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Abstract: The treatment of sludge has received a lot of attention due to its intractable status and
potential resource value. In order to explore methods of sludge resource utilization and to reduce the
harm of heavy metals in municipal sewage, this study analyzed the preparation method of a modified
sludge adsorbent (MSA). Another common waste (fly ash) was added to raw domestic sludge (RDS)
in a certain proportion and developed to have the ability to adsorb heavy metals through multiple
steps such as drying, mixing, activation and carbonization. The adsorption performance of the
modified sludge adsorbent (MSA) was verified by simulating wastewater containing Cu2+ and Cd2+,
and the surface and structural properties were studied from a microscopic perspective with the aid
of SEM and XRD. This study showed that the MSA was characterized by increased microporosity,
an enlarged surface area and enhanced activity of functional groups, and the best performance for
heavy metal adsorption was found when the RDS was mixed with fly ash at a ratio of 4:3 and a pH of
8. The highest removal rates for the heavy metals Cu2+ and Cd2+ were 99.6% and 99.7%, respectively.
The adsorption kinetics and adsorption isotherms indicated that the adsorption behavior of the
MSA was controlled by both physical and chemical adsorption, and the best fit of the Langmuir
adsorption isotherm model revealed the predominance of monolayer adsorption. The present study
is a meaningful exploration of the resource utilization of sludge and fly ash and can provide a cheaper
and more effective material for addressing heavy metal pollution in domestic sewage.

Keywords: domestic sludge; fly ash; Cu2+; Cd2+; adsorption mechanism

1. Introduction

Sewage, particularly from industrial sources, is laden with substantial quantities of
heavy metals like Cu, Pb, Cd and Zn. The release of these metals is on the rise, in parallel
with population growth and rapid urbanization [1–5]. Untreated wastewater containing
heavy metals discharged into the natural environment can enter the human body through
various means such as water, crops and air, thus causing a variety of diseases that are
harmful to human health [6–8]. Similar to sewage, sludge from wastewater treatment
processes is also of significant concern to scientists, public health officials, waste managers
and environmental policy makers, as it contains high levels of various contaminants such
as antibiotics, heavy metals and pathogens [9]. Landfills are the most conventional method
of disposing of sewage sludge; however, they use a lot of land and there is a risk of
contaminating the soil [10]. Sludge incineration is effective in killing pathogens due to
the high temperatures used, but it releases hazardous substances such as heavy metals [2],
and dioxins and furans [11] may develop during the process. With the accelerating rate of
resource consumption (such as agricultural fertilizers) [12] and the emphasis on ecology [13],
the use of sludge as a resource is becoming increasingly popular. Sludge has shown
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great promise as an agricultural fertilizer and a soil conditioner [14] and for extracting
animal feed [15] with high contents of organic matter, N and P. However, the heavy metals
contained in the sludge limit the resource utilization of the sludge [16].

Given the safety risks associated with the above methods of sludge disposal, such
as landfilling, incineration or using sludge to treat agricultural fertilizer, it is necessary to
develop a safer way of disposing of sludge. According to the concept of using waste to treat
waste, the use of sludge-modified materials to absorb heavy metals in sewage may be the
best of both worlds, as it can reduce the heavy metal pollution of sewage and achieve the
reuse of sludge. Equally importantly, sewage treatment plants are a source of greenhouse
gas emissions that cannot be ignored [17], and their carbon emissions account for 1% to
2% of the total social carbon emissions [18]. Therefore, the use of waste (sludge) in the
process of sewage treatment to reduce resource consumption has a positive effect on the
realization of “carbon neutrality” goals. An increasing amount of research has focused on
the potential of sludge as a sorbent. The adsorption performance of the sludge as biochar
was optimized by adjusting the temperature [19,20], pH [21,22], adsorption time [23]
and activator concentration [24] for the treatment of industrial wastewater. Devi and
Saroha (2016) [25] reviewed some studies on the addition of various additives (agricultural
residues, industrial wastes and metals) to sludge to enhance the adsorption performance of
the adsorbent.

