparisons between variables.
By analyzing the weights, one can rank or compare them to identify the input variables
with the highest relative importance. Variables with higher weights are considered more
influential in determining the output. However, it is essential to exercise caution when
interpreting neural network weights. The relationship between weights and the impor-
tance of input variables can be complex and nonlinear. Additionally, other factors such as
network architecture, activation functions, and regularization techniques can influence the
interpretation. Therefore, it is advisable to combine weight analysis with other techniques
to obtain a comprehensive understanding of variable importance. In this regard, an ANN
was created using all the input and target data. After training the data and satisfying the
criteria, its results were utilized for sensitivity analysis. A flowchart of artificial neural
networks representing its working algorithm is presented in Figure 7. Table 3 presents the
weights obtained from the idealized neural network. The results of the sensitivity analysis
are summarized in Figure 8, which reflects the relative importance of each input data.

Table 3. Weights obtained from the idealized neural network.

0.488 0.610 −0.507 0.773 0.200 −0.900 −0.398 0.161 0.628 0.339
−0.568 0.373 0.565 −0.035 0.186 −0.649 −0.325 1.181 0.249 0.394
0.280 −0.685 0.454 0.470 0.172 0.384 0.297 −0.417 0.138 −0.516
0.203 −0.620 0.107 −0.345 −0.699 0.334 0.495 0.134 0.658 −0.210
−0.026 −0.399 0.359 0.285 −0.452 0.166 0.012 0.367 0.324 0.278
−0.328 −0.270 0.029 −0.206 −0.502 −0.023 1.001 −0.399 −0.083 −0.329
0.301 −0.854 0.384 0.747 0.323 0.568 0.032 −0.214 −0.589 −0.294
0.606 −0.382 0.399 −0.248 0.587 −0.321 −0.320 −0.694 0.107 −0.094
−0.277 0.500 0.175 0.380 0.457 −0.169 0.382 0.251 −0.106 0.000
−0.626 −0.364 −0.095 0.269 0.481 −0.408 0.317 −0.250 −0.707 0.030
−0.680 0.071 −0.006 −0.016 −0.595 0.332 −0.663 0.349 −0.033 0.424
−0.020 −0.388 −0.475 0.121 −0.295 0.208 0.311 0.428 −0.651 0.137
−0.661 0.647 −0.695 0.681 0.509 0.346 −0.461 −0.331 −0.514 0.731
−0.069 0.541 −0.792 −0.381 −0.564 −0.356 0.725 0.354 0.047 −0.382
0.701 0.078 −0.238 0.048 −0.338 −0.410 −0.177 −0.569 −0.456 −0.417
−0.148 −0.499 0.239 0.768 −0.200 −0.336 −0.309 0.683 −0.248 −0.545



Sustainability 2023, 15, 16126 18 of 25

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 27 
 

importance of input variables can be complex and nonlinear. Additionally, other factors 
such as network architecture, activation functions, and regularization techniques can in-
fluence the interpretation. Therefore, it is advisable to combine weight analysis with other 
techniques to obtain a comprehensive understanding of variable importance. In this re-
gard, an ANN was created using all the input and target data. After training the data and 
satisfying the criteria, its results were utilized for sensitivity analysis. A flowchart of arti-
ficial neural networks representing its working algorithm is presented in Figure 7. Table 
3 presents the weights obtained from the idealized neural network. The results of the sen-
sitivity analysis are summarized in Figure 8, which reflects the relative importance of each 
input data. 

 
Figure 7. Flowchart of artificial neural networks used in this study. 

Table 3. Weights obtained from the idealized neural network. 

