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Abstract: The decarbonization of the electricity grid is one of the actions that can help reduce fossil
fuel emissions, and thus their impact on global warming in the future. This decarbonization will
be achieved mainly through the integration and widespread diffusion of renewable power sources.
This is also going to be supported by the shift from the paradigm of production–transmission–
distribution, where electricity production oversees large-size power plants, to renewable-based
distributed/diffused production, where electricity is generated very close or even by the same (group
of) user(s) (or prosumers in the latter case). The number of mid-/small-size installations based
on renewable energy technologies will therefore increase substantially, and the related renewable
generation will be dominant against that from large-size power plants. Unfortunately, this will very
likely reduce the reliability of the grid, unless appropriate countermeasures are taken/implemented,
hopefully at the same time that the paradigm shift is being achieved. To this aim, it is important to
identify the anomalies and main fault causes that might possibly affect some of the central renewable
(wind, PV, hydrogen) and ancillary technologies that will be used to establish future renewable-based
power systems. Accordingly, this paper presents a literature survey, also extending the focus to
related datasets that can be used for deeper investigation. It is highlighted that the gaps mainly refer
to a lack of a common taxonomy that prevents the establishment of structured knowledge in the
scope of renewable-based power systems, a lack of contributions to anomalies/faults specific to wind
turbines, and a lack of datasets related to electrolyzers, fuel cells, DC/x conversion, and monitoring
and communication systems. Further, in the case of monitoring and communication systems, the
scientific literature is both very dated, therefore not considering possible new aspects that would be
currently worthy of investigation, and not oriented toward the particular domain addressed, thus
considering peculiar aspects that are left out.

Keywords: survey; anomaly; fault; power system; renewable energy; renewable integration; dataset

1. Introduction

The reduction in fossil fuel usage in the future electricity grid is an important measure
to alleviate global warming and strive to maintain temperature increases within acceptable
thresholds in the future. This process is destined to happen through the advancement of
pertinent renewable technologies and their widespread adoption, facilitated by initiatives
such as new installations, the overhaul or decommissioning of antiquated fossil fuel-based
power plants, and the establishment of a new grid architecture centered around renewable,
distributed generation. This evolution may also usher in novel roles, such as those of
prosumers, contributing to the diversification of the energy landscape.

It is widely acknowledged that the optimal functioning of renewable-based generation
systems necessitates one or more renewable sources (e.g., Photo Voltaic (PV) panels, Wind
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Turbines (WTs)) integrated with storage solutions, efficient power conversion units, and
complemented by digital technologies (including circuitry and software) for control and
seamless interaction with relevant entities. In this scenario, the effectiveness of the deployed
solutions in supporting or impeding the decarbonization of the electricity grid depends on
their technological maturity.

Crucially, ensuring the expected quality of service from these systems is imperative, as
any compromise in this regard could lead to significant systemic failures with far-reaching
consequences. This risk becomes more pronounced in the context of small- to mid-size
installations, where larger penetration, cost constraints and supply chain heterogeneity
may introduce challenges not as prevalent in larger counterparts. As such, meticulous
attention to the robustness and reliability of these renewable energy solutions is paramount
for achieving a sustainable and decarbonized electricity grid.

While the existing scientific literature compiles a substantial number of publications
focusing on specific components or aspects relevant to the topic, there is a notable lack of
articles addressing the entire technological mix and beyond (i.e., namely, the conversion
and monitoring and communication systems).

For instance, Ref. [1] addresses renewable-based energy systems and presents a review
of Machine Learning (ML) techniques for health monitoring. Thus, for instance, the relevant
time-scales considered by the reviewed algorithms are larger than those considered by the
contribution we propose. Further, the scope addressed is quite different from that of this
paper because it reviews ML techniques aiming at health monitoring, while we propose a
survey on anomalies and faults in renewable-based power systems not focusing on specific
algorithms. In [2], energy systems are still addressed, and the survey is not focused on
renewable-based systems. Rather, the authors address Artificial Intelligence (AI) techniques
for prognostic maintenance, which is somehow related to anomalies and faults, but this is
not our main target. Power systems are addressed by the review in [3]; however, only the
electric part is relevant to our main target, while the article we propose reviews anomalies
and faults that also affect, e.g., the communication systems in renewable-based power
systems. In this regard, Ref. [3] does not specifically consider anomalies and faults, or
even renewable energy and general ML applications in power systems. Renewable-based
power systems are also addressed in [4]; however, the scope is restricted to those primarily
focused on the inverter and targeting cybersecurity instead of anomalies and faults in
general. A survey on fault diagnosis in micro-grids can be found in [5], but it does not
generally address power systems, renewable energy, or anomalies and faults; also, it is
not recent, since it dates back to 2016. The same authors proposed a similar contribution
in 2014 [6], addressing faults and fault diagnosis. However, this case also moves away
from the focus we propose since only the electrical part is addressed therein. In [7], a
systematic review of faults that may arise in smart grids is presented. But the focus is
not on renewable-based power systems. Ref. [8] does not focus on a unique system and
addresses PV and WT renewable generation. However, for instance, it does not include
hydrogen-related technologies as this paper does, or even electrolyzers and Fuel Cells
(FCs). This is a major point, since hydrogen is identified as one of the main technologies for
storing renewable generation and that will strongly support its diffusion in future power
systems. Furthermore, Ref. [8] restricted its review to the monitoring of fault conditions and
not on the possible anomalies and faults that may instead happen. In [9], the review targets
fault detection methodologies and datasets in district heating substations, and in [10], the
review addresses fault location and detection techniques in power distribution systems
with distributed generation. In both cases, the target system is more specific, and the scope
is not the same as what is proposed in this paper, with renewable generation not being
considered at all.

In summary, the analyzed literature is either too specific, by restricting the investi-
gation to particular instances of power systems (e.g., PV systems, district heating substa-
tions), with peculiar implemented software (e.g., AI-based) and hardware (e.g., inverter)
technologies, and aims (e.g., fault location), or does not sufficiently compile the main
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renewable-based technologies in one self-consistent article with the focus on the possible
anomalies and faults that may affect them. In particular, a substantial gap regards hydrogen
technologies, monitoring and conversion systems, where reviews that consider them even
within similar frameworks to those identified by this paper are basically missing.

The paper is organized according to the standard format of this journal, and the
rest is organized as follows. Section 2 reports some clarifications regarding the terms
“anomaly” and “fault” as used in the specific context addressed and more broadly in
the scientific/technical community, and the survey outcomes. In particular, Section 2.2
addresses PV systems, Section 2.3 addresses WTs, Section 2.4 addresses electrolyzers,
Section 2.5 addresses FCs, Section 2.6 addresses Battery Systems (BSs), Section 2.7 addresses
DC/x conversion systems, Section 2.8 addresses monitoring systems, and Section 2.9
addresses communication systems. Section 3 concludes the paper.

2. Materials and Methods

This paper aims to explore the state of the art concerning anomalies and faults of
components involved in a renewable-based electrical grid. Specifically, attention was paid
to the failure causes and mechanisms of individual components of an advanced power
system, while deferring the analysis of events originating from mutual interactions or with
other systems/entities (e.g., the energy market) to a future paper.

In order to identify relevant sources, the survey was carried out in two steps:

• In the first phase, anomalies and faults of the components were categorized through a
search activity on digital collections such as Scopus, ScienceDirect, Web of Science, and
IEEE Xplore, using concatenated keywords related to the component typology (such as
“PV” or “Photovoltaic” or “Wind” or “Wind turbine” or “Electrolyzer” or “Electrolysis”
or “Fuel Cell” or “FC” or “Battery” or “Battery system” or “BESS” or “Conversion” or
“Power conversion” or “Converter” or “AC/DC” or “DC/DC” or “Monitoring systems”
or “Communication” or “Communication systems”) and the investigated issue (such
as “Failure” or “Anomalies” or “Rupture” or “Degradation” or “Performance decay”
or “Reliability” or “Stress test”). The analysis of the identified papers and their related
bibliographies was used to extend the investigation to other relevant papers.

• In the second phase, empirical datasets or mathematical models for the identified
issues of each technology were searched. Through a detailed analysis of the papers
highlighted in the previous phase, useful mathematical models or the existence of
dedicated datasets were identified. Datasets were also found using platforms such
as Google Dataset Search, IEEE DataPort, Kaggle, and Mendeley Data by using as
combined keywords the technology and the investigated issue.