Improper disposal of fly ash containing high concentrations of heavy metals akin
to sludge generated by factories and thermal power plants worldwide can result in soil
degradation and pose significant risks to human health and the environment [26–28].
The main resource-based utilization of fly ash is in road infrastructure and construction
materials [29], soil conditioners [30,31], the ceramics industry [32] and catalysts [33,34]. Fly
ash, which has a large specific surface area and a large number of active sites, can undergo
chemisorption and physical adsorption with the adsorbent. Therefore, fly ash is also often
used as an adsorbent to remove metal ions [35,36] and organic pollutants [37,38].

It should be noted that many studies have used sludge or fly ash as heavy metal
adsorption materials. However, few studies have reported the similarities and differences
between the two kinds of solid wastes in terms of the adsorption capacity of heavy metals.
Whether combining the complementary advantages of the two solid wastes in physical
adsorption or chemisorption characteristics can further improve the adsorption capacity of
heavy metals is a significant question in terms of using waste to treat waste. The current
study investigates the viability of using these two substances as activated carbon materials
based on an analysis of their fundamental properties. The adsorption potential of this
material was tested using simulated industrial wastewater containing heavy metals. The
aim is to realize the resourceful use of sludge and fly ash, as well as to provide a new
material to address heavy metal pollution in industrial wastewater.

2. Materials and Methods
2.1. Sources of Sludge and Fly Ash

Jiangsu Province is one of the most economically developed provinces in China. Its
economic development is accompanied by a large amount of urban sewage (including
domestic sewage and industrial wastewater) and the resulting sludge, with an output of
about 5 billion tons/year and 1.1 million tons/year, respectively, ranking top among all
provinces in the country (Figure 1). The production scale of fly ash in Jiangsu Province is
also large, which is related to the relatively large proportion of thermal power generation,
which is 14 to 21 percentage points higher than the national average in the same period.
Based on the relationship between coal burning and fly ash production, it is expected that
fly ash production exceeded 65 million tons in 2021 alone [39].
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Figure 1. Production of sewage, sludge and fly ash in Jiangsu Province.

In our study, fly ash and sludge samples were obtained from a power plant and sewage
treatment plants in Jiangsu Province. Among them, the sludge samples included sludge
from a domestic sewage treatment plant (DSS) and sludge from an industrial wastewater
treatment plant (IWS). As shown in Figure 1, the output of domestic sewage in Jiangsu
Province is higher than that of industrial wastewater. Therefore, this study focuses on a GZ
domestic sewage treatment plant, where an A/O (anaerobic oxygen) process is adopted.
The design scale is 100,000 tons/day, and the effluent quality is Class I A standard.

All fly ash and sludge samples were homogenized, dried at 105 ◦C for 24 h and then
ground to 200 mesh. To study the characteristics of sludge samples, the pH, total phospho-
rus, available phosphorus and organic matter were tested. The pretreatment sludge samples
were mixed with 0.01 mol/L CaCl2 solution, and then their pH values were determined by
a pH meter (PHS-3C). The contents of total phosphorus and available phosphorus in the
sludge samples were determined after the leaching of phosphate minerals and organophos-
phorus compounds. The content of organic matter in the sludge was determined by a
high-frequency infrared carbon sulfur analyzer (HCS-801A). The pretreatment and the
following experiments were completed at the CNACG (the China National Administration
of Coal Geology) Key Laboratory of Mineral Resource in Coal Measures.

2.2. Preparation of Modified Sludge Adsorbent (MSA)

All raw domestic sludge (RDS) used in the follow-up experiment was from the GZ
domestic sewage treatment plant. First, 900 g of RDS was divided equally into 5 groups,
numbered 1 to 5. Then, the fly ash sample was dried and added to the above groups
numbered 2, 3, 4 and 5 in the proportions 4:1, 4:2, 4:3 and 4:4, respectively. Group 1 was
used as a blank control without adding fly ash. The samples of each of the five groups were
mixed well and ground.