0.488 0.610 −0.507 0.773 0.200 −0.900 −0.398 0.161 0.628 0.339 
−0.568 0.373 0.565 −0.035 0.186 −0.649 −0.325 1.181 0.249 0.394 
0.280 −0.685 0.454 0.470 0.172 0.384 0.297 −0.417 0.138 −0.516 
0.203 −0.620 0.107 −0.345 −0.699 0.334 0.495 0.134 0.658 −0.210 
−0.026 −0.399 0.359 0.285 −0.452 0.166 0.012 0.367 0.324 0.278 
−0.328 −0.270 0.029 −0.206 −0.502 −0.023 1.001 −0.399 −0.083 −0.329 
0.301 −0.854 0.384 0.747 0.323 0.568 0.032 −0.214 −0.589 −0.294 
0.606 −0.382 0.399 −0.248 0.587 −0.321 −0.320 −0.694 0.107 −0.094 
−0.277 0.500 0.175 0.380 0.457 −0.169 0.382 0.251 −0.106 0.000 
−0.626 −0.364 −0.095 0.269 0.481 −0.408 0.317 −0.250 −0.707 0.030 
−0.680 0.071 −0.006 −0.016 −0.595 0.332 −0.663 0.349 −0.033 0.424 
−0.020 −0.388 −0.475 0.121 −0.295 0.208 0.311 0.428 −0.651 0.137 

Figure 7. Flowchart of artificial neural networks used in this study.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 27 
 

 
Figure 8. Relative importance of input parameters. 

6. Conclusions 
A comprehensive investigation into accurately predicting the shear strength of FRP-

strengthened RC beams using sophisticated ML algorithms was conducted. The evalua-
tion and comparison of various algorithms, including Xgboost, GB, RF, AdaBoost, KNN, 
and ElasticNet, provide valuable insights into their predictive performance. 

The extensive experimental database curated in this study, encompassing 196 beams 
and a comprehensive range of data attributes, is a valuable resource for the research com-
munity and practitioners. The experimental database comprises a wide spectrum of data 
attributes, encompassing key parameters such as the dimensions of the concrete beams, 
concrete compressive strength, yield strength of steel reinforcement, transverse steel ratio, 
spacing of transverse reinforcement, shear span to effective depth ratio, types of fiber em-
ployed, experimental scheme details, as well as the elastic modulus, ultimate strain, tensile 
strength, total thickness, width, spacing, height, and angle of inclination of the FRP strips. 

The evaluation metrics employed, namely R2, RMSE, MSE, and MAE, served as ro-
bust measures for assessing the accuracy and precision of the algorithms. Among the eval-
uated algorithms, the Xgboost model demonstrated outstanding performance, exhibiting 
the highest R2 score and the lowest RMSE and MAE values. These findings establish the 
superiority of the Xgboost algorithm in terms of its predictive capabilities compared to 
the other algorithms studied. The scatter plot analysis further emphasizes the remarkable 
predictive capabilities of the Xgboost model, with data points clustering closely around 
the diagonal line, indicating a high degree of concordance between the predicted and ob-
served values. The analysis of prediction errors and residuals supports the superior per-
formance of the Xgboost model, revealing smaller prediction errors and a narrower dis-
tribution of residuals, indicative of reduced bias and increased accuracy. 

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

R
el

at
iv

e I
m

po
rt

an
ce

 (%
)

Figure 8. Relative importance of input parameters.



Sustainability 2023, 15, 16126 19 of 25

The results indicated that four parameters, including the tensile strength of FRP, yield
strength of steel reinforcement, beam width, and total thickness of FRP, have a profound
impact on the output as they directly influence the structural behavior and performance of
the system.

The FRP material’s tensile strength is a significant factor in determining the output.
It denotes the FRP’s ability to withstand tension and is critical in maintaining structural
integrity and load-bearing capacity. FRP with a higher tensile strength has better rein-
forcement effectiveness and overall structural performance. The yield strength of the steel
reinforcement is a vital parameter that greatly impacts the structural performance. It deter-
mines the maximum stress level at which the steel can undergo elastic deformation without
permanent deformation. A higher yield strength enables greater load-bearing capacity and
resistance to yielding, resulting in a more structurally robust system. The width of the beam
is an important factor that has a significant impact on the output. It has a direct impact
on the load-carrying capacity, stiffness, and behavior of the beam, as well as the overall
structural performance. A wider beam offers increased resistance to bending and enhances
the structural performance, making it a key parameter in achieving desired output goals.
The total thickness of the FRP material is a significant parameter in structural reinforcement.
It is crucial in determining the FRP system’s strength, stiffness, and durability. A thicker
FRP layer improves the load-carrying capacity and overall performance of the strengthened
structure, thereby contributing to the desired output objectives.