2.1. Caveats

Before presenting the outcomes of the survey, some clarifications are needed regarding
the terms “anomaly” and “fault”. In the scientific/technical literature, their meaning is
debated and there is no unique understanding of them. This is well reflected in how the
subject is addressed by, e.g., IEEE and NASA, two prominent institutions in the technical
field. In the first case, IEEE Std 1044-2009 [11] reports that «[...] The word ‘anomaly’ may
be used to refer to any abnormality, irregularity, inconsistency, or variance from expectations. It
may be used to refer to a condition or an event, to an appearance or a behavior, to a form or a
function. The 1993 version of IEEE Std 1044 characterized the term ‘anomaly’ as a synonym for
error, fault, failure, incident, flaw, problem, gripe, glitch, defect, or bug, essentially deemphasizing
any distinction among those words. Such usage may be common practice in everyday conversation
where the inherent ambiguity is mitigated by the richness of direct person-to-person communication,
but it is not conducive to effective communication by other (especially asynchronous) methods [...]».

On the contrary, in the second case, NASA SP-2016-6105 [12] reports that an anomaly
is «[...] The unexpected performance of intended function». while a fault is «[...] A physical or
logical cause, which explains a failure [...] » and relies on how the question is addressed in [13].
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The existence of heterogeneous positions regarding the meaning attributed to the
terms “anomaly” and “fault” is an element of ambiguity that, e.g., affects the definition of
possible taxonomies aiming at the establishment of pertaining structured knowledge.

However, by considering that the surveyed literature makes no difference about the
two terms and uses both interchangeably [14]; in what follows, the same convention is
kept without any further discussion. Thus, in a broad sense, this identifies a possible gap
in the literature that could be filled by a specific contribution on the topic from interested
researchers.

2.2. Anomalies and Faults in PV Systems

The survey focused on articles related to PV systems (as shown in Figure 1), realized
by arranging with different configurations strings of several PV modules. The output
DC power is fed to a DC/DC converter, and the voltage and current are continuously
monitored and adjusted within the Maximum Power Point Tracking (MPPT). In the case of
grid-connected systems, the DC/DC converter output is fed to a DC/AC inverter (actually,
in this case, the DC/DC-DC/AC conversion chain is realized in one power converter unit)
and then low-pass-filtered to adequately meet the utility grid standards on power quality
(roughly, central frequency of typically 50 Hz or 60 Hz). Finally, before the injection into
the grid, the voltage is elevated by a step-up transformer. In some cases, PV systems are
also paired with electricity storage, whilst this is neglected since it is separately addressed
in the following sections.

Figure 1. Sketch of a PV system (adapted from [15]).

Research Highlights

The analyzed literature encompasses a diverse array of instances, wherein anomalies/-
faults can be attributed to varied and heterogeneous origins. Broadly, an absence of uniform
taxonomy emerges among different authors, potentially stemming from the intricate interplay
of contributing factors, more realistically manifesting in a domino effect. The authors of [16]
group PV anomalies and faults into three categories: internal, external, and electrical.

The internal faults are localized inside the PV module (e.g., under the protective glass,
on the strings, on PV cells, etc.). The main internal faults are short circuits, bridgings, faults
to bypass diodes and open circuits [17–19]. Their main causes are due to manufacturer
defects, subpar fabrication quality, packaging inadequacies, and improper wiring, and
have a dramatic impact on PV system. In particular, short circuits entail the failure to
supply power to the DC load or the power conditioning unit; bridgings result in no output
power; bypass diode faults prevent mitigating hotspot events; and open circuit faults
prevent supplying power to the DC load or the power conditioning unit, leading to a
partial blackout or to a non-homogeneity in the power production [16].

The external anomalies and faults are located outside the PV module and usually
are due to environmental conditions, natural disasters, wrong packaging, installation, etc.
Since PV systems are located outdoors, they frequently are subject to environmental stress
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as high temperatures, rain, and snow. They do not provide nominal power levels because
they do not operate under Standard Test Conditions (STCs). Since variations in solar
irradiation directly impact the power generation of PV systems [20], with the consequent
uncertainties that must be carefully considered [21], certain areas of PV arrays could yield
higher power output compared to others (mismatch) due to non-uniform shading from
physical obstructions like trees, buildings, overhead power lines, etc. [22,23]. Additionally,
environmental factors such as dust accumulation and bird and leaf droppings could lead
to partial shading conditions [24,25]. Furthermore, natural events like lightning and
storms [26] can have dramatic consequences on the PV modules. Some of the mentioned
faults are reversible due to temporary conditions (e.g., partial shading, dust accumulation,
etc.). Permanent mismatch faults, instead, are irreversible and can be caused by poor
soldering, module degradation, glass breakage, and structural defects due to improper
manufacturing processes or environmental conditions like heavy snow loads or frequent
temperature fluctuations [27,28]. Since the external anomalies and faults are very diverse,
the severity of the related damages varies as well, ranging from nonhomogeneous power
production to a complete blackout [16].

The electrical faults are related to perturbations of electrical quantities such as volt-
age, current, power, etc. The main electrical faults are the ground, line-to-line, and arc
faults [29,30]. These faults can have direct consequences on human operator safety (electro-
cution), severely damaging the equipment (fire) [16]. Finally, other faults can affect other
parts of the PV system as MPPT [31], inverter [32].

The results of the survey are presented in Table 1, where the first column specifies
the target component, of the system at hand, subject to anomaly/fault, the second column
reports a description of the anomaly/fault considered, the third column specifies causal
factors, and the fourth column compiles bibliographic references. All similar tables, i.e.,
related to the literature findings about the other systems addressed by this paper, are
organized with the same column names.

Table 1. Main contributions on anomalies/faults in PV systems (adapted from [15]).

Target Component Description Cause References

PV Module

Partial shading Clouds, trees, building, etc. [22,23]

Dust Accumulation Environmental pollution [24,25]

Leaves fall, bird droppings Environmental pollution [25]

Hot Spot Mechanical and optical
degradation of encapsulation [33]

Glass breakage Bad installation [27]

Welding Leaching of silver or copper,
solder joint fatigue, bad welding [28]

Frame issues Snowing [27]

Microcracks
Multiple (transportation, incorrect installation,

vibrations, excessive loads, environmental stress,
improper cleaning, etc.)

[34]

Busbar failure Incorrect packaging, installation, hail, and/or stone
throwing [35]

Module degradation Multiple [36]

Discoloration Multiple [37]

Delamination Multiple [38]

Cell breakage
Multiple (production, transport, installation,

vibrations, environmental stress, improper cleaning,
and maintenance, etc.)

[27,39]
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Table 1. Cont.

Target Component Description Cause References

Connection System

Short circuit Bad wiring, bad production process [17,19]

Open circuit Multiple (bad/obsolete wiring, hot spots, cell
breakage, bad connections in the junction box, etc.) [17–19]

Bypass diode failure Short-/open-circuit [17,18]

Bridging faults Improper connection between PV modules [19]

Ground fault Insulation deterioration, corrosion, wire cutting, or
poor/incorrect connection [29,30]

Line-to-line fault

Short circuits by unintentional connections (wearing,
bad connection, etc.) between current-carrying

conductors with ground/neutral conductors and/or
other PV system’s parts

(e.g., the PV module’s frame)

[29,30]

Arc fault
Gap between conductors by corrosion of connectors,

cell damage, solder disconnection,
insulation breakage

[29]

Junction Box Junction box fault
Human errors (insufficient fastening of the junction
to the back panel, poor wiring, inadequate assembly,

moisture penetration into connectors)
[40]

MPPT MPPT control system failure MPPT charge controller or sensors failure [31]

Inverter Inverter failure IGBT, capacitors, inductors, etc. failure [32]

PV System Lightning strike fault Lightning strikes [26]

PV array PV array fault Bad connections [29,30]

Network grid
connection Line fault

Line interruptions, equipment failures, maintenance
services, network configuration, accidents,

human error, etc.
[41]

The literature also offers several datasets, summarized in Table 2, obtained from exper-
imental measurements of real plants or simulated through mathematical models, and, in
some cases, the anomalies are also simulated. The first column reports the dataset name as
specified in the referred online resource; the second column allows to specify, e.g., whether
the provided data are from real plants/systems, simulations, lab-scale installations or
others; the third column describes the dataset; the fourth column reports the bibliographic
reference; and the fifth column reports possible other references of papers that the authors
of the dataset ask to cite. Also, in this case, all other tables related to the dataset of the other
systems addressed by this paper are organized with the same column names.