The mixture of ZnCl2 and H2SO4 facilitates dehydration, condensation and swelling
reactions, resulting in a carbon adsorbent with a high adsorption capacity [40]. The adsorp-
tion capacity of the adsorbent increases with increasing ZnCl2 up to a certain concentration
(3 mol/L), and further increasing concentrations of ZnCl2 lead to a decrease in adsorption
capacity [24]. The ZnCl2 solution (3 mol/L) was prepared with sulfuric acid (98%) in a
10:1 ratio by volume. The prepared activator was added to the 5 groups of samples at a
solid mass to liquid volume ratio of 1:4. The solid product was dried at 105 ◦C for 24 h
after the suspension had been left at 100 rpm for 24 h and then heated to 700 ◦C in a
high-temperature tube furnace at a slope of 10 ◦C/min.

A high inorganic content clogs the pores of a sludge-based adsorbent, thus preventing
the development of the surface area and porosity, leading to a reduction in the adsorption
capacity of the adsorbent [23–25]. Washing sludge-based activated carbon with HCl can
greatly improve the pore volume [41,42]. The samples were washed three times in sequence
with HCl (3 mol/L) and hot distilled water (70–80 ◦C). The modified material was stored
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in a desiccator and the samples were dried at 105 ◦C for 24 h before being crushed to a size
of less than 200 mesh (Figure 2).
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Figure 2. Flow chart of sludge-based activated carbon preparation and mechanism analysis. Sludge
and fly ash were mixed in different proportions. Activated carbon was prepared from the activated
mixture under specific conditions (700 ◦C). Activated carbon was used to verify the adsorption
capacity and adsorption mechanism of heavy metal ions (Cu2+ and Cd2+).

2.3. Characteristics of Modified Samples
2.3.1. Adsorption of Heavy Metals

In order to quantitatively calculate the adsorption characteristics of heavy metals
by the MSA, consistent amounts of the MSA were used in all experiments based on the
solid-liquid ratio employed in similar studies conducted by previous researchers [8,16].
The above MSA samples containing different proportions of fly ash numbered 1 to 5 were
each weighed to 2 g. A solution containing Cu2+ and Cd2+ ions was prepared, according to
the concentration of heavy metals in local municipal sewage, to test the adsorption capacity
of the MSA for heavy metals. Different MSA materials and the same concentration of
the simulated wastewater solution (500 mL) were added in six sets of experiments (one
blank experiment). The samples were stirred in a magnetic stirrer at 100 r/min for 2 h.
The concentration of Cu2+ and Cd2+ in the supernatant of the centrifuged solution was
determined after adjusting the pH of the solution to 7 with NaOH and HNO3.

Some experiments were carried out to investigate the influencing factors and ad-
sorption mechanisms of the MSA4 samples. MSA4 samples of equal mass were added
to simulated wastewater with different pH values, and the pH values of the simulated
wastewater solutions were adjusted to 2, 4, 6, 8 and 10. At the same time, another set of
experiments was carried out at room temperature and pH 5. Five beakers were added
with simulated wastewater with different Cu2+ and Cd2+ contents, and the concentrations
of Cu2+ and Cd2+ were set at 30 mg/L, 60 mg/L, 90 mg/L, 120 mg/L and 180 mg/L. A
sample of 2 g MSA4 was then added to each of the five beakers. In the above experiments,
the MSA was mixed with wastewater and placed in a 120 r/min magnetic stirrer, and
the supernatant after centrifugation was taken to determine the concentration of Cu2+

and Cd2+.
Each experiment was repeated three times, and additional analysis was performed

when the difference between the two measurements was greater than 5%. The determi-
nation of the concentration is based on the standards “Water quality—Determination of
65 elements—Inductively coupled plasma-mass spectrometry” (HJ 700-2014) and “Wa-
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ter quality—Determination of 32 elements—Inductively coupled plasma optical emission
spectrometry“(HJ 776-2015).

2.3.2. Characterization of Physical and Chemical Properties

The RDS, fly ash and MSA were selected to observe their microscopic characteristics.
The content of chemical elements in the samples was analyzed by energy-dispersive X-ray
spectroscopy (EDS), and the surface microscopic morphology of the samples was analyzed
by scanning electron microscopy (SEM). SEM with an energy spectrum can quickly and
accurately obtain the morphology, structural characteristics and composition information
of samples, and has a wide range of applications in the microscopic characterization of fly
ash [43] and modified sludge.

2.3.3. Data Calculation

The adsorption amount Qe (mg/g) of the MSA material and the removal rate W (%) of
heavy metals were calculated by the following formulas, respectively.

Qe = (C0 − Ce)V/(1000M) (1)

W = (C0 − Ce)/C0100% (2)

where C0 (mg/g) and Ce (mg/L) are the initial concentration of the ions to be tested and
the concentration at adsorption equilibrium, respectively, V (mL) is the volume of the
simulated wastewater solution and M (g) is the MSA material added quality.

3. Results
3.1. Properties of Sludge
3.1.1. Chemical Characteristics

The contents of pH, total phosphorus, available phosphorus, organic matter and major
heavy metals in the sludge samples were analyzed, and the results are presented in Table 1.
The pH values of the sludge samples are 7.15 and 8.50. The contents of total phosphorus,
available phosphorus and organic matter in the DSS are 12,620 mg/kg, 236 mg/kg and
25.29%, respectively, which are higher than those in the IWS. It can be seen that the DSS
contains more nutrients needed for plant growth, indicating a better application prospect
in agricultural soil.

Table 1. The main physical and chemical properties of different sludges collected from Jiangsu Province.

Parameter
Sludge Types

UnitDSS IWS

pH 7.15 8.50 \
Tp 12,620 278 mg/kg
Ap 236 194 mg/kg
Om 25.29 2.89 %
Cu 77.5 8.16 µg/g
Cr 143 60.8 µg/g
Zn 1344 141 µg/g
Cd 3.87 0.21 µg/g
Pb 32.8 6.70 µg/g
Mn 294 2648 µg/g
Ni 43.2 42.9 µg/g

Note: Data are shown as their replicate mean. Tp: total phosphorus; Ap: available phosphorus; Om:
organic matter.

The heavy metals (Cu, Cr, Zn, Cd, Pb, etc.) and inorganic salts (Si, Na, Al, Ca and
P) constitute the ash content of the adsorbent. As shown in Table 1, the content of heavy
metals in the DSS is higher than that in the IWS on the whole, except the Mn element.
Studies have shown that a high ash content of an adsorbent is shown as inert materials,
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which does not affect the porosity [44] and even improves the adsorption capacity of metal
ions on sludge-based adsorbents [45]. Moreover, the output of the DDS is much higher than
the IWS in Jiangsu Province. In order to improve the adsorption capacity of adsorbents and
facilitate further popularization and application, the DDS is selected as the raw material of
the modified adsorbent.

3.1.2. Microstructure and Composition

The microstructure of the RDS needs to be observed to clarify the changes in the
modification process. Figure 3 shows the SEM images and the elemental composition of
the RDS determined by an energy-dispersive spectrometer. The RDS is characterized by a
rough surface, poor sorting and a large particle size range. The overall porosity is low, and
the pore type is dominated by intergranular pores, especially between large particles and
small particles. Intergranular pores are not developed because the well-crystalline phase is
found to be absent. Particle surface cracks are not developed, and there are only a small
number of microcracks. Generally, the RDS has a compact structure and small surface area.
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The energy-dispersive spectrum revealed the elemental content of the RDS. The
weight percentages and atomic percentages of each element were calculated separately.
The elements with the highest weight percentages were carbon (C, 38.5%), oxygen (O,
42.9%), silicon (Si, 6.1%), Ferrum (Fe, 7.5%) and aluminum (Al,4.3%), indicating that the
RDS contained high levels of CaCO3, SiO2, Fe and Al2O3.

3.2. Properties of Fly Ash

Scanning electron microscopy at different magnifications revealed that fly ash has a
rough surface (Figure 4). On the particle surfaces, numerous micropores less than 10 µm in
size are evident. These significantly enhance the surface area and porosity of the fly ash,
which are crucial factors for the adsorption of pollutants on the adsorbent surface. With the
analysis of the EDS and XRD combined, it was found that the mineral composition of the
fly ash is dominated by quartz, feldspar, calcite and illite/smectite mixed layers, followed
by minor amounts of rhodochrosite, pyrite, barite and mullite.
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content of (a); (f) mineral composition of the entire sample.

3.3. Adsorption Experiment Results

The MSA modified with different proportions of fly ash with different adsorption
efficiencies of Cu2+ and Cd2+ was studied by adding simulated wastewater mixed with
Cu2+ and Cd2+. As shown in Figure 5, the adsorption efficiency of the MSA for Cu2+ and
Cd2+ is different, and the adsorption of Cu2+ is greater than that of Cd2+, indicating the
difference in the adsorption capacity of the MSA for different heavy metals. The removal
rates of Cu2+ and Cd2+ by the MSA were 93.8%~98.6% (mean 96.1%) and 24.5%~40.0%
(mean 34.3%), respectively. The content of fly ash in MSA1~MSA5 increased gradually,
which affected the adsorption capacity of the MSA for heavy metals. Moreover, MSA4 had
the highest removal rates of Cu2+ and Cd2+, showing the best adsorption capacity among
the five MSA samples.

Adsorption tests of MSA4 were carried out in simulated wastewater solutions with
pH values of 2, 4, 6, 8 and 10. As shown in Figure 6, when the pH value increased from 2 to
8, the removal rates of Cu2+ and Cd2+ by MSA4 increased from 8.2% to 99.6% and from
3.1% to 99.0%, respectively. The results showed that the sludge-modified materials were
extremely unattractive for adsorption in acidic solutions and significantly better in alkaline
environments than in acidic environments. An excessively high alkaline environment
had little effect on the adsorption of Cd2+, but the adsorption performance for Cu2+ was
significantly reduced. The highest removal of Cu2+ and Cd2+ by MSA4 was achieved when
the pH values were 8 and 10, reaching 99.6% and 99.7%, respectively.
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4. Discussion
4.1. Influence of Fly Ash Content and pH

The adsorption capacity of the MSA for Cu2+ and Cd2+ can be improved by the
amount of fly ash added to the MSA material, which is related to the physical and chemical
properties of fly ash. The main components of fly ash are SiO2 and Al2O3 (Figure 4), and
its Si-O bonds and Al-O bonds are gradually broken due to the chemical interaction with
ZnCl2 and H2SO4 and other physical effects such as high temperature and grinding during
the transformation process (Figure 2). These increase the adsorption sites of the MSA for
Cu2+ and Cd2+. In addition, the large specific surface area, partial carbon and active sites
of fly ash further enhance the adsorption capacity of the MSA for Cu2+ and Cd2+.

The pH value of the solution can significantly influence the adsorption capacity of
the adsorbent [46,47]. The adsorption capacity of MSA4 for Cu2+ and Cd2+ increased
with the increase in pH value (Figure 6). The main reason may be that the increase in
pH led to a decrease in the H+ concentration in the reaction system, which promoted the
binding of the groups in the MSA (-OH and -NH2) to Cu2+ and Cd2+. On the contrary,
the presence of large amounts of H+ in acidic solutions changes the charge distribution on
the surface of the modified sludge. The enhanced electrostatic repulsion of the modified
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sludge is due to the increase in the positive charge. The abundance of H+ in the solution
competes with Cu2+ and Cd2+ for the limited sorption sites and thus reduces its sorption.
The OH− present in alkaline solutions reacts with Cu2+ and Cd2+ to form hydroxide or
carbonate precipitates [48]. Therefore, a pH that is too high has little effect on increasing
the adsorption capacity of the MSA for Cu2+ and Cd2+.

4.2. Micro Components and Structure

MSA4 was tested by SEM, EDS and XRD (Figure 7). The results showed that the
smaller particle size of both resulted in an increased surface area and more developed
microporosity (<10 µm), which may increase the contact area between MSA4 and Cu2+

and Cd2+ in solution to some extent and thus improve the adsorption [46]. The better
absorbing MSA4 sample has a larger surface area, more micropores and more filamentous
or fluffy minerals compared to the RDS and fly ash, which confirms the above explanation
(Figures 3, 4 and 7).
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Furthermore, the elemental composition of the MSA4 sample was confirmed to have
undergone changes as revealed by EDS and XRD analysis. The atomic percentages of oxy-
gen (O), silicon (Si), aluminum (Al) and calcium (Ca) exhibited increases, while carbon (C)
showed a decrease. Notably, significant alterations were observed in the mineral composi-
tion of MSA4, with quartz, feldspar and hard gypsum being predominant, followed by clay
minerals and hematite. Ultimately, these changes influenced the functional group activity,
exchangeable ions and charge distribution on the surface of MSA4, thereby impacting its
adsorption [49,50].

4.3. Adsorption Mechanism
4.3.1. Adsorption Kinetic

The adsorption experimental conditions were determined through pre-experiments,
and representative experimental conditions were selected for kinetic adsorption experi-
ments. The experimental results of the adsorption of Cu2+ and Cd2+ on the MSA were
fitted by a pseudo-first-order kinetic equation, a pseudo-second-order kinetic equation and
an intragranular diffusion equation. The kinetic equations are expressed as follows:

pseudo-first-order kinetic equation:

Qt = Qe

(
1 − e−k1t

)
(3)
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pseudo-second-order kinetic equation:

Qt =
Q2

e k2t
1 + Qek2t

(4)

intragranular diffusion equation:

Qt = Kidt1/2 + C (5)

where Qt and Qe are the adsorption amounts of Cu2+ and Cd2+ by the MSA at time t and the
adsorption equilibrium, respectively, mg·g−1; t is the adsorption time, min; and k1, k2 and
kid are the rate constants of the pseudo-first-order, pseudo-second-order and intraparticle
diffusion model, in units of h−1, mg·(g·h)−1 and mg·(g·h0.5)−1, respectively.

In general, the pseudo-first-order kinetic equation, pseudo-second-order kinetic equa-
tion and intraparticle diffusion equation exhibit superior efficacy in simulating the adsorp-
tion kinetics process. Figure 8 shows the variation in the adsorption amount of Cu2+ and
Cd2+ on MSA4 with time and the fitting of different kinetic curves. It can be seen from the
figure that the adsorption of MSA4 is faster before 150 min, and it tends toward equilibrium
at 350 min. The pseudo-first-order kinetics can reflect the initial adsorption process of
Cu2+ and Cd2+ by MSA4, indicating that the initial adsorption is mainly controlled by
diffusion [51]. The main factor of pseudo-second-order kinetic adsorption is chemical
bond formation, indicating that chemisorption is dominant [52]. The intraparticle diffusion
kinetics curve did not intersect the origin, suggesting that the adsorption process involves
a combination of multiple adsorption mechanisms.
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4.3.2. Adsorption Isotherm

Langmuir and Freundlic adsorption isotherm equations were used to describe the
adsorption process of Cu2+ and Cd2+ by MSA4.

Langmuir equation:

Qe =
KLQmCe

1 + KLCe
(6)

Freundlich equation:

Qe = KfC
1
n
e (7)

where Qe is the adsorption capacity of Cu2+ and Cd2+ at the adsorption equilibrium,
mg·g−1; KL is the Langmuir characteristic adsorption constant, L·g−1; Qm is the maximum
adsorption capacity, mg·g−1; Ce is the concentration of Cu2+ and Cd2+ at the adsorption
equilibrium, mg·L−1; Kf is the Freundlich adsorption capacity parameter; and n is the
Freundlich index.

The isotherms for the adsorption of Cu2+ and Cd2+ by MSA4 (Figure 9) were simulated
with the widely used Langmuir and Freundlich equations (the corresponding parameters
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are summarized in Table 2). The R2 of the adsorption isotherms for Cu2+ and Cd2+ in the
Langmuir model are 0.9972 and 0.982, respectively, which are higher than 0.9323 and 0.9526
in the Freundlich model. Therefore, the adsorption isotherms of Cu2+ and Cd2+ fit better
with Langmuir equations. The Cu2+ and Cd2+ adsorption isotherms of MSA4 also showed
the greatest adsorption capacity at the same equilibrium concentrations in the solution and
had their greatest slope at the low concentrations. The maximum adsorption capacities of
MSA4 for Cu2+ and Cd2+ at room temperature are 11.34 mg/g and 10.68 mg/g (Table 2),
respectively, indicating that MSA4 has a better adsorption capacity for Cu2+. In addition,
compared with the sorption isotherm of Cu2+, it was found the Cd2+ sorption isotherm
was less steep, so the adsorption rate of MSA4 on Cu2+ is faster.
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Figure 9. The adsorption isotherms of Cu2+ (a) and Cd2+ (b) on MSA4. The equilibrium Cu2+ and
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based on the Langmuir model and the Freundlich model.

Table 2. Isotherm modeling parameters for adsorption of Cd2+ and Cu2+ on MSA4.

Metal Ions Adsorption
Isotherm Fitting Equations Parameter 1 Parameter 2 R2

Cd2+ Langmuir Qe = 0.5104Ce/(1 + 0.0478Ce) Qm = 10.6778 KL = 0.0478 0.9820
Freundlich Qe = 2.1973 Ce

0.2945 Kf = 2.1973 1/n = 0.2945 0.9562

Cu2+ Langmuir Qe = 0.7193Ce/(1 + 0.0634Ce) Qm = 11.3439 KL = 0.0634 0.9972
Freundlich Qe = 2.9243 Ce

0.2568 Kf = 2.9243 1/n = 0.2568 0.9323

Note: The meaning and unit of the parameters in the table are given in the formula.

4.3.3. Metal Sorption Behavior

The adsorption kinetic curves and adsorption isotherms of MSA4 for Cu2+ and Cd2+

reveal the complexity of its adsorption behavior. The adsorption processes controlled by
diffusion-controlled and chemisorption mechanisms play different roles in different stages
of adsorption. The fitting effects of the Langmuir and Freundlic adsorption isotherm
models for the adsorption of Cu2+ and Cd2+ by MSA4 indicate that both monolayer
and multilayer adsorption work on homogeneous surfaces. Among them, the Langmuir
model with the best fitting effect shows that monolayer adsorption is the most important
adsorption behavior.

Considering the excellent fitting effects of the pseudo-second-order kinetic model and
the Langmuir isotherm model on the MSA adsorption process, it can be inferred that the
MSA exhibits a strong chemical adsorption capacity for Cu2+ and Cd2+ [16,52]. Therefore,
it is speculated that there exist abundant hydroxyl and carboxyl functional groups on
the surface of MSA4, which interact with Cu2+ and Cd2+ to form surface complexes [9].
MSA4 contains a large amount of exchangeable cations such as Ca2+, which is easily ion-
exchanged with Cu2+ and Cd2+ to release Ca2+ and absorb Cu2+ and Cd2+ [53]. Chen
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et al. [54] prepared sludge biochar by anaerobic pyrolysis at 900 ◦C to reach a maximum
adsorption of (42.80 ± 2.38) mg/g, and when the solution system pH value was greater than
10.17, the surface of the biochar was negatively charged and showed strong electrostatic
adsorption of positively charged Cu2+ and Cd2+. This was similar to the present study,
in which MSA4 had the maximum adsorption in an alkaline environment. In addition,
surface precipitation under alkaline conditions is an important adsorption behavior [55].

5. Conclusions

The MSA was prepared using chemical reagents, high-temperature activation and
other physical and chemical methods, employing sludge and fly ash as raw materials. The
incorporation of fly ash into the sludge resulted in a refined pore structure, increased surface
area and an enhanced presence of active functional groups. When the mass ratio of domestic
sludge to fly ash was 4:3, the MSA exhibited optimal adsorption capacity for Cu2+ and Cd2+.
Moreover, an alkaline environment facilitated the removal efficiency of heavy metals from
simulated wastewater by MSA4, with maximum removal rates recorded at 99.6% for Cu2+

and 99.7% for Cd2+. Additionally, MSA4 demonstrated a maximum adsorption capacity of
11.34 mg/g for Cu2+ and 10.68 mg/g for Cd2+. Considering the adsorption capacity and
adsorption rate, MSA4 has better adsorption performance for Cu2+. An adsorption kinetics
analysis along with isotherm modeling revealed that MSA4 exhibited a combination of
physical and chemical adsorption mechanisms, with the Langmuir monolayer model
providing the best fit to describe its predominant behavior. Consequently, MSA4 can be
considered for the treatment of sewage containing heavy metals to achieve the purpose of
simultaneously treating sewage, sludge, and fly ash.
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