It is worth emphasizing the importance of FRP properties in influencing the output.
The tensile strength of FRP and the total thickness of FRP are two of the most influential
parameters in determining structural performance. The high tensile strength of FRP
enables it to effectively resist tension and enhance the load-bearing capacity of structures.
Additionally, increasing the thickness of the FRP layer contributes to improved structural
stiffness and strength, making FRP an invaluable material for reinforcing and retrofitting
applications. These FRP properties have a significant impact on the output by ensuring
structural integrity, durability, and overall performance.

6. Conclusions

A comprehensive investigation into accurately predicting the shear strength of FRP-
strengthened RC beams using sophisticated ML algorithms was conducted. The evaluation
and comparison of various algorithms, including Xgboost, GB, RF, AdaBoost, KNN, and
ElasticNet, provide valuable insights into their predictive performance.

The extensive experimental database curated in this study, encompassing 196 beams
and a comprehensive range of data attributes, is a valuable resource for the research
community and practitioners. The experimental database comprises a wide spectrum
of data attributes, encompassing key parameters such as the dimensions of the concrete
beams, concrete compressive strength, yield strength of steel reinforcement, transverse
steel ratio, spacing of transverse reinforcement, shear span to effective depth ratio, types
of fiber employed, experimental scheme details, as well as the elastic modulus, ultimate
strain, tensile strength, total thickness, width, spacing, height, and angle of inclination of
the FRP strips.

The evaluation metrics employed, namely R2, RMSE, MSE, and MAE, served as robust
measures for assessing the accuracy and precision of the algorithms. Among the evaluated
algorithms, the Xgboost model demonstrated outstanding performance, exhibiting the
highest R2 score and the lowest RMSE and MAE values. These findings establish the
superiority of the Xgboost algorithm in terms of its predictive capabilities compared to
the other algorithms studied. The scatter plot analysis further emphasizes the remarkable
predictive capabilities of the Xgboost model, with data points clustering closely around the
diagonal line, indicating a high degree of concordance between the predicted and observed
values. The analysis of prediction errors and residuals supports the superior performance
of the Xgboost model, revealing smaller prediction errors and a narrower distribution of
residuals, indicative of reduced bias and increased accuracy.



Sustainability 2023, 15, 16126 20 of 25

Furthermore, a sensitivity analysis was performed using Artificial Neural Networks
(ANNs) to quantify the impact of input variables on shear strength prediction. By analyzing
the weight assignments associated with each input variable in the trained neural networks,
a precise evaluation was made regarding the relative contributions of these variables to
the output. Significantly, the tensile strength of FRP, yield strength of steel reinforcement,
beam width, and total thickness of FRP emerged as influential factors directly influencing
the structural behavior and performance.

Future research endeavors can focus on expanding the dataset and exploring addi-
tional variables to further refine the predictive models and broaden their applicability
in practical scenarios. Additionally, investigating alternative ML algorithms and incor-
porating hybrid approaches may provide further improvements in predictive accuracy.
This research paves the way for improved prediction models and practical applications
in engineering design and analysis involving FRP-strengthened structures, advancing the
field and facilitating more efficient and reliable structural solutions.
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Appendix A

Table A1. Experimental Data of Rectangular RC Beams Strengthened with FRP.