Table 2. Anomaly/fault datasets for PV systems.

Dataset Name Source Description References Related Papers

Fault Detection Dataset
in Photovoltaic Farms Simulations

Simulated 25 kW PV system used for
generating data during normal operations,

string fault, string-to-ground fault and
string-to-string fault

[42] [43]

PVEL-AD dataset Real plant
36,543 electroluminescence images of PV

panels with no/various
defects and backgrounds

[44] [45]

GPVS-Faults Lab-scale
real plant

Array, inverter, feedback sensor, MPPT
controller and grid anomalies/faults [46] [47]
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Table 2. Cont.

Dataset Name Source Description References Related Papers

PV System
Thermography Dataset Real plant 120 thermal images obtained

from a drone [48] [49,50]

Mismatching and
partial shading dataset

Simulations and
real plant

10,000 simulated IV curves (5000 in normal
operations and 5000 under mismatch faults),

and 2000 real IV curves (1000 in normal
operations and 1000 during faults)

[51] [52]

Partial Shading and
Fault Simulation

Dataset
Simulations

Simulations of 10 PV panels under
variations in temperature and partial

shading conditions
[53]

PV Fault Dataset Real plant
System with 2 strings of 8 C6SU-330P PV
modules under degradation, short circuit,
open circuit and shading anomalies/faults

[54] [55]

Elpv dataset Real plant

2624 electroluminescence images
(300 × 300 pixels, 8 bit-grayscale), of intact

and damaged PV cells
with different degradations

[56] [57–59]

PVWatts calculator Web tool

Can generate hourly data based on the
input PV system’s size and location. Can

account for losses due to, e.g., soiling,
shading, mismatch, etc.

[60]

2.3. Anomalies and Faults in Wind Turbines

The surveyed literature targets WTs as depicted in Figure 2. The blade–rotor pair
converts the wind kinetic energy in a rotation, which is applied to an electric generator via a
shaft and a gear box. There are two main types of WTs, namely Vertical-Axis Wind Turbines
(VAWTs) and Horizontal-Axis Wind Turbines (HAWTs), as that in Figure 2. HAWTs are
the most common and usually consist of two or three blades, or a disc containing several
blades. On the other hand, VAWTs are designed with blades of different geometry than
those in HAWTs, which rotate vertically to harness wind blowing in any direction.

Figure 2. Sketch of a WT [61] (by courtesy of Encyclopædia Britannica, Inc., copyright 2018; used
with permission).

Research Highlights

In [62], the authors present statistics about anomalies of the different parts of WTs.
It is highlighted that the electrical components, the control system, the pitch system, the
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blades, and the hub exhibit a higher median failure rate, while the transmission system,
the shafts, the bearings, and the structure exhibit a higher median downtime. Failure rates
for offshore installations are generally higher than those for onshore installations, mainly
because they are subject to rougher operating conditions (e.g., higher wind speed, corrosive
action of sea salt, etc.). Downtime in offshore installations is generally higher than that in
onshore installations because of logistical aspects.

In general, the technical–scientific literature provides numerous works on WT diagnos-
tic systems [63,64] but provides few details about the different types of faults and anomalies
that can occur in WTs (with the exception of [62]). On the contrary, several datasets with
real and simulated data are available and listed in Table 3 for reference.

Table 3. Anomaly/fault datasets for WTs.

Dataset Name Source Description References Related Papers

Wind turbine gearbox
monitoring vibration
analysis benchmark

dataset

Real

Data collected from a functioning gear and a
damaged one. The healthy gear was tested

only with a dynamometer, while the damaged
one was first tested with a dynamometer and

then sent to a wind farm for a field test

[65]

Wind Turbine Blades
Fault Diagnosis based on

Vibration Dataset
Analysis

Real

Uniaxial vibration measurements of a wind
turbine operating at various wind speeds.

There are three types of issues (blade damage,
blade surface degradation, and unbalanced
blade) in addition to measurements taken

under normal operating conditions

[66]

Vibration Signals Feature
for Fault Diagnosis of

wind turbine blade
Real

The Vibration measurements under both
normal and fault conditions (blade damage,

blade surface degradation,
and unbalanced blade)

[67]

YOLO Annotated Wind
Turbine Surface Damage Real Surface images of wind turbines with

annotated damages [68] [69]

Wind turbine fault
diagnosis dataset Real Measurements from several wind turbines [70] [71]

Wind turbine PMSG-
Short-Circuit Fault Simulations Simulation of a mathematical model at 1 kHz

of sampling frequence [72] [73]

Vibration and Motor
Current Dataset of

Rolling Element Bearing
Under Varying Speed
Conditions for Fault

Diagnosis

Real

Dataset containing vibration, current,
temperature, and acoustic measurements of a

rotating machine. Both normal conditions
and malfunctions (e.g., bearing failures at

different rotation speeds, shaft misalignment,
and rotor imbalance) are considered. It is not

directly related to wind turbines
but to a rotating machine.

[74–76] [77]

Gearbox Fault
Diagnosis Data Real

Vibration dataset recorded varying load from
0 to 90% in healthy condition to

broken tooth condition
[78]

EDP Open Data Real Historical data of faults occurred
in a Wind Farm [79]

2.4. Anomalies and Faults in Electrolyzers

In the recent years, the water electrolysis is the most considered way for the eco-
friendly hydrogen production, in particular, whereas energy input for the process is
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achieved by renewable sources. The basic reaction of water electrolysis is expressed
in (1), [80].

H2O + Electricity (237.0 kJ mol−1) + Heat (48.6 kJ mol−1) ↔ H2 +
1
2

O2 (1)

The electrolyzer is the device where the process is hosted, the main part of which is the
electrolytic cell, in which the electrochemical reaction takes place. A typical electrolytic cell
representation is reported in Figure 3. From an overall point of view, the cell is composed
of two bipolar plates (anodic and cathodic plates), in which the water is fed and at which
the electrical potentials are applied. The crucial component of the cell that characterizes
the cell typology is the electrolytic membrane, which separates the anodic zone from the
cathodic zone, allowing the selective cross-over of a specific ion through it. Moreover, the
Gas Distribution Layer (GDL) aims to allow uniform access to the gas from the anodic or
cathodic plates towards the membrane. The GDLs terminate with a catalytic layer devoted
to promoting the chemical reactions hosted at anodic or cathodic sides. The nature of the
catalyst depends on the typology of reaction to be promoted; for example, in a Polymeric
Electrolyte Membrane (PEM) electrolyzer, at the anodic side, catalysts based on ruthenium
and iridium are widely used [81] to promote the water splitting into H+ protons and OH−

anions, while at cathodic side platinum nanoparticles (dispersed on carbon supports) are
mainly employed to promote the reduction of the proton to hydrogen [82].

Figure 3. Sketch of a PEM electrolyzer.

Research Highlights

The survey’s outcome is summarized in Table 4. Notably, the analysis reveals that pre-
dominant failure causes are associated with the membrane and catalyst, with occurrences of
failures in bipolar plates and current collectors being comparatively infrequent. Membrane
failures are typically associated with aging and cracking mainly due to fabrication defects
or due to thermal, mechanical and chemical stresses in normal and severe operating condi-
tions. Mechanical failures, including cracking, perforation or pinholes, are due to abnormal
stresses or other mechanical factors, such as temperature, humidity, start-up and shut-down
cycles, operating conditions fluctuation and warm-up/cool-down procedures [83]. Tem-
perature anomalies could increase membrane failure rate up to 2 order of magnitude when
operating T increases from 55 °C to 150 °C [80]. Impurities could also result in membrane
degradation [84,85], often due to catalyst corrosion [86]. Moreover, radical attacks are
responsible for membrane degradation [80]: the phenomenon is more promoted for low
current density [87,88] since a faster membrane thinning could be observed [89]. It is, how-
ever, worth noting that the temperature effect is more severe with respect to the operative
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current density [88]. Catalyst degradation is a very slow process and thus is not responsible
for sudden cell failure. Among typical catalyst deactivation mechanisms, the most common
are particle dissolution and migration, sintering, catalytic layer detachment and support
passivation [90]. A more common phenomenon is the catalytic particle dissolution and the
consequent penetration in the membrane lattice, affecting its functionality [80,86]. Another
mechanism is the catalyst passivation, due to the oxidation of the catalytic support at the
anodic side, thus reducing the electron flux between support and the anodic plate. One
of the most common deactivation mechanisms is the catalyst sintering, since high tem-
perature could cause the catalytic particle agglomeration, resulting in a reduced catalytic
activity [91]. Finally, catalytic poisoning due to impurities in the water or metallic disso-
lution in bipolar plates is responsible for a (more or less) transitory catalytic deactivation,
since impurities occupy active sites [92]. Diverse diagnostic approaches are deployed,
with the most cutting-edge methodologies involving statistical techniques grounded in
neural networks. These, however, necessitate extensive historical or synthetic device data,
leading to prolonged characterization times. In contrast, conventional methods relying
on electrical and electrochemical measurements, while more practicable, exhibit a more
confined capacity for fault identification.

Table 4. Main contributions on anomalies/faults in electrolyzers.

Target Component Description Cause References

Membrane

Mechanical degradation
Current collector hole; Widening and
narrowing; Non-uniform hydration;

Lack of water
[83,85]Thermal degradation Thermal stresses; Thermal cycles

Chemical and
electrochemical degradation Contamination; Radical attacks

Catalysts

Dissolution

Too high potential; Formation of soluble
iridium complexes during the oxygen

evolution reactions; Current inversion in the
shut-off procedure

[84,86,92]

Support passivation Too high potential;
Highly oxidant environment

Agglomeration Sinterning of active sites; Start-up and
shut-down load cycles

Ionomer dissolution High current density, radical chemical attack

Cations contamination Locking of active sites for potential deposition;
Replacement of protons in ionomer by cations

Mechanical damages Non-uniform tightening pressure;
Non-uniform membrane dilatation

Bipolar plates

Embrittlement for hydrogen Hydrogen adsorption by
cathodic metallic plates

[86,93]Passivation Oxide layer formation

Corrosion Titanium oxidation; Iron corrosion by acids

Current
collectors

Chemical embrittlement Metallic plates passivation and corrosion

[94]
Mechanical embrittlement Non regular compression;

Hydrogen embrittlement

The investigation of possible empirical datasets pertaining to electrolyzer failures
highlighted a consistent lack in this regard. For this reason, Table 5 actually compiles only
mathematical models that can be used to achieve synthetic datasets anyway.
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Table 5. Anomalies/faults models for electrolyzers.

Target Phoenomenon Typology Description References

Membrane
degradation

Predictive mathematical model of
membrane degradation

The model accounts for the load cycle
degradation mechanism [95]

Predictive mathematical model of
cell performances based on

temperature and load

The model accounts for the degradation
mechanism based on radical attack to the

membrane. The degradation curve
depends by cell temperature and load

[87]

Predictive mathematical model of
membrane thinning

The model accounts for the degradation
curve depending

on cell temperature and load
[87]

2.5. Anomalies and Faults in Fuel Cells

A FC is a device able to generate electricity by exploiting electrochemical potential of
oxidation-reduction reactions. In a general overview, reactants are basically a fuel and an
oxidant: in particular in the case the fuel is the hydrogen, and the oxidant is oxygen (or air),
the reaction, summarized in (2), is able to generate electrical power and heat, by resulting
in water as the only side-product.

H2 +
1
2

O2 ↔ H2O + Electricity + Heat (2)

Of course, depending on the employed FC typology, methane, ethanol, carbon monox-
ide or other hydrocarbons can be used as fuel and carbon dioxide can be used as an oxidant.
From a global point of view, a FC is an electrolytical cell (similar to cells used in electroly-
sis) able to intercept electrons involved in the oxidation-reduction reactions, thus forcing
electrons to flux in an electrical circuit, thus generating electrical power. FC elements are
reported in Figure 4. The main components of the cell are the same as already described for
the electrolyzer: fuel is fed to the cathodic plate, while an oxidant is fed to the anodic plate;
bipolar plates also act as electrical collectors. Reactants are delivered to the catalytic layers
through a dedicated gas distribution layer; on the catalytic surface, the chemical reactions
take place, which strictly depends on the cell typology. The membrane separating anodic
and cathodic sides acts as a selective barrier, aiming at the cross-over of only a selected ion
depending on the hosted process: in the case of PEM-FC, the membrane only allows the
proton (H+) crossing.

Figure 4. Sketch of a PEM-FC.



Sustainability 2024, 16, 6042 12 of 29

Research Highlights

The survey’s outcome is summarized in Table 6 and shows that the most fragile
components are the membrane and the catalyst, accounting for 95% of malfunctions. As
mentioned for the electrolyzers, membranes can suffer from cracking or perforation due
to uncontrolled humidity or temperature in the process which originates from tensile, me-
chanical and thermal stresses responsible for the failure of the component [96,97], causing
the reactant’s crossover and in turn the uncontrolled fuel combustion [98]. It is worth
underlining that such events are more frequent in the early period of the cell lifetime [99].
Membrane degradation can moreover be originated by peroxyl and hydroxyl radicals
attack, particularly in low current conditions: under such conditions, PEM membrane
could release fluorides, thus undergoing a weakening that leads to the membrane fail-
ure [100,101]. The second reason for FC failure is catalyst degradation, which could occur
for particle sintering [102], carbon monoxide poisoning (for PEM FCs) [103] or carbon
support oxidation [104]; these failure mechanisms are responsible for a more or less severe
activity reduction of the device, rather than a real cell service interruption. Some phenom-
ena such as corrosion or mechanical stresses could occur also at the GDL [103] and bipolar
plates [101] causing conductivity loss and structure deformation or fracture. GDL can also
suffer from embrittlement of the support material due to severe operating conditions as
well as to the contact with hydrogen. Finally, inadequate operating conditions, in terms of
temperature or pressure, as well as factory defects, can be responsible for sealing failure
originating from mechanical fractures [101].

Table 6. Main contributions on anomalies/faults in FCs.

Target Component Description Cause References

Membrane

Mechanical degradation

Mechanical stresses due to non-uniform
pressure in assembling procedure;

Non-uniform humidification; Catalyst
penetration in the membrane;

Sealing material traces [97,98,101,105–107]

Thermal degardation Thermal stresses and cycles

Chemical and
electrochemical degradation Contamination; Radical attacks

Electrodes

Activation loss Catalyst sintering and unsoldering

[102,105,107–109]

Conductivity loss Catalytic support corrosion

Reactants mass transport
efficiency loss Mechanical stresses

Reduction in tolerance
to reactants

Contamination

Materials hydrophobicity variation due to
Nafion or PTFE dissolution

GDL

Structure reduction Support material embitterment;
Carbon layer corrosion

[103]Water management
ability reduction

Mechanical stresses; Materials
hydrophobicity variation

Conductivity loss Corrosion

Bipolar plate
Conductivity loss Corrosion; Formation of

a resistant surface layer [101]
Fracture/deformation Mechanical stresses; Thermal cycles

Seals (gaskets) Mechanical fractures Corrosion; Thermal stresses [101]

Unfortunately, it was not possible to obtain experimental data on faults associated with
FCs. Conversely, several methods for FC failure prediction were explored in the available
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literature, both stochastic [110,111] and neural network-based [112,113]. Their usage is strictly
connected to the achieving of instrument-typical data through a long training phase. Analytic
methods require the knowledge of specific FC parameters, which is not easy to obtain [113].
Several techniques for online failure analysis and characterization are available in the literature:
among them, the most viable are the Electrochemical Impedance Spectrometry (EIS) [108],
the V/P characteristic curve analysis [114], and the cell voltage measuring [115]. Several
mathematical models able to describe the degradation mechanism are reported in Table 7.

Table 7. Anomaly/fault models for FCs.

Target Phoenomenon Typology Description References

Membrane
degradation

Predictive mathematical
model of membrane

degradation

The proposed method is validated against
polarization mechanisms due to

over-current and over-voltage phenomena.
The approach is based on

finite elements method

[107]

Predictive mathematical
model of membrane

degradation

The semi-empirical model accounts for the
current losses, catalyst polarization

and ohmic resistance
[116]

Predictive mathematical
model of membrane

degradation

The model accounts for polarization
resistance as the sum of all polarization

losses
[117]

Catalyst
degradation

Predictive mathematical
model of catalyst dissolution

The model is based on catalyst
transformation theory [118]

Predictive mathematical
model of catalyst dissolution

The model accounts for several phenomena
determining the catalyst deactivation [109]

Predictive mathematical
model of catalyst dispersion

and sintering

The model analyzes, at cathode-side, the
platinum-based catalyst dispersion and
agglomeration phenomena, leading to

catalytic activity reduction

[119]

Stack potential degradation Mathematical model of stack
potential decay

The model determines the stack potential
decay equation and the multiplicative
factors based on start/stop, IDLE and

over-potential phenomena

[120]

2.6. Anomalies and Faults in Battery Systems

Given the large number of BS technologies available, which would be impractical to
address, we restricted this survey to Lithium-ion (Li-ion) based BSs, which currently are the
most widespread [121]. Figure 5 shows a sketch of a Li-ion battery cell with the four main
components highlighted: the positive electrode, negative electrode, electrolyte and separator.
The green and purple areas indicate the active materials in the corresponding electrodes, and
the red and blue items indicate the electrolyte with the additives and binders, respectively.
The separator isolates the two electrodes to avoid internal short circuits, and it is realized with
a porous material to allow, along with the electrolyte, the ions transport.
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Figure 5. Sketch of a Li-ion battery cell (adapted from [122]).

Research Highlights

The survey’s findings are gathered in Table 8. The outcomes shown in Table 8 highlight
that the BS faults can be classified into two types [123]: cell faults and system faults.

The cell faults are mainly caused by battery degradation and include loss of active
material; electrolyte consumption; increase in internal resistance; lithium deposition; gas
generation; Solid Electrolyte Interphase (SEI) thickening. A passivation layer called SEI
is formed on electrode surfaces from the decomposition products of electrolytes. The SEI
allows Li+ transport, blocks electrons in order to prevent further electrolyte decomposition
and ensures continued electrochemical reactions [124]; current collector corrosion; internal
short circuits (can cause an explosion and is mainly caused by overload); thermal runaway;
capacity diving; liquid leakage.

The system faults are mainly caused by the battery management system anomalies/-
faults [125,126], sensory system anomalies/faults, cables and connections anomalies/faults.
In turn, they can be classified as overcharge (can provoke the reaction of the positive elec-
trode with the electrolyte, resulting in heat generation, pressure increase, and subsequent
fire); overdischarge; reduced battery life; thermal runaway; reduced battery performance;
equalization errors; thermal runaway accident; increase in internal resistance; thermal
runaway safety accident.

Finally, Table 9 reports the main datasets related to faults in Li-ion BSs.

Table 8. Anomalies/faults for BSs.

Target Component Description Cause References

Cell

Loss of active material

Battery degradation

[127]
Electrolyte consumption [128]

Increase in internal resistance [129]
Lithium deposition [130]

Gas generation [123]
SEI thickening [124]

Current collector corrosion [131]
Internal short circuits [132]

Thermal runaway [133]
Capacity diving [123]
Liquid leakage [123]

System

Overcharge
Battery management

system anomaly/fault

[134]
Overdischarge [135]

Reduced battery life [136]
Thermal runaway [133]

Reduced battery performance

Sensory system

[136]
Equalization errors [123]
Reduced battery life [136]

Thermal runaway accidents [133]

Increase internal resistance Cables and connections [129]
Thermal runaway safety accidents [133]



Sustainability 2024, 16, 6042 15 of 29

Table 9. Anomaly/fault datasets for BSs (adapted from [137]).

Dataset Name Source Description References Related Papers

NASA Data
Repository Lab testing Data sets suitable to develop algorithms useful

as prognostic tools [138]

IEEE Data Port Simulations
Data set obtained by simulating a lithium

polymer cell model ePLB C020, with an effective
capacity of 15 Ah, related an electric car

[139]

Stanford Fast
Charging Datasets Lab testing

Dataset obtained through tests performed on
commercial lithium-ion batteries under fast

charging conditions. In particular, the cells, of
the lithium-iron-phosphate (LFP)/graphite

type, produced by A123 Systems
(APR18650M1A), were tested on a 48-channel

Arbin LBT device. The cells considered are
characterized by a nominal capacity of 1.1 Ah

and a nominal voltage of 3.3 V

[140] [141]

Lifecycle
Prediction Dataset Lab testing

Data set obtained by testing commercial
lithium-ion batteries under fast charging
conditions. The lithium-ion phosphate

(LFP)/graphite cells, manufactured by A123
Systems (APR18650M1A), were tested using the

48-channel Arbin LBT device in a forced
convection temperature chamber set to 30 °C.

The cells have a nominal capacity of 1.1 Ah and
a nominal voltage of 3.3 V

[142] [143]

University of
Wisconsin Madison Lab testing Operational dataset for the Panasonic 18650PF

lithium-ion battery [144] [145]

BEEPt Lab testing

Set of tools designed to support Battery
Evaluation and Early Prediction of life cycle
corresponding to the research of the d3batt
program and the Toyota Research Institute

[146] [147]

Universal Battery
Database Lab testing Open source Li-ion data management and

modelling software [148]

Alawa-toolbox Lab testing and
simulations

Dataset from University of Hawaii, which
provides a large number of curves with

different degradation modes, LLI and LAM
[149] [150]

2.7. Anomalies and Faults in DC/x Conversion Systems

Power electronics converters are circuits to adequately interface a power source with
an electricity absorbing system, such as a load, a storage or a sinking busbar of the main
grid. They are used to implement DC/x conversion systems and are typically realized
with different stages, as Figure 6 shows. The stages include input and output filters
and switching and magnetic sections. The switching section is the converter’s main part
which can be realized by Metal–Oxide–Semiconductor Field-Effect Transistors (MOSFETs)
or IGBTs. A gate driver circuit is required to turn on/off the switchings according to
Pulse-Width Modulation (PWM) techniques.

DC/DC converters are sourced by an input DC source to provide a different voltage
level at their output terminals. On the other side, DC/AC converters can take advantage of
an input DC source to provide output AC waveforms. Both DC/DC and DC/AC converters
can enable unidirectional or bidirectional power flows.
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Figure 6. Sketch of a DC/x conversion system.

Research Highlights

The surveyed literature highlights that converters might be subject to operating condi-
tions that can be widely varying over time. As a consequence, their components are subject
to electrical, thermal, mechanical or combined (electro-thermal, etc.) stresses. Converter
performances are additionally impacted by aging. These causes produce anomalies and/or
faults to the power stage devices, the control stage, the driving circuits of the switching
components, and the converter inputs and outputs terminals.

Mainly, the sector literature focuses on the anomaly/fault physics of individual
components, also reporting most subject to anomalies/faults.

In switching devices, overcurrents and overvoltages can cause overtemperature and
thus thermal stress. In turn, this can have significant effects on secondary breakdown
phenomena, which can determine the switching devices destruction. Therefore, at the
power converter design stage, it is essential to consider the switches Safe Operating Area
(SOA) and the use of appropriate heat sinks. Additionally, also environmental conditions
must be included in the design since the junction temperature Tj depends on the ambient
temperature Ta according to

Tj = Ta + Pa RTj−a , (3)

where Pa is the power loss, and RTj−a is the ambient-junction thermal resistance.
The dependence on the junction temperature characterize also the Drain–Source resis-

tance, Gate–Source voltage, and switch threshold voltage Vth. The Drain–Source resistance
increases to the junction temperature growth (Figure 7a), the Gate–Source voltage decreases
to the junction temperature rise (Figure 7b), and Vth decreases to the ambient temperature
increase (Figure 8). In particular, the latter aspect is crucial since the temperature rise
and the increase in the number of heat waves in the future will increase the probability of
unwanted switching, with harmful consequences for the individual component and the
DC/x conversion systems they are used in.
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Figure 7. (a) Drain–Source resistance vs. junction temperature (“n.u.” stands for “normalized units”);
(b) Drain–Source for different junction temperatures [151].

Figure 8. Typical threshold voltage vs. ambient temperature in MOSFETs [152].

Thermal stress can degrade also the mechanical properties of the material that realizes
the switching devices. The use of materials with different thermal expansion and compres-
sion can, in fact, cause cracks with the consequent failure of the switches materials. Finally,
further anomalies/faults caused in switching devices are electrostatic discharges, leading
the gate oxide to break without immediate malfunctions for the component. Delayed
anomalies/faults can instead be determined, which therefore are difficult to trace back to
their initial cause. A mitigation strategy consists of the adoption of suitable protections and
the monitoring of the gate charge through appropriate additional circuitry.

With reference to capacitive components, electrolytic, ceramic and film capacitors are
used in interface converters. They feature temperature-dependent capacity, as shown in
Figure 9, and their operative life (in hours) halves every 10 °C of temperature increase, as
reported in Figure 10.
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Figure 9. Typical capacitance (normalized against values at 20 °C, 100 Hz) vs. temperature character-
istics in electrolytic capacitors [153].

Finally, anomalies/faults may be determined in driver circuits that are required to
appropriately switch on/off the switching devices via the provision/recovery of a suitable
amount of gate charge, synchronized by the control algorithms embedded into the DC/x
conversion systems. In particular, the driver’s performance is negatively impacted by
unwanted negative voltages at their input/output. These are produced mainly by the
on/off switching transients of the converter’s MOSFETs/IGBTs (Figure 11) , in combination
with high-order effects usually modeled as parasitic capacitances and inductances.

Figure 10. Typical ripple current (normalized against the maximum value) and operative life vs.
temperature characteristics in electrolytic capacitors [154].

In summary, the survey on anomalies/faults in DC/x conversion systems resulted in
the literature reported in Table 10, while no related datasets were found in all cases, i.e., in
case of the interface converters, the switching, capacitive and inductive components, and
the control stage.



Sustainability 2024, 16, 6042 19 of 29

Figure 11. Typical MOSFETs/IGBTs turn on (left) and turn off (right) characteristics [155].

Table 10. Main contributions on anomalies/faults in DC/x conversion systems.

Target Component Description Cause References

Magnetic/
capacitive/

switchingdevices

Switches damage Thermal stress [156]

Capacitor damage Electrical stress [157]

Inductor damage Thermal and electrical stress [158]

Printed circuit board
Delamination

Aging [159]Cracks
Weld deterioration

Converter terminals
Power stage devices

overcurrent and
overtemperature

Terminals short-circuit [160]

Converter power stage Ground fault
Worn, frayed, or damaged

insulation due to mechanical,
environmental, electrical stressing

[160]

2.8. Anomalies and Faults in Monitoring Systems

A monitoring system can be briefly broken down into sensors, wirings and a user
interface, as shown in Figure 12. Typically, a software layer manages the data transmitted
by the sensors and presents them to the user via the interface. However, the sensors are the
main components affected by anomalies/faults, and the survey is restricted to them.

Figure 12. Sketch of a monitoring system.
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Research Highlights

The surveyed literature is organized in Table 11. It is highlighted that the main anoma-
lies/faults the sensors are subject can be listed as mechanical [161], that affects the enclosure
(e.g., due to the degradation of materials [162], vibrations, external shocks [163]), electrical,
that affects the electrical properties of the devices (e.g., loss of insulation [164,165], anomalous
measurement residual [166] due to blackout or overloading of the device) and other, that
affects the measurements, such as, e.g., those due to noise [167], reading errors (value read by
the device different from the actual one due to a change in gain) [168], calibration losses or
performance degradation [169].

The survey highlights that the main causes of failures/faults of the sensors derive from
their operating conditions and the environment they are deployed in. The most common
are reading errors due to incorrect calibration, performance degradation, or electrical faults;
mechanical anomalies/faults are less frequent.

Regarding datasets, it was not possible to find any targeting the specific sector of
electricity networks (smart meters).

Table 11. Main contributions on anomalies/faults in monitoring systems.

Target Component Description Cause References

Sensor

Performance
degradation

Mechanical degradation [162]
Vibrations and/or external shocks [163]

Electrical fault
Loss of electrical insulation [164,165]

Anomalous measurement residual [166]

Wrong data
Noise [167]

Gain changing [168]
Loss of calibration [169]

2.9. Anomalies and Faults in Communication Systems

Figure 13 shows a simple scheme of a communication system, which has the main
aim of enabling data transmission and recovery across an unreliable channel. Briefly, a
communication system consists of a sender, a receiver and a communication support.

Figure 13. Sketch of a communication system.

The data are arranged in messages by means of a suitable protocol stack, depending on
the particular application considered. Therefore, the causes of failure depend on multiple
subsystems, as described in the following.

Research Highlights

The surveyed literature is organized in Table 12. The study has highlighted that the
main anomalies/faults associated with communication systems can be classified [170] into
failures of the communication support regarding the support and transmission medium (e.g.,
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fiber breakage, excessive bending, connectors or splice breakage [171,172]), receiver failure
involving a malfunction of the receiver, such as a high data packet reception time [173,174]
and data integrity that affects the integrity of the transferred data, degrading the accuracy and
reliability of the transmission, and caused by alteration or loss of part of the transmitted data
packet [175]. These last are, generally, recognized by the receiver using checksum [176].

Data integrity is a central aspect in cyber–physical systems (as the future renewable-
based power systems will be) and including possible anomalies/faults in this survey would
be impractical due to the vastness of the domain. However, the reader is referred to [177]
where it is highlighted that it can be compromised also by a wide range of cyber-attacks,
necessitating an adequate countermeasure. Indeed, categories of cyber-attacks such as
spoofing, malware, denial of service, man-in-the-middle, replay attacks, and backdoors can
undermine the confidentiality, integrity, availability, and accountability of data. Effective
countermeasures include the use of secure communication protocol (e.g., secure DNP3,
PKI, TLS, SSL, Encryption) or authentication methods, data loss prevention techniques
and automated security compliance checks, using AI, to continually check systems for
compliance.

Summarizing, the survey has highlighted that failures due to the support medium are
more frequent than the other two types. For all types of faults, it was not possible to find
simulated/experimental datasets but only methods for fault diagnostics (Table 12).

Table 12. Main contributions on anomalies/faults in communication systems.

Target Component Description Cause References

Communication support Total or partial loss or alteration of
the transmitted data packet

Support and transmission
medium fault [171,172,175]

Receiver Receiver faults Malfunction of the receiver, long
data packet reception time [173,174,176]

3. Conclusions

This paper presents a survey of anomalies and faults targeting the main technologies
of future renewable-based power systems that may impact their reliability. The survey com-
piles the literature findings and relevant datasets that can be used for further investigation,
in corresponding tables for conciseness. With regards to similar papers, this paper includes
many technologies and does not restrict itself only to one specific one. For instance, beyond
technologies limited to the power domain, monitoring and communication systems are
surveyed. This can help other researchers in orienting their research effort via a unique
entry-point and self-consistent reference.

Regarding the findings, many gaps are highlighted, thus realizing possible future
research directions, namely the lack of a common taxonomy that prevents the establishment
of a structured knowledge on the topic, a lack of contributions on anomalies/faults specific
to wind turbines, a lack of datasets related to electrolyzers, fuel cells, DC/x conversion,
monitoring and communication systems. Further, in the case of monitoring and commu-
nication systems, the scientific literature is very dated, and therefore does not consider
possible new aspects that would be currently worthy of investigation, and is not oriented
to the domain addressed, thus considering peculiar aspects that are instead left out.

Author Contributions: Conceptualization, A.B., A.R., R.C., G.A., V.S. and M.V.; methodology, A.B.,
A.R., R.C., G.A., V.S. and M.V.; investigation, V.M., A.B., A.R., R.C., G.A., V.S. and M.V.; data curation,
A.B., A.R., R.C., G.A. and V.S.; writing—original draft preparation, V.M., A.B., A.R., R.C., G.A. and
V.S.; writing—review and editing, V.M., A.B., A.R., R.C., G.A. and V.S.; visualization, V.M., A.B., A.R.,
R.C., G.A. and V.S.; supervision, M.V.; project administration, M.V. and G.G.; funding acquisition,
M.V. and G.G. All authors have read and agreed to the published version of the manuscript.



Sustainability 2024, 16, 6042 22 of 29

Funding: This research was funded by the Research Fund for the Italian Electrical System through
the project “Accordo di Programma 2022–2024—Project 2.3” between ENEA and the Ministry of the
Environment and Energetic Safety (MASE).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BS Battery System
EIS Electrochemical Impedance Spectrometry
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LAM Loss of Active Material
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VAWT Vertical-Axis Wind Turbine
WT Wind Turbine

References
1. Ren, B.; Chi, Y.; Zhou, N.; Wang, Q.; Wang, T.; Luo, Y.; Ye, J.; Zhu, X. Machine learning applications in health monitoring of

renewable energy systems. Renew. Sustain. Energy Rev. 2024, 189, 114039. [CrossRef]
2. Afridi, Y.S.; Ahmad, K.; Hassan, L. Artificial intelligence based prognostic maintenance of renewable energy systems: A review

of techniques, challenges, and future research directions. Int. J. Energy Res. 2022, 46, 21619–21642. [CrossRef]
3. Ibrahim, M.S.; Dong, W.; Yang, Q. Machine learning driven smart electric power systems: Current trends and new perspectives.

Appl. Energy 2020, 272, 115237. [CrossRef]
4. Tuyen, N.D.; Quan, N.S.; Linh, V.B.; Van Tuyen, V.; Fujita, G. A Comprehensive Review of Cybersecurity in Inverter-Based Smart

Power System Amid the Boom of Renewable Energy. IEEE Access 2022, 10, 35846–35875. [CrossRef]
5. Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. Fault diagnostics in smart micro-grids: A survey. Renew. Sustain. Energy Rev. 2016,

60, 1114–1124. [CrossRef]
6. Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. A review of faults and fault diagnosis in micro-grids electrical energy infrastructure. In

Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014;
pp. 3325–3332. [CrossRef]

7. Labrador Rivas, A.E.; Abrão, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res.
2020, 189, 106602. [CrossRef]

8. Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Advances in Fault Condition Monitoring for
Solar Photovoltaic and Wind Turbine Energy Generation: A Review. Energies 2022, 15, 5404. [CrossRef]

9. Neumayer, M.; Stecher, D.; Grimm, S.; Maier, A.; Bücker, D.; Schmidt, J. Fault and anomaly detection in district heating
substations: A survey on methodology and data sets. Energy 2023, 276, 127569. [CrossRef]

10. Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A. Fault location and detection techniques in power distribution systems with
distributed generation: A review. Renew. Sustain. Energy Rev. 2017, 74, 949–958. [CrossRef]

11. IEEE Std 1044-2009; IEEE Standard Classification for Software Anomalies. IEEE: Piscataway, NJ, USA, 2010; pp. 1–23. [CrossRef]
12. NASA SP-2016-6105; NASA Systems Engineering Handbook. NASA—National Aeronautics and Space Administration:

Washington, DC, USA, 2016.

http://doi.org/10.1016/j.rser.2023.114039
http://dx.doi.org/10.1002/er.7100
http://dx.doi.org/10.1016/j.apenergy.2020.115237
http://dx.doi.org/10.1109/ACCESS.2022.3163551
http://dx.doi.org/10.1016/j.rser.2016.01.122
http://dx.doi.org/10.1109/ECCE.2014.6953852
http://dx.doi.org/10.1016/j.epsr.2020.106602
http://dx.doi.org/10.3390/en15155404
http://dx.doi.org/10.1016/j.energy.2023.127569
http://dx.doi.org/10.1016/j.rser.2017.03.021
http://dx.doi.org/10.1109/IEEESTD.2010.5399061


Sustainability 2024, 16, 6042 23 of 29

13. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

14. Tipton, C.I.W. Survey of Fault Detection and Classification in Power Conversion Electronics; Technical Report AD1115443; DEVCOM
Army Research Laboratory: Adelphi, NY, USA, 2020. Available online: https://apps.dtic.mil/sti/citations/AD1115443 (accessed
on 9 May 2024).

15. Hong, Y.Y.; Pula, R.A. Methods of photovoltaic fault detection and classification: A review. Energy Rep. 2022, 8, 5898–5929.
[CrossRef]

16. Osmani, K.; Haddad, A.; Lemenand, T.; Castanier, B.; Alkhedher, M.; Ramadan, M. A critical review of PV systems’ faults with
the relevant detection methods. Energy Nexus 2023, 12, 100257. [CrossRef]

17. Jiang, L.; Maskell, D. Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network
and analytical based methods. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney,
UK, 12–17 July 2015; pp. 1–8. [CrossRef]

18. Chine, W.; Mellit, A.; Pavan, A.; Lughi, V. Fault diagnosis in photovoltaic arrays. In Proceedings of the 2015 International
Conference on Clean Electrical Power, Taormina, Italy, 16–18 June 2015; ·pp. 67–72. [CrossRef]

19. Kumar, S.S.; Selvakumar, A.I. Detection of the faults in the photovoltaic array under normal and partial shading conditions. In
Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017;
pp. 1–5. [CrossRef]

20. Buonanno, A.; Caputo, G.; Balog, I.; Fabozzi, S.; Adinolfi, G.; Pascarella, F.; Leanza, G.; Graditi, G.; Valenti, M. Machine Learning
and Weather Model Combination for PV Production Forecasting. Energies 2024, 17, 2203. [CrossRef]

21. Buonanno, A.; Caliano, M.; Di Somma, M.; Graditi, G.; Valenti, M. A Comprehensive Tool for Scenario Generation of Solar
Irradiance Profiles. Energies 2022, 15, 8830. [CrossRef]

22. Nguyen, X.H. Matlab/Simulink Based Modeling to Study Effect of Partial Shadow on Solar Photovoltaic Array. Environ. Syst.
Res. 2015, 4, 20. [CrossRef]

23. Hu, Y.; Cao, W.; Ma, J.; Finney, S.J.; Li, D. Identifying PV Module Mismatch Faults by a Thermography-Based Temperature
Distribution Analysis. IEEE Trans. Device Mater. Reliab. 2014, 14, 951–960. [CrossRef]

24. Li, X.; Yang, Q.; Lou, Z.; Yan, W. Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms. IEEE Trans.
Energy Convers. 2019, 34, 520–529. [CrossRef]

25. Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental Impacts on the Performance of Solar Photovoltaic Systems.
Sustainability 2020, 12, 608. [CrossRef]

26. Hetita, I.; Zalhaf, A.S.; Mansour, D.E.A.; Han, Y.; Yang, P.; Wang, C. Modeling and Protection of Photovoltaic Systems During
Lightning Strikes: A Review. Renew. Energy 2022, 184, 134–148. [CrossRef]

27. Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M. Review of Failures of
Photovoltaic Modules; Report T13-01:2014; IEA-PVPS: Redfern, NSW, Australia, 2014. Available online: https://iea-pvps.org/key-
topics/review-of-failures-of-photovoltaic-modules-final/ (accessed on 10 July 2024).

28. Itoh, U.; Yoshida, M.; Tokuhisa, H.; Takeuchi, K.; Takemura, Y. Solder Joint Failure Modes in the Conventional Crystalline Si
Module. Energy Procedia 2014, 55, 464–468. [CrossRef]

29. Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and
Mitigation Techniques. IEEE J. Photovolt. 2015, 5, 982–997. [CrossRef]

30. Zhao, Y. Fault Analysis in Solar Photovoltaic Arrays. Master’s Thesis, Northeastern University, Boston, MA, USA, 2010.
31. Badr, M.M.; Hamad, M.S.; Abdel-Khalik, A.S.; Hamdy, R.A. Fault Detection and Diagnosis for Photovoltaic Array Under Grid

Connected Using Support Vector Machine. In Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable
Energy (CPERE), Aswan City, Egypt, 23–25 October 2019; pp. 546–553. [CrossRef]

32. Chan, F.; Calleja, H. Reliability: A New Approach in Design of Inverters for PV Systems. In Proceedings of the 2006 IEEE
International Power Electronics Congress, Puebla, Mexico, 16–18 October 2006; pp. 1–6. [CrossRef]

33. Ma, M.; Liu, H.; Zhang, Z.; Yun, P.; Liu, F. Rapid diagnosis of hot spot failure of crystalline silicon PV module based on I-V curve.
Microelectron. Reliab. 2019, 100–101, 113402. [CrossRef]

34. Bdour, M.; Dalala, Z.; Al-Addous, M.; Radaideh, A.; Al-Sadi, A. A comprehensive evaluation on types of microcracks and
possible effects on power degradation in photovoltaic solar panels. Sustainability 2020, 12, 6416. [CrossRef]

35. Colvin, D.J.; Schneller, E.J.; Davis, K.O. Impact of Interconnection Failure on Photovoltaic Module Performance. Prog. Photovoltaics
Res. Appl. 2021, 29, 524–532. [CrossRef]

36. Kim, J.; Rabelo, M.; Padi, S.; Yousuf, H.; Cho, E.C.; Yi, J. A review of the degradation of photovoltaic modules for life expectancy.
Energies 2021, 14, 4278. [CrossRef]

37. Bouaichi, A.; Merrouni, A.; El Hassani, A.; Naimi, Z.; Ikken, B.; Ghennioui, A.; Benazzouz, A.; El Amrani, A.; Messaoudi,
C. Experimental evaluation of the discoloration effect on PV-modules performance drop. Energy Procedia 2017, 119, 818–827.
[CrossRef]

38. Hasan, A.A.; Ahmed Alkahtani, A.; Shahahmadi, S.A.; Nur E. Alam, M.; Islam, M.A.; Amin, N. Delamination and
Electromigration-Related Failures in Solar Panels – A Review. Sustainability 2021, 13, 6882. [CrossRef]

39. Popovich, V. Breakage issues in silicon solar wafers and cells. Photovoltaics Int. 2011, 12, 49–57.

http://dx.doi.org/10.1109/TDSC.2004.2
https://apps.dtic.mil/sti/citations/AD1115443
http://dx.doi.org/10.1016/j.egyr.2022.04.043
http://dx.doi.org/10.1016/j.nexus.2023.100257
http://dx.doi.org/10.1109/IJCNN.2015.7280498
http://dx.doi.org/10.1109/ICCEP.2015.7177602
http://dx.doi.org/10.1109/IPACT.2017.8244890
http://dx.doi.org/10.3390/en17092203
http://dx.doi.org/10.3390/en15238830
http://dx.doi.org/10.1186/s40068-015-0042-1
http://dx.doi.org/10.1109/TDMR.2014.2348195
http://dx.doi.org/10.1109/TEC.2018.2873358
http://dx.doi.org/10.3390/su12020608
http://dx.doi.org/10.1016/j.renene.2021.11.083
https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/
https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/
http://dx.doi.org/10.1016/j.egypro.2014.08.010
http://dx.doi.org/10.1109/JPHOTOV.2015.2397599
http://dx.doi.org/10.1109/CPERE45374.2019.8980103
http://dx.doi.org/10.1109/CIEP.2006.312159
http://dx.doi.org/10.1016/j.microrel.2019.113402
http://dx.doi.org/10.3390/su12166416
http://dx.doi.org/10.1002/pip.3401
http://dx.doi.org/10.3390/en14144278
http://dx.doi.org/10.1016/j.egypro.2017.07.107
http://dx.doi.org/10.3390/su13126882


Sustainability 2024, 16, 6042 24 of 29

40. Kalejs, J. Junction Box Wiring and Connector Durability Issues in Photovoltaic Modules. In Proceedings of the International Society
for Optical Engineering (SPIE), San Francisco, CA, USA, 2–5 February 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9179,
p. 91790S. [CrossRef]

41. National Academies of Sciences, Engineering, and Medicine. Enhancing the Resilience of the Nation’s Electricity System; The National
Academies Press: Washington, DC, USA, 2017. [CrossRef]

42. Ghoneim, S.S.M.; Rashed, A.E.; Elkalashy, N.I. Fault Detection Dataset in Photovoltaic Farms. 2020. Available online:
https://www.kaggle.com/datasets/amrezzeldinrashed/fault-detection-dataset-in-photovoltaic-farms (accessed on 12 January
2024).

43. Ghoneim, S.S.M.; Rashed, A.E.; Elkalashy, N.I. Fault Detection Algorithms for Achieving Service Continuity in Photovoltaic
Farms. Intell. Autom. Soft Comput. 2021, 30, 467–479. [CrossRef]

44. Su, B.; Zhou, Z.; Chen, H. Photovoltaic Cell Aanomaly Detection Dataset. 2022. Available online: https://ieee-dataport.org/
documents/photovoltaic-cell-anomaly-detection-dataset (accessed on 12 January 2024).

45. Su, B.; Zhou, Z.; Chen, H. PVEL-AD: A Large-Scale Open-World Dataset for Photovoltaic Cell Anomaly Detection. IEEE Trans.
Ind. Inform. 2023, 19, 404–413. [CrossRef]

46. Bakdi, A.; Bounoua, W.; Guichi, A.; Mekhilef, S. GPVS-Faults: Experimental Data for Fault Scenarios in Grid-Connected PV
Systems under MPPT and IPPT Modes. 2020. Available online: https://data.mendeley.com/datasets/n76t439f65/1 (accessed on
12 January 2024).

47. Bakdi, A.; Bounoua, W.; Guichi, A.; Mekhilef, S. Real-time fault detection in PV systems under MPPT using PMU and high-
frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence. Int. J. Electr. Power Energy Syst. 2021,
125, 106457. [CrossRef]

48. Wang, Q.; Paynabar, K.; Pacella, M. Online Automatic Anomaly Detection for Photovoltaic Systems Using Thermography
Imaging and Low Rank Matrix Decomposition (Dataset). 2021. Available online: https://tandf.figshare.com/articles/dataset/
Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_
decomposition/15123655/1 (accessed on 12 January 2024).

49. Wang, Q.; Paynabar, K.; Pacella, M. Online automatic anomaly detection for photovoltaic systems using thermography imaging
and low rank matrix decomposition. J. Qual. Technol. 2022, 54, 503–516. [CrossRef]

50. Gabriel, M. Photovoltaic System Thermography. 2023. Available online: https://www.kaggle.com/datasets/marcosgabriel/
photovoltaic-system-thermography (accessed on 12 January 2024).

51. Piliougine, M.; Spagnuolo, G. Mismatching and Partial Shading Identification in Photovoltaic Arrays by an Artificial Neural
Network Ensemble (Dataset). 2022. Available online: https://zenodo.org/record/4781151 (accessed on 12 January 2024).

52. Piliougine, M.; Spagnuolo, G. Mismatching and partial shading identification in photovoltaic arrays by an artificial neural
network ensemble. Solar Energy 2022, 236, 712–723. [CrossRef]

53. Sood, K.; Ruppert, N.; Mahto, R. Partial Shading and Fault Simulation Dataset of Photovoltaics Module. 2022. Available online:
https://ieee-dataport.org/documents/partial-shading-and-fault-simulation-dataset-photovoltaics-module (accessed on 12
January 2024). [CrossRef]

54. Lazzaretti, A.E.; Costa, C.H.d.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.d.; Linhares, R.R.;
Stadzisz, P.C.; et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants (dataset) . 2020.
Available online: https://github.com/clayton-h-costa/pv_fault_dataset (accessed on 12 January 2024).

55. Lazzaretti, A.E.; Costa, C.H.d.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.d.; Linhares, R.R.;
Stadzisz, P.C.; et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants. Sensors 2020, 20,
4688. [CrossRef]

56. ELPV-Dataset. 2018. Available online: https://github.com/zae-bayern/elpv-dataset (accessed on 12 January 2024).
57. Buerhop-Lutz, C.; Deitsch, S.; Maier, A.; Gallwitz, F.; Berger, S.; Doll, B.; Hauch, J.; Camus, C.; Brabec, C.J. A Benchmark for

Visual Identification of Defective Solar Cells in Electroluminescence Imagery. In Proceedings of the European PV Solar Energy
Conference and Exhibition (EU PVSEC), Brussels, Belgium, 24–28 September 2018. [CrossRef]

58. Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F.; Riess, C. Automatic classification of defective
photovoltaic module cells in electroluminescence images. Solar Energy 2019, 185, 455–468. [CrossRef]

59. Deitsch, S.; Buerhop-Lutz, C.; Sovetkin, E.; Steland, A.; Maier, A.; Gallwitz, F.; Riess, C. Segmentation of photovoltaic module
cells in uncalibrated electroluminescence images. Mach. Vis. