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Abstract: In recent years, the waste produced as a result of the production and consumption activities
of urban residents has led to significant environmental degradation and resource wastage. This paper
focuses on the research object of municipal solid waste (MSW) collection and transportation based
on the concept of “sustainable development and green economy”. Firstly, this study examines the
current state of urban domestic garbage collection and transportation. It analyzes the following
challenges and deficiencies of the existing collection and transportation system: (1) the operating
efficiency of garbage collection vehicles is low, resulting in a significant accumulation of waste on the
roadside and within the community; (2) the vehicle collection and transportation routes are fixed, and
there are empty vehicles running; (3) the amount of garbage on a route exceeds the vehicle’s loading
capacity, which requires the vehicle to perform a second round of collection and transportation. To
enhance the efficiency of urban garbage collection and transportation and minimize the collection
and transportation costs, we are investigating the problem of optimizing the path for green vehicles.
To comprehensively optimize the fixed cost, variable cost, and carbon emission cost incurred during
vehicle operation, a vehicle routing model with time windows is established, taking into account
vehicle load constraints. Carbon emission coefficient and carbon tax parameters are introduced into
the model and the “fuel-carbon emission” conversion method is used to measure the carbon cost of
enterprises. An improved ant colony optimization (ACO) method is proposed: (1) the introduction
of a vehicle load factor improves the ant state transfer method; (2) the updated pheromone method
is improved, and additional pheromone is added to both the feasible path and the path with the
minimum objective function; (3) the max–min ACO algorithm is introduced to address the issue of
premature convergence of the algorithm; (4) the embedding of a 2-opt algorithm further prevents
the ACO algorithm from falling into the local optimum. Finally, the calculation results based on the
example data demonstrate that the algorithm has a significant advantage over the genetic algorithm
(GA) and particle swarm optimization (PSO) algorithm. The total transportation distance determined
by this algorithm is shorter than that of the GA and PSO methods, and the total cost of the scheme is
1.66% and 1.89% lower than that determined by GA and PSO, respectively. Compared to the data
from the actual case, the number of vehicles required in the operation of this algorithm and model is
reduced by three. Additionally, the total cost, fixed cost, and carbon emission cost incurred by the
vehicles during operation were reduced by 31.2%, 60%, and 25.3% respectively. The results of this
study help the station to collect and distribute waste efficiently, while also achieving the goals of
energy saving, consumption reduction, and emission reduction.

Keywords: urban traffic; municipal solid waste management; vehicle route optimization; network
analysis; green and low-carbon
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1. Introduction

The rapid and constant growth of populations and increase in urbanization has led to
a sharp increase in municipal solid waste (MSW) generation, which seriously affects the
social economy and environment. The management of MSW primarily encompasses five
key components: production, delivery, collection, transportation, and recycling. Collection
and transportation play crucial roles in connecting the initial drop-off point of waste to
the final treatment process. During the collection and transport process, we often need to
consider many influencing factors, such as the social factor of residents’ involvement in
waste disposal and the method used for waste collection and transportation. At present, the
modes of MSW collection and transportation can be categorized based on the following five
factors: (1) whether the time of collection and transportation schedule is fixed, i.e., whether
the vehicle collects and transports the waste in the city during a fixed period; (2) whether
the location of the waste collection point is fixed, i.e., whether the node of the waste that
the vehicle collects and transports every day is fixed; if it is fixed, then the phenomenon
of waste piling up can occur, causing collection and transportation to run off-schedule;
(3) whether it is classified for collection and transportation; (4) whether the vehicle uses an
independent collection or joint collection mode; (5) and whether there is a transfer station;
if there is a transfer station, the vehicle will transport the waste to the transfer station,
and if not, the vehicle will transport the waste directly to the disposal site. Collection and
transportation are considered high-cost components, comprising approximately 65–80% of
the overall cost of waste management [1]. For many years, researchers have been concerned
about the vehicle routing problem (VRP) of waste collection. It has been demonstrated
through empirical evidence that the implementation of an efficient waste collection path
can result in a substantial reduction in costs. Nevertheless, in light of the advancements
in green and low-carbon cities, some researchers have proposed the green vehicle routing
problem (GVRP) to reduce carbon emissions of the path.

The arc routing problem (ARP) can also be utilized for waste collection routing.
Ghiani et al. [2] conducted a study for MSW collection and built an ARP to minimize the
total distance traveled by the vehicles by first assigning arcs/edges to vehicles through
clustering and then matching routes for the vehicles. The experimental results showed
that the proposed system enables individuals to avoid overtime and reduces the total
cost of the vehicles by 10%. Willemse and Joubert [3] researched the mixed capacity
arc routing problem under time restrictions with intermediate facilities. Their research
aimed to identify the best-performing constructive heuristic in terms of computational
time and ability to find the least costly solution and smallest fleet size. The method
that they employed to evaluate randomized heuristics is also of value to future studies
on CARPs. In 2019, Willemse and Joubert [4] extended upon the constructive heuristic
research conducted on the mixed capacitor arc routing problem under intermediate facility
time constraints (MCARPTIF) from the research published in 2016 [3]. More advanced
local search acceleration mechanisms from the literature were adapted and combined with
the MCARPTIF and tested on the same instances. The execution time of the algorithm
was decreased; however, the local search yielded poorer solutions. Lu et al. [5] focused on
formulating and solving rich arc routing problems (RARPs) in city logistics in a congested
urban environment. The authors proposed an analytical methodology that utilized a
fluid queue model to calibrate link travel time. The calibration was achieved through the
use of a polynomial arrival rate function. The systemic (social) impacts of vehicle routes
were derived analytically and incorporated into an RARP model, where operational costs
and social impacts were systematically considered in the design of route strategies and
compared with examples at three different scales. Ghiani et al. [6] employed a new ant
colony optimization procedure for the arc routing problem with intermediate facilities
under capacity and length restrictions (CLARPIF), and the computational results showed
substantial improvements. Mourão and Amado [7] proposed a new heuristic to generate
feasible solutions for the extended CARP on hybrid graphs by constructing Eulerian
and directed networks to generate feasible vehicle journeys based on selected maximal
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circuits. Nie et al. [8] proposed an optimal configuration and arc routing problem (ARP)
for sanitation vehicles operating on urban roads under multiple constraints. The physical
road network was expanded into a spatio-temporal network, and the spatio-temporal
trajectories of vehicles on the road network were portrayed. An optimal configuration
and path planning model for sanitation vehicles was constructed, and a branch pricing
algorithm was devised to effectively solve the model with precision.

This paper focuses on the path optimization problem for sanitation vehicles. At
present, the research on VRP has been quite rich. It has been applied to various fields, and
various VRP variants have been gradually developed, such as the capacitated vehicle rout-
ing problem (CVRP), vehicle routing problem with time window (VRPTW), green vehicle
routing problem (GVRP), and multi distribution center vehicle routing problem (MDCVRP).
Due to the restricted load capacity of vehicles, it is imperative to take into account capacity
limitations when solving the VRP [9–16]. In the process of waste collection and transporta-
tion, in order to complete the work on time and efficiently, it is necessary to consider the
constraints of the time window when optimizing the route [17–19]. The majority of waste
trucks in the city are powered by fuel. In order to mitigate the carbon emissions associ-
ated with transportation, one potential solution is to optimize the route. Jabir, Panicker,
and Sridharan [20] first to addressed the integration of carbon dioxide (CO2) emissions
into the vehicle routing problem. Their proposed model aimed to resolve the trade-off
between cost and emission reduction, resulting in a substantial decrease in the total cost.
Ziaei and Jabbarzadeh [21] considered the impact of carbon emissions on a multi-modal
transport network for hazardous materials. Sherif et al. [22] incorporated the cost of carbon
emissions into the objective function and built a multi-depot heterogeneous green vehicle
routing optimization model for the battery supply chain network. Madden et al. [23] built a
model to estimate carbon emissions from curbside organic waste collection based on waste
collection route data, which showed that curbside collection was the largest contributor to
overall transport emissions. Guo, Qian, et al. [24] proposed a three-dimensional ant colony
optimization algorithm (TDACO) to solve the multi-compartment vehicle routing problem
(MCVRP) in industries such as waste collection and incorporated carbon emissions into the
state transition rules in the TDACO. Dayanara, Arvitrida, and Siswanto [25] constructed a
vehicle routing optimization model with the number of waste collections, time windows,
and carbon emissions as constraints. Liu and Liao [26] considered different types of vehi-
cles working together for waste collection and built an optimization model to minimize
economic costs and carbon emissions. Li et al. [27] comprehensively considered the fixed
vehicle costs, early and delayed penalty costs, fuel costs, and the impacts of vehicle speed,
load, and road gradient on fuel consumption and developed a hybrid genetic algorithm
solution with variable neighborhood search. Zhou, Li, and Wang [28] took into account
how vehicle load affects carbon emissions and constructed a model that they then tested
for robustness to find the shortest route and reduce carbon emissions. Wang and Shan [29]
established a multi-objective waste collection model combining transport distance, fuel
consumption, and carbon emission and demonstrated the effectiveness and practicality of
the algorithm. Lu [30] constructed a mathematical model with the optimization objective
of minimizing economic cost and carbon emission cost to meet the low-carbon demand for
waste collection and transportation. Li, Song, and Guo [31] established a cold chain logistics
multi-temperature co-distribution path optimization model consisting of transportation
cost, carbon emission cost, refrigeration cost, and loss cost with the lowest total cost as
the objective function to achieve low-carbon collection and transportation. Martyushev
et al. [32] studied the operational performance of electric vehicles and developed a simula-
tion model to determine the range of an electric vehicle by cycles of movement. The effects
of operating speed, drag, and mechanical forces on the operation of electric vehicles were
considered in the modeling process.

Considerable research has been conducted on the mathematical models [33] pertaining
to the VRP, as well as the algorithms developed for solving it. The algorithms utilized for
solving the VRP are mainly divided into two categories: exact algorithms and heuristic
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algorithms. The most widely used algorithm is the meta-heuristic algorithm, which mainly
includes the genetic algorithm, ant colony algorithm, simulated annealing algorithm, etc.
To minimize the time taken during the collection of bio-medical waste (BMW), Mohamed
et al. [34] built an optimized vehicle route model for a set of six dedicated vehicles us-
ing a particle swarm optimization (PSO) algorithm. Moazzeni, Tavana, and Mostafayi
Darmian [35] used a GA and grey wolf optimizer (GWO) to solve the dynamic location-arc
routing optimization model for electric waste collection vehicles. Liu and He [36] designed
a clustering ant colony algorithm to solve the optimization of domestic waste collection and
transportation routes in Chengdu. Wang [37] formulated a multi-objective optimization
model with time windows and used a particle swarm algorithm to solve it to obtain a
dispatching scheme for collection vehicles under different modes. Zhao, Ma, and Liu [38]
established a mathematical model to minimize transportation costs and vehicle fixed costs
and proposed an improved ant colony algorithm to obtain a suboptimal solution. Experi-
mental results showed the correctness of the proposed model and the effectiveness and
optimization ability of the algorithm.

Although scholars have made a lot of achievements, there are still some limitations
that have yet to be addressed. The impact of vehicle fixed costs, transportation costs,
and carbon emission costs, as well as vehicle capacity and time window constraints on
transportation costs, are rarely considered. For the solution algorithm for this problem,
ACO has strong robustness but still has the weakness of easily falling into a local optimum.

Carbon peaks and carbon neutrality have emerged as highly significant subjects of
discussion in the current discourse. China boasts the largest carbon trading system, which
not only facilitates the reduction of carbon emissions but also contributes to the growth of
GDP. The carbon market introduces a level of flexibility to the industry, enabling companies
to strategically manage their CO2 emissions in order to minimize costs. The aim of this
paper is to reduce business costs and increase environmental benefits by optimizing the
routes of sanitation vehicles. This study is based on real case data from Huzhou, Zhejiang,
China. Firstly, the waste collection network in the study area is divided into five sub-areas
by investigating the current situation of MSW collection and transportation, analyzing
the distribution of waste nodes, and studying the waste generation pattern. A model is
established for vehicle matching and path optimization with time window constraints and
capacity constraints. An improved ant colony algorithm is designed to solve the model
and compare the results with those of the other two algorithms.

The paper is structured as follows:
(1) Section 1: Introduction. The introduction provides the background and purpose of

the study and summarizes the relevant research literature in related fields.
(2) Section 2: Model Formulation. This section introduces the research data, research

questions, assumptions, and constraints and establishes a model for the matching and path op-
timization of MSW collection vehicles with time window constraints and capacity constraints.

(3) Section 3: Methodology. An improved ant colony algorithm is designed to solve the
mathematical model, and the steps and contents of the algorithm are discussed in detail.

(4) Section 4: Results. The effectiveness of the improved ACO algorithm is verified
by example data. By comparing the experimental results of PSO and GA, the algorithm
designed in this paper has significant superiority.

(5) Section 5: Conclusion. This section summarizes the research findings and the
progress made in this paper. It also summarizes the limitations of the research in this paper
and explores the possibilities and improvement directions for future research.

2. Model Formulation
2.1. Research Data

The data for the study described in this paper were primarily obtained from waste
collection data from Wuxing District, Huzhou City, Zhejiang Province, China.
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In this paper, data on domestic waste nodes for 63 neighborhoods in the area and
waste volume data generated for three consecutive months were obtained, as shown in
Table 1.

Table 1. Daily average of domestic waste in each neighborhood.

Block Number Daily Average (kg) Block Number Daily Average (kg)

1 16.2874 15 25.19309
2 38.20596 16 43.59313
3 116.1029 17 7.240346
4 82.4291 18 36.31804
5 27.22089 19 110.6039
6 125.5312 20 297.0145
7 43.59113 21 57.20373
8 28.9518 22 569.5574
9 152.7669 23 177.8744
10 69.16793 24 274.5275
11 27.14389 25 381.2409
12 52.62627 26 1412.876
13 51.00258 27 844.055
14 52.5404 28 28.06824

Data from 98 waste collection nodes and 8 sanitation vehicle operations in the region
were analyzed. The data mainly consist of GPS trajectory data from vehicles, which include
65,499 entries. The data include latitude and longitude coordinates, position, speed, time,
and operation status, as shown in Table 2.

Table 2. Main information from sanitation vehicle data.

Longitude Latitude Speed (km/h) Time Status

120.2348 30.84301 27 4:00 In operation
120.2348 30.84527 30 4:00 In operation
120.2349 30.84772 18 4:01 In operation
120.2349 30.84777 18 4:01 In operation
120.2351 30.84779 20 4:01 In operation
120.2418 30.84807 28 4:02 In operation
120.2447 30.84797 0 4:03 Stalled
120.2447 30.84797 0 4:03 Stalled
120.2456 30.84817 30 4:03 In operation
120.2526 30.84888 30 4:04 In operation
120.2554 30.84918 30 4:05 In operation
120.2569 30.84937 0 4:05 Stalled
120.257 30.8494 10 4:06 In operation
120.2572 30.84955 16 4:06 In operation
120.2573 30.8498 14 4:06 In operation
120.2573 30.85002 6 4:07 In operation

2.2. Problem Description

In this study, waste collection vehicles are the subject of investigation. There is one
sanitation base, N is the set of waste collection points, and K is the set of collection vehicles
in the collection network. The problem is described in Figure 1. Firstly, the collection
network is divided into several sub-areas, and the vehicles start from the sanitation base in
an empty state. Each vehicle is responsible for the collection demand of only one sub-area,
and the vehicle completes all the collection tasks and returns to the sanitation base under
the condition of satisfying the time window constraints and capacity constraints.
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Figure 1. An illustration of the problem.

The objective of this study is to find the transportation path that minimizes the total
cost. The total cost includes the fixed cost of the vehicle, the transportation cost, and the
carbon emissions cost. The relevant assumptions involved in the proposed vehicle routing
problem for MSW collection are:

(1) The location of each waste collection point and sanitation base is known, as well as
the distances between the nodes.

(2) The amount of waste at each collection point is known and does not exceed the
vehicle capacity limit.

(3) A vehicle can only serve one collection route, and the total amount of waste on that
route must not exceed the vehicle capacity limit.

(4) All vehicles travel at the same speed and capacity.
(5) There is no traffic congestion, and vehicle speeds are consistent.

2.3. Mathematical Model

By analyzing the objectives and constraints affecting the decision-making in waste
collection and transportation, a mathematical model for the optimization of a green vehicle
route for MSW collection and transportation is established. The meaning of each parameter,
set, and decision variable in the model is shown in Table 3:

Table 3. Definition of variables and parameters related to the model.

Element Description

N Set of waste collection points, i = 1, 2, . . . , N
K Set of vehicles, k = 1, 2, . . . , K
Q Maximum load of the vehicle
dij Distance between points “i, j“
fk Fixed costs for vehicle k
tik Time when vehicle k arrives at customer i
ck Cost per unit distance transported for vehicle k
α Transport costs per unit distance
β Time window penalty factor
E Costs of carbon emissions
Fe Fuel consumption per km
δ Carbon emission factor
qi Quantity demanded at waste collection point i

[ai, bi] Working time window for collection point i
[S1, S2] Waste collection time window

xijk 1 if vehicle k from collection point i to j; 0 otherwise
yik 1 if vehicle k at collection point i for waste collection; 0 otherwise
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In this study, the routes are mainly evaluated in terms of economics. Vehicle fixed
costs include vehicle acquisition costs, vehicle maintenance costs, vehicle insurance costs,
and staff salaries, as shown in Equation (1). The transportation cost mainly consists of the
fuel consumption cost incurred during travel, as shown in Equation (2).

fk= f p+ f m+ f w+ f i (1)

where fk is the fixed cost of per vehicle, fp is the acquisition cost of the vehicle, fm is the
maintenance cost of the vehicle, fw is the cost of vehicle insurance, and fi is the cost of
staff salary.

ck= dk × c f × α (2)

where ck is the transportation cost of the waste collection vehicle, dk is the straight-line
distance traveled by the vehicle, and c f is the fuel cost per kilometer. Note that the non-
linear coefficient “α” is used to describe the actual distance of the vehicle in this paper. The
non-linear coefficient is the ratio of the actual traffic distance between the start and end
points of a road section to the spatial straight-line distance between the two points.

Vehicle carbon emissions are directly related to fuel consumption and the type of fuel.
In order to more accurately measure carbon emissions during vehicle travel, this paper
introduces a carbon emission coefficient. The conversion method involves multiplying
the vehicle fuel consumption by the corresponding carbon emission coefficient to directly
calculate carbon emission. The conversion between fuel consumption and carbon dioxide
emission is achieved through a linear relation. This paper measures the costs of carbon
emissions by considering the carbon tax paid by enterprises and includes it in the total costs
of the target function. The carbon emission costs of the waste collection and transportation
vehicles are represented by Equation (3).

E = Cm × δ × Fe (3)

where E is the cost of carbon emissions, Cm is the carbon tax per unit of carbon emissions, δ
is the CO2 emission coefficient, and Fe is the fuel consumption per km.

The objective function is:

min
N

∑
i=0

N

∑
j=0

K

∑
k=1

xijkdijck +
N

∑
j=1

K

∑
k=1

x0jk fk + E
N

∑
i=0

N

∑
j=0

K

∑
k=1

xijkdij (4)

Equation (4) aims to minimize the cost of waste collection paths, which includes fixed
costs, transportation costs, and carbon emission costs.

N

∑
j=1

x0jk= 1, ∀k ∈ K (5)

N

∑
i=1

xi0k= 1, ∀k ∈ K (6)

Constraints (5) and (6) indicate that every waste vehicle must depart from the depot
and return to the depot after completing the waste collection work.

∑
j∈N

∑
k∈K

xijk= 1, ∀i ∈ N, i 6= j (7)

Constraint (7) covers the fact that each collection point can only be served by one
vehicle and visited once.

N

∑
i=1

xink −
N

∑
j=1

xnjk= 0, ∀n ∈ N,∀k ∈ K (8)
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Constraint (8) represents the flow balance constraint; that is, the number of vehicles
entering a waste collection point is equal to the number of vehicles leaving the waste
collection point.

∑
i∈N

∑
j∈N

xijk ≤ N − 1, ∀k ∈ K (9)

Constraint (9) represents the branch circuit elimination constraints and ensures that
there are no sub-travels.

N

∑
i=1

N

∑
j=1

xijkqi ≤ Q, ∀k ∈ K (10)

Constraint (10) guarantees that the amount of waste collected by each vehicle cannot
exceed its maximum load capacity.

S1 ≤ tik ≤ S2, ∀i ∈ N,∀k ∈ K (11)

Constraint (11) imposes that the vehicles start and end working times are set within
the time windows.

ai

(
N

∑
i=1

xijk

)
≤ ti k ≤ bi

(
N

∑
i=1

xijk

)
, ∀i ∈ N ,∀k ∈ K (12)

Constraint (12) enforces that the waste must be collected within the time windows.

3. Methodology

An improved ant colony algorithm has been designed to assist companies in making
decisions. Combining the max–min ant system and the 2-opt local search algorithm to
optimize the traditional ant colony algorithm, the solution steps are shown in Figure 2:

Step 1: Initialization of the colony.
Initialize parameters such as colony size, pheromone importance factor, heuristic

function importance factor, and maximum number of iterations. Place the ants randomly
on different nodes.

Step 2: Constructing the solution space.
Place individual ants in the current solution set, transfer each ant to the next node

according to the probability Pij, add this node to the current solution set, and repeat this
process several times until all ants have visited all nodes. Considering the constraints
on vehicle capacity, the state transfer method for ants has been improved, as shown in
Equation (13)

Pij =


[τij]

α
[
ηij

]β
[kij]

λ

∑n [τin]
α [ηin]

β [kin]
λ , p ≤ p0[

τij
]α
[
ηij

]β[
kij
]λ, p > p0

(13)

where n is the combination of all waste collection points; τij is the pheromone concentration
on path (i, j); α(α ≥ 0) and β(β ≥ 0) are used for weighting the pheromone intensity
and visibility; λ(λ ≥ 0) is the vehicle weight factor; p is a random number in the interval
[0,1]; and p0 is a fixed value in the range (0,1);

ηij is the visibility on path (i, j). The range of values is (0,1); ηij represents the visibility
on path (i, j), i.e., the degree of illumination from collection point i to j. This is shown in
Equation (14):

ηij =
1
dij

(14)

where dij is the distance from collection point i to j.
kij represents the load factor of the collection vehicle and is expressed as Equation (15):

kij= (q i+qj)/Q (15)
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where qi is the amount of waste at collection point i; Q is the vehicle load constraint.
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Step 3: Updating the pheromone.
Calculate the path length Lk visited by each ant and save the optimal solution in the

current iteration number. At the same time, update the pheromone concentration on the
paths between each node by adding additional pheromone to the feasible paths as well as
the optimal paths of the objective function, as shown in Equation (16)

τij(t + 1) = (1 − ρ) × τij(t) + ∆τk
ij + ∆τ∗ij (16)

where ρ denotes the pheromone volatility factor; (1 − ρ) denotes the pheromone residual
factor; when the path (i, j) is the feasible path or the path with the minimum objective
function, an additional pheromone ∆τk

ij or ∆τ∗ij is added to the path (i, j).
Step 4: Premature convergence judgement.
Introduce the max–min ant colony algorithm to overcome the premature convergence

problem, keeping the pheromone concentrations after each update within the range of
[τmin, τmax] to prevent large differences in pheromone concentrations between paths. The
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minimum concentration of pheromones can increase the likelihood of exploring the optimal
solution, while the maximum concentration of pheromones can ensure that ants benefit
from past experiences. The equation for the max–min ant colony algorithm is as follows:

τij =

{
τmax , τij > τmax

τmin+τmax
2 , τij < τmin

(17)

The clustering degree of a single ant and whether the solution tends to be smooth are
used to judge whether the algorithm converges too early. For the aggregation degree of a
single ant in an ant colony, the following Equation (18) is used:

σ2 =
n

∑
i=1

(
fi− f avg

f

)2

(18)

f = max{1, max{| fi − favg|}} (19)

where σ2 is the variance of the colony fitness; fi is the fitness of the ith ant; and favg is the
average fitness of the colony. The size of σ2 is constrained by taking constant values for f .
When σ2 < σ2

min, then it is considered that individuals in the population exhibit aggregation
and the algorithm enters into premature convergence. To select some of the better solutions
in the initial solution, optimize again; otherwise, continue with the next process.

Step 5: The 2-opt algorithm further optimizes the solution.
Use the 2-opt algorithm to address the issue of the algorithm getting stuck in local

optima. The principle is to update the two edges of the exchange solution until the optimal
solution is found.

Step 6: Terminating the iteration.
Determine if the maximum number of iterations has been reached and output the

optimal result. If the termination condition is not met, repeat Steps 2 to 5.

4. Results

This section explores waste collection and transport in Huzhou through a case study.
The parameter settings in the model are shown in Table 4.

Table 4. Parameterization.

Element Description Value Unit

Q Maximum load of the vehicle 5 t
fk Fixed costs for vehicle k — 10,000 RMB
fp Acquisition costs of the vehicle 54.9 CNY/vehicle/day
fm Maintenance costs of the vehicle 50 CNY/vehicle/day
fw Cost of vehicle insurance 3.79 CNY/vehicle/day
fi Cost of staff salary 170 CNY/person/day

ck
Cost per unit distance

transported for vehicle k — 10,000 CNY

cf Fuel cost per kilometer 3 CNY/km
v Average vehicle travel speed 30 km/h

ti
Average operating time at

collection points 0.1 h

α Non-linear coefficient 1.4 —
β Road congestion factor 1.5 —
Fe Fuel consumption per km 0.45 L/km
δ Carbon emission factor 3.096 —

Cm Carbon tax 0.6 CNY/kg

4.1. Spatial Clustering of Waste Collection Points

In this paper, the data for longitude, latitude, position, speed, time, and state of
collection vehicles at 98 waste collection points in 63 communities of the city are analyzed.
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The application of spatial clustering techniques efficiently partitions the 98 waste collection
points into five distinct sub-areas (as shown in Figure 3). This subdivision facilitates the
strategic deployment of multiple collection vehicles concurrently operating across diverse
regions, yielding heightened operational efficiency and substantial cost reductions.
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4.2. The Optimized Scheme of Collection and Transport Vehicle Dispatching

Utilizing an improved ant colony algorithm, the model was employed to address the
task, resulting in the optimal collection and transportation scheme after 200 iterative cycles.
The convergence process of the algorithm and the best collecting and transporting path are
shown in Figures 4 and 5. Among them, the total distance traveled by vehicles was 98.86
km, the total cost was 2488.91 CNY, and the vehicle configuration was set for five vehicles.
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The specific collection and transportation order for each area is presented in Table 5.
From the table, it can be seen that the waste collection and transportation work of Area
A–E was completed by five vehicles, numbered 1–5. Comprehensively considering the cost
of collection and transportation, driving distance, and running time, it was arranged for
the No. 1 vehicle to complete the collection and transportation of the eight waste collection
points in Area A and then depart from the sanitation base to Area E for collection and
transportation. Area C required the No. 3 vehicle and No. 4 vehicle to work at the same
time and complete the delivery within the specified working hours.
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Table 5. The sequence of waste collection and transportation within each respective area.

Area Vehicle
Number Waste Collection Sequence

Distance
Traveled

(km)

Assignment
Time (h)

A 1 0→95→94→93→83→82→81→98→97→0 9.43 [0,1.27]

B 2
0→90→91→92→89→78→79→77→87→88
→85→86→76→80→84→15→17→5→20

→19→60→61→96→0
17.97 [0,3.09]

C 3 0→22→9→6→1→8→7→3→2→10→13
→14→11→12→0 19.65 [0,2.68]

C 4
0→16→18→21→47→41→42→44→45
→43→40→35→36→31→32→37→33→34
→38→39→46→30→29→54→4→0

20.21 [0,3.31]

D 5
0→58→68→69→66→67→23→27→28
→25→26→24→53→52→49→51→50→48

→64→65→63→70→72→71→0
19.23 [0,3.26]

E 1 0→56→74→62→59→55→73→75→0 12.35 [1.27,2.59]

4.3. Scheme Comparison

In order to test the effectiveness of the method, this study compares the results of the
GA and PSO with the transportation scheme, and Tables 6 and 7 show the order of waste
collection and transportation for the genetic algorithm and particle swarm algorithm for
each area.

As a whole, the schemes of the GA and PSO are somewhat different from the scheme of
the improved ant colony algorithm, with the main differences being the order of collection
and transportation in the three areas of B, C, and D.

According to the analysis of the actual vehicle track data in Huzhou, the total travel
distance of the current waste collection and transportation schemes is 132.34 km. The total
travel distance of the vehicle is 111.75 km in the unclustered case and 108.81 km in the
genetic algorithm, the total travel distance in the PSO algorithm is 110.04 km, and that in
the improved ant colony algorithm is 98.86 km, which is shorter than the distance traveled
by the vehicles in all the other schemes.

Each scenario utilizes a comparison between the number of vehicles and the distance
traveled, as depicted in Table 8.
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Table 6. Waste collection and transportation sequence scheme based on GA.

Area Vehicle
Number Waste Collection Sequence

Distance
Traveled

(km)

Assignment
Time (h)

A 1 0→95→94→93→83→82→81→98→97→0 9.43 [0,1.27]

B 2
0→96→90→91→92→89→78→79→77→87
→88→80→76→86→85→84→15→17→5

→20→19→60→61→0
21.73 [0,3.17]

C 3 0→12→9→1→6→8→7→3→2→10→13
→14→16→18→21→54→0 21.65 [0,2.73]

C 4
0→22→11→47→41→42→44→45→43→40
→35→36→31→32→37→33→34→38→39

→46→30→29→4→0
22.70 [0,3.43]

D 5
0→58→68→69→66→67→23→27→28→25
→26→24→52→53→49→50→51→48→64

→65→63→70→72→71→0
20.95 [0,3.37]

E 1 0→56→74→62→59→55→73→75→0 12.35 [1.27,2.59]

Table 7. Waste collection and transportation sequence scheme based on PSO.

Area Vehicle
Number Waste Collection Sequence

Distance
Traveled

(km)

Assignment
Time (h)

A 1 0→95→94→93→83→82→81→98→97→0 9.43 [0,1.27]

B 2
0→79→77→78→87→88→80→76→86→85
→84→15→17→5→20→19→60→61→96

→90→91→92→89→0
22.38 [0,3.24]

C 3 0→9→1→6→8→7→44→42→41→47→21
→18→16→4→0 21.63 [0,2.78]

C 4
0→22→12→11→14→13→10→2→3→45
→43→40→35→36→31→32→37→33→34

→46→39→38→30→29→54→0
22.06 [0,3.46]

D 5
0→58→68→69→66→67→23→27→28→25
→24→26→52→53→49→50→51→48→64

→65→63→72→70→71→0
22.39 [0,3.37]

E 1 0→56→74→62→59→55→73→75→0 12.35 [1.27,2.59]

Table 8. Comparison of the distance traveled by the collecting and transporting vehicles.

Improved
ACO (km) GA (km) PSO (km) ACO (km)

Practical
Application

(km)

Vehicle_1 21.78 21.78 21.78 20.62 13.56
Vehicle_2 17.97 21.73 22.38 18.87 22.47
Vehicle_3 19.65 21.65 21.63 21.13 14.19
Vehicle_4 20.21 22.7 22.06 17.75 13.83
Vehicle_5 19.23 20.95 22.39 18.92 18.89
Vehicle_6 / / / 18.46 17.57
Vehicle_7 / / / / 11.7
Vehicle_8 / / / / 20.13

In contrast, the improved ant colony algorithm is superior to other algorithms in terms
of vehicle configuration and driving distance when the vehicle capacity and working time
window constraints are met.

A comparison of the costs of each of the waste collection options is shown in Figure 6.
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In summary, the improved ant colony algorithm based on spatial dynamic clustering
yields the optimal waste collection and transportation solution with the lowest total cost of
2573.93 CNY. The total cost was reduced by 31.2, 1.66, and 1.89% compared to that of the
actual collection and transportation scheme, the GA scheme and the PSO scheme, respectively.

5. Conclusions
5.1. Results

By addressing the challenges of eco-friendliness and low carbon emissions in vehicle
scheduling and route optimization for waste collection and transportation, this study
actively aligns with the “carbon neutrality” policy. A model for waste collection and
transportation is devised, emphasizing green and low-carbon practices in vehicle routing
and navigation. The proposed model is tackled utilizing an enhanced ant colony algorithm.

To confirm the effectiveness and feasibility of the model and algorithm, this research
employs various algorithms to address the optimal strategy for MSW collection and trans-
portation in the city. The outcomes indicate the following: (1) The improved ant colony
algorithm proposed in this study effectively tackles the model. The improved ACO algo-
rithm is faster and has better performance than the GA and PSO algorithm. Moreover,
compared to the GA and PSO collection and transportation schemes, the scheme with the
improved ACO algorithm has the shortest total distance traveled and the lowest total cost,
which is 1.66 and 1.89% less than that of GA and PSO, respectively. (2) Calculations show
that the optimized route reduces total vehicle operating costs by 31.2%, fixed costs by 60%,
and carbon emissions by 25.3%, with significant economic benefits.

5.2. Discussion

This study still has some deficiencies and directions for further research, as follows:
(1) This study primarily aims to help enterprises optimize their carbon emission

portfolio and vehicle routes to maximize environmental and economic benefits. In order
to avoid overly complex vehicle routes that would increase the cost of transportation, this
study focuses solely on periodic collection point paths. This approach aims to maximize
the benefits of garbage collection and transportation while minimizing the number of
vehicles required.

(2) The data utilized in this study primarily consist of the factual records of garbage
collection and transportation within the designated study area over a period of three
consecutive months. In future research, it is recommended to collect a substantial amount
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of data that encompass a wider range of temporal and spatial characteristics. This will
enable the targeting of vehicle scheduling in advance by predicting seasonal and cyclical
changes in garbage collection points.
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