No b d fc fy Asv Sv a/d FRP
Type Scheme Ef εfrp ffrp n*tf wf sf hf beta Vexp

1 250 420 13.3 500 0.096 400 3.33 CFRP U 390 0.008 3000 0.22 150 225 450 45 66.5
2 250 420 13.3 500 0.096 400 3.33 CFRP U 390 0.008 3000 0.22 1 1 450 90 27
3 250 420 13.3 500 0.096 400 3.33 CFRP U 390 0.008 3000 0.22 150 300 450 60 13
4 250 420 13.3 500 0.096 400 3.33 CFRP U 390 0.01 3000 0.22 150 300 450 45 28
5 250 420 13.3 500 0.096 400 3.33 CFRP U 390 0.008 3000 0.22 50 100 450 45 35.5
6 200 380 35.1 500 0.074 400 3.29 CFRP U 240 0.013 3500 0.11 100 400 450 90 41.2
7 200 395 36.8 500 0.072 400 3.29 CFRP U 240 0.013 3500 0.11 50 400 450 90 33.4
8 200 395 35.8 500 0.072 400 3.29 CFRP U 240 0.013 3500 0.11 50 600 450 90 30
9 150 255 19.3 350 0.41 125 2.98 CFRP SB 228 0.017 3790 0.33 1 1 305 90 50.5
10 150 255 19.3 350 0.41 125 4 CFRP SB 228 0.017 3790 0.33 50 125 305 90 80.5
11 150 255 27.5 460 0 0 2.98 CFRP U 228 0.017 3790 0.165 1 1 305 90 54
12 150 255 27.5 460 0 0 2.98 CFRP U 228 0.017 3790 0.33 1 1 305 90 92.5
13 150 255 27.5 460 0 0 2.98 CFRP U 228 0.017 3790 0.165 50 125 305 90 67.5
14 150 255 27.5 460 0 0 4 CFRP U 228 0.017 3790 0.165 1 1 305 90 62.5
15 150 255 27.5 460 0 0 4 CFRP U 233.6 0.016 4490 0.165 1 1 305 90 90.5
16 150 250 22.82 548 0 0 3 CFRP SB 233.6 0.019 4490 0.165 1 1 300 90 45.3
17 150 250 22.82 548 0 0 3 CFRP SB 233.6 0.019 4490 0.495 1 1 300 90 38.1
18 150 250 22.82 548 0 0 3 CFRP SB 233.6 0.019 4490 0.495 1 1 300 90 65.5
19 150 250 26.06 548 0.268 200 3 CFRP SB 233.6 0.019 4490 0.33 1 1 300 90 31.5
20 150 250 26.06 548 0.268 200 3 CFRP SB 233.6 0.019 4490 0.495 1 1 300 90 51.8
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Table A1. Cont.

No b d fc fy Asv Sv a/d FRP
Type Scheme Ef εfrp ffrp n*tf wf sf hf beta Vexp

21 150 250 26.06 548 0.268 200 3 CFRP SB 233.6 0.019 4490 0.495 1 1 300 90 86
22 150 250 26.06 548 0.268 200 3 CFRP SB 233.6 0.019 4490 0.33 1 1 300 90 47.3
23 150 250 26.06 548 0.268 200 3 CFRP SB 233.6 0.019 4490 0.33 1 1 300 90 50.5
24 300 245 37.2 395 0 0 4.08 CFRP U 230 0.015 3400 0.167 1 1 300 90 53
25 300 245 41 395 0 0 4.08 CFRP U 230 0.015 3400 0.167 1 1 300 90 116.5
26 300 245 41.1 395 0 0 4.08 CFRP U 230 0.015 3400 0.167 1 1 300 90 125.5
27 130 425 38 240 0.102 300 2.12 CFRP F 105 0.013 1400 0.43 40 200 450 90 135
28 130 425 38 240 0.102 300 2.12 CFRP F 105 0.013 1400 0.43 40 250 450 90 90
29 130 425 38 240 0.102 300 2.12 CFRP F 105 0.013 1400 0.43 40 300 450 45 71
30 130 425 38 240 0.102 300 2.12 CFRP F 105 0.013 1400 0.43 40 350 450 45 44
31 130 425 38 240 0.102 300 2.12 CFRP U 105 0.013 1400 0.43 40 200 450 90 65
32 130 425 38 240 0.102 300 2.12 CFRP U 105 0.013 1400 0.43 40 250 450 90 40
33 130 425 38 240 0.102 300 2.12 CFRP U 105 0.013 1400 0.43 40 300 450 45 89
34 130 425 38 240 0.102 300 2.12 CFRP U 105 0.013 1400 0.43 40 350 450 45 80
35 150 170 35.4 582 0 0 3 CFRP SB 230 0.015 3400 0.167 1 1 200 90 11.3
36 150 170 33.5 582 0 0 3 CFRP SB 230 0.015 3400 0.334 1 1 200 90 24.4
37 150 170 31.5 582 0 0 3 CFRP SB 230 0.015 3400 0.167 1 1 200 90 19.4
38 150 170 31 582 0 0 3 CFRP SB 230 0.015 3400 0.334 1 1 200 90 21.1
39 150 170 33.7 582 0 0 3 CFRP SB 230 0.015 3400 0.334 1 1 200 90 41.6
40 150 170 34.4 582 0 0 3 CFRP U 230 0.015 3400 0.167 1 1 200 90 29.3
41 150 170 35.4 582 0 0 3 CFRP U 230 0.015 3400 0.167 1 1 200 90 46.6
42 150 296 41.03 494.5 0.127 160 3.04 GFRP F 75.9 0.047 3600 0.12 1 1 350 90 56
43 150 296 41.03 494.5 0.127 160 3.04 GFRP F 75.9 0.047 3600 0.24 1 1 350 90 84
44 150 296 41.03 494.5 0.127 160 3.04 GFRP F 75.9 0.047 3600 0.36 1 1 350 90 93
45 150 222.5 30.5 303 0.169 200 2.7 CFRP F 249 0.015 3635 0.167 30 100 250 90 44
46 150 222.5 30.5 303 0.169 200 2.7 CFRP F 249 0.015 3635 0.167 30 150 250 90 46
47 150 222.5 30.5 303 0.169 200 1.8 CFRP F 249 0.015 3635 0.167 30 100 250 90 44
48 150 222.5 30.5 303 0.169 200 1.8 CFRP F 249 0.015 3635 0.167 30 50 250 90 34
49 150 222.5 30 361 0 0 2.47 GFRP F 20.5 0.013 260 1.27 20 40 250 90 70
50 150 222.5 30 361 0 0 2.47 GFRP F 20.5 0.013 260 1.27 20 80 250 90 55
51 150 222.5 30 361 0 0 1.35 GFRP F 20.5 0.013 260 1.27 20 40 250 90 28
52 150 222.5 30 361 0 0 1.35 GFRP F 20.5 0.013 260 1.27 20 80 250 90 11
53 150 222.5 17.8 361 0 0 2.92 GFRP F 5.3 0.021 112 1.2 25 50 250 90 40
54 150 222.5 17.8 361 0 0 2.92 GFRP F 5.3 0.021 112 1.2 25 100 250 90 35
55 150 222.5 17.8 361 0 0 1.8 GFRP F 5.3 0.021 112 1.2 25 50 250 90 47
56 150 222.5 17.8 361 0 0 1.8 GFRP F 5.3 0.021 112 1.2 25 100 250 90 35
57 180 426 67 500 0 0 2.93 CFRP SB 234 0.019 4500 0.072 1 1 500 45 122
58 180 426 59 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 29
59 180 426 71 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 132
60 180 426 53 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 180
61 180 426 67 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 181
62 180 426 47 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 126
63 180 426 53 500 0 0 2.93 CFRP SB 234 0.019 4500 0.11 1 1 500 45 166
64 180 426 71 500 0 0 2.93 CFRP SB 234 0.019 4500 0.165 1 1 500 45 209
65 180 426 54 500 0 0 2.93 CFRP SB 234 0.019 4500 0.165 1 1 500 45 219
66 180 335 46 500 0.094 200 2.99 CFRP SB 234 0.019 4500 0.165 1 1 400 90 62
67 180 335 46 500 0.094 200 2.99 CFRP SB 234 0.019 4500 0.165 1 1 400 90 62
68 152.4 189.1 43.8 400 0 0 2.82 CFRP SB 165 0.017 2800 1.5 40 127 228.6 90 27.6
69 152.4 189.1 43.8 400 0 0 2.82 CFRP SB 165 0.017 2800 1.5 6 127 228.6 45 36.7
70 152.4 189.1 43.8 400 0 0 2.5 CFRP SB 165 0.017 2800 1 1 1 228.6 90 7.5
71 152.4 189.1 43.8 400 0 0 2.5 CFRP SB 165 0.017 2800 1.5 40 127 228.6 90 21
72 152.4 189.1 43.8 400 0 0 2.5 CFRP SB 390 0.017 2800 1 1 1 228.6 90 8.3
73 150 280 37.6 540 0 0 2.5 CFRP U 390 0.008 3000 0.334 25 190 300 90 10.8
74 150 280 37.6 540 0 0 3 CFRP U 390 0.008 3000 0.334 25 95 300 90 31.5
75 150 120 49.5 540 0 0 3 CFRP U 390 0.008 3000 0.334 25 80 150 90 18.6
76 150 120 49.5 540 0 0 3 CFRP U 390 0.008 3000 0.334 25 40 150 90 33.7
77 150 250 41.43 534 0.268 170 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 52.9
78 150 250 41.43 534 0.268 170 3.1 CFRP U 231 0.015 3465 0.33 1 1 300 90 57.8
79 150 250 41.43 534 0.268 200 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 55.8
80 150 250 41.43 534 0.268 200 3.1 CFRP U 230 0.015 3450 0.33 1 1 300 90 60.5
81 150 250 41.43 534 0.268 170 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 49.1
82 150 250 41.43 534 0.268 170 3.1 CFRP U 230 0.015 3450 0.33 1 1 300 90 20.8
83 150 250 41.43 534 0.268 200 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 31.7
84 150 250 41.43 534 0.268 200 3.1 CFRP U 230 0.015 3450 0.33 1 1 300 90 4



Sustainability 2023, 15, 16126 22 of 25

Table A1. Cont.

No b d fc fy Asv Sv a/d FRP
Type Scheme Ef εfrp ffrp n*tf wf sf hf beta Vexp

85 150 250 46.21 534 0.268 140 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 24.4
86 150 250 46.21 534 0.268 140 3.1 CFRP U 230 0.015 3450 0.33 1 1 300 90 36.3
87 150 250 46.21 534 0.268 170 3.1 CFRP U 230 0.015 3450 0.165 1 1 300 90 11.7
88 150 250 46.21 534 0.268 170 3.1 CFRP U 230 0.015 3450 0.33 1 1 300 90 16.1
89 150 250 27.5 548 0 0 3 CFRP SB 233.6 0.019 3350 0.165 1 1 300 90 45.3
90 150 250 27.5 548 0 0 3 CFRP SB 233.6 0.019 3350 1.485 1 1 300 90 38.1
91 150 250 27.5 548 0 0 3 CFRP SB 233.6 0.019 3350 1.485 1 1 300 90 65.5
92 150 250 31.4 548 0.268 200 3 CFRP SB 233.6 0.019 3350 0.66 1 1 300 90 31.5
93 150 250 31.4 548 0.268 200 3 CFRP SB 233.6 0.019 3350 1.485 1 1 300 90 51.8
94 150 250 31.4 548 0.268 200 3 CFRP SB 233.6 0.019 3350 1.485 1 1 300 90 86
95 150 250 31.4 548 0.268 200 3 CFRP SB 233.6 0.019 3350 0.66 1 1 300 90 47.3
96 150 250 31.4 548 0.268 200 3 CFRP SB 233.6 0.019 3350 0.66 1 1 300 90 50.5
97 75 155 27.4 500 0.216 120 2.9 CFRP U 23.5 0.016 4200 0.11 20 60 180 90 24.3
98 75 155 27.4 500 0.216 120 2.9 CFRP U 23.5 0.016 4200 0.11 20 60 180 90 5.1
99 75 155 27.4 500 0.216 120 2.9 CFRP F 23.5 0.016 4200 0.11 20 60 180 90 25.4

100 75 155 27.4 500 0.216 120 2.9 CFRP F 23.5 0.016 4200 0.11 20 60 180 90 25.9
101 150 305 27.4 500 0.123 135 2.95 CFRP U 23.5 0.016 4200 0.22 40 120 360 90 4.8
102 150 305 27.4 500 0.123 135 2.95 CFRP U 23.5 0.016 4200 0.22 40 120 360 90 9.9
103 150 305 27.4 500 0.123 135 2.95 CFRP F 23.5 0.016 4200 0.22 40 120 360 90 86.5
104 150 305 27.4 500 0.123 135 2.95 CFRP F 23.5 0.016 4200 0.22 40 120 360 90 100.5
105 300 660 27.4 500 0.051 240 2.7 CFRP U 23.5 0.016 4200 0.44 80 240 720 90 25.4
106 300 660 27.4 500 0.051 240 2.7 CFRP U 23.5 0.016 4200 0.44 80 240 720 90 21.8
107 300 660 27.4 500 0.051 240 2.7 CFRP F 23.5 0.016 4200 0.44 80 240 720 90 333.6
108 300 660 27.4 500 0.051 240 2.7 CFRP F 23.5 0.016 4200 0.44 80 240 720 90 343.2
109 250 220 34.7 551 0 0 2.2 CFRP SB 235 0.015 3550 0.2 1 1 250 90 91.5
110 250 220 34.7 552 0 0 2.2 CFRP SB 235 0.015 3550 0.2 50 100 250 90 32
111 250 220 34.7 554 0 0 2.2 CFRP SB 158 0.02 3160 0.2 1 1 250 90 45.5
112 250 220 34.7 555 0 0 2.2 CFRP SB 230 0.02 3160 0.2 1 1 250 45 47.5
113 250 420 21 476 0.096 400 3 CFRP F 392 0.007 2600 0.191 1 1 450 90 130
114 250 420 21 476 0.096 300 3 CFRP F 392 0.007 2600 0.191 1 1 450 90 170
115 250 420 21 476 0.096 200 3 CFRP F 392 0.007 2600 0.191 1 1 450 90 85
116 250 420 21 476 0.096 400 3 CFRP U 392 0.007 2600 0.191 1 1 450 90 100
117 250 420 21 476 0.096 300 3 CFRP U 392 0.007 2600 0.191 1 1 450 90 110
118 250 420 21 476 0.096 200 3 CFRP U 392 0.007 2600 0.191 1 1 450 90 65
119 250 420 21 476 0.096 400 3 CFRP SB 392 0.007 2600 0.191 1 1 450 90 55
120 250 420 21 476 0.096 300 3 CFRP SB 392 0.007 2600 0.191 1 1 450 90 45
121 250 420 21 476 0.096 200 3 CFRP SB 392 0.007 2600 0.191 1 1 450 90 25
122 250 420 21 476 0.096 400 4 CFRP F 392 0.007 2600 0.191 1 1 450 90 80
123 250 420 21 476 0.096 400 4 CFRP U 392 0.007 2600 0.191 1 1 450 90 60
124 250 420 21 476 0.096 400 4 CFRP SB 392 0.007 2600 0.191 1 1 450 90 45
125 250 240 25.3 350 0.106 150 2.5 PET F 10 0.074 740 0.14 1 1 270 90 13.8
126 250 240 25.3 350 0.106 150 2.5 PET F 10 0.074 740 0.21 1 1 270 90 27.6
127 250 240 25.3 350 0.106 150 2.5 PET F 10 0.074 740 0.28 1 1 270 90 26.4
128 250 240 25.3 350 0.106 150 2.5 PET F 10 0.074 740 0.42 1 1 270 90 37.2
129 250 240 25.3 350 0.106 150 2.5 PET F 10 0.074 740 0.56 1 1 270 90 60
130 250 450 32.6 350 0.056 150 2.5 PET F 10 0.074 740 0.42 1 1 500 90 103.8
131 250 240 32.6 350 0.106 150 3.13 PET F 10 0.074 740 0.21 1 1 270 90 77.4
132 250 240 32.6 350 0.106 150 2.5 PET F 10 0.074 740 0.42 1 1 270 90 103.2
133 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.005 3103 0.167 36 120 327 90 38.5
134 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.008 3103 0.167 36 120 327 90 30.2
135 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.01 3103 0.167 36 120 327 90 33.4
136 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.007 3103 0.167 36 120 327 90 45.7
137 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.005 3103 0.668 36 120 327 90 37.5
138 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.006 3103 0.668 36 120 327 90 61.3
139 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.007 3103 0.668 36 120 327 90 88
140 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.012 3103 0.668 36 120 327 90 100.5
141 200 297 27.3 398 0.28 120 2 CFRP U 270.5 0.007 3103 0.668 36 120 327 90 112.8
142 180 303 47 310 0.122 160 1 CFRP U 235 0.004 4200 0.11 60 150 350 90 10
143 180 303 47 310 0.122 160 1.5 CFRP U 235 0.008 4200 0.11 60 150 350 90 37
144 180 303 47 310 0.122 160 2 CFRP U 235 0.008 4200 0.11 60 150 350 90 68
145 180 303 47 310 0.122 160 2.5 CFRP U 235 0.008 4200 0.11 60 150 350 90 62
146 180 303 55 310 0.122 160 3 CFRP U 235 0.007 4200 0.11 60 150 350 90 41
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Table A1. Cont.

No b d fc fy Asv Sv a/d FRP
Type Scheme Ef εfrp ffrp n*tf wf sf hf beta Vexp

147 180 303 55 310 0.122 160 3.5 CFRP U 235 0.007 4200 0.11 60 150 350 90 53
148 150 250 23.3 527 0.22 300 3 CFRP U 390 0.008 3000 0.165 1 1 300 90 53.9
149 150 250 23.3 527 0.33 200 3 CFRP U 390 0.008 3000 0.165 1 1 300 90 39.6
150 200 400 33.8 500 0.07 200 3.2 CFRP U 230 0.015 3500 0.11 50 400 450 90 41.2
151 200 400 36 500 0.07 400 3.2 CFRP U 230 0.015 3500 0.11 50 400 450 90 33.4
152 200 400 35.8 500 0.07 400 3.2 CFRP U 230 0.015 3500 0.11 50 400 450 90 30.1
153 200 400 34.7 500 0.07 400 3.2 CFRP F 230 0.015 3500 0.11 50 200 450 90 98.9
154 120 150 40 280 0.39 120 2.57 CFRP SB 230 0.015 3500 0.26 50 100 260 90 20
155 120 150 40 280 0.39 120 2.57 CFRP SB 230 0.015 3500 0.26 50 100 260 90 16.3
156 120 150 40 280 0.39 120 2.57 CFRP SB 230 0.015 3500 0.26 50 100 260 90 13.8
157 120 175 40 280 0.39 120 2.57 CFRP F 230 0.015 3500 0.26 50 100 200 90 25
158 120 175 40 280 0.39 120 2.57 CFRP F 230 0.015 3500 0.26 50 100 200 90 23.8
159 120 175 40 280 0.39 120 2.57 CFRP F 230 0.015 3500 0.26 50 100 200 90 22.5
160 150 210 16.9 498.2 0.16 200 2.4 BFRP U 89 0.035 3115 0.14 75 50 260 90 25.2
181 150 300 50.35 494 0 0 2 CFRP SB 234.5 0.02 3450 0.34 300 900 300 90 47.15
182 150 300 51.38 494 0 0 2 CFRP SB 234.5 0.02 3450 0.34 150 600 150 90 8.75
183 150 300 49.38 494 0 0 2 CFRP SB 234.5 0.02 3450 0.34 75 900 300 90 3.9
184 150 300 48.41 494 0 0 2 CFRP SB 234.5 0.02 3450 0.34 150 900 150 90 8.75
185 250 360 36.95 500 0.11 380 3.5 CFRP U 63 0.011 700 1 300 200 150 90 138.3
186 250 360 36.95 500 0.11 380 3.5 CFRP U 63 0.011 700 1 300 200 150 90 91.5
187 250 360 24.47 500 0.11 380 3.5 CFRP U 63 0.011 700 1 1 1 150 90 96.26
188 250 360 24.47 500 0.11 380 3.5 CFRP U 63 0.011 700 1 1 1 150 90 55.37
189 250 360 22.64 500 0.11 380 3.5 CFRP U 63 0.011 700 1 1 1 150 90 133.6
190 250 360 22.64 500 0.11 380 3.5 CFRP U 63 0.011 700 1 1 1 150 90 136.6
191 250 360 20.5 500 0.11 380 3.5 CFRP U 63 0.011 700 1 300 200 150 90 123
192 250 360 20.5 500 0.11 380 3.5 CFRP U 63 0.011 700 1 300 200 150 90 142.9
193 200 173 29.3 665.3 0.163 160 3 CFRP U 230 0.015 3430 0.165 1 1 210 90 19.3
194 203 305 25.2 420 0 0 3 CFRP U 228 0.015 3450 0.165 76 229 368 90 46.7
195 305 457 32 420 0 0 3 CFRP U 228 0.015 3450 0.165 152 305 546 90 87.2
196 406 610 32 420 0 0 3 CFRP U 228 0.015 3450 0.165 252 381 698.5 90 126.8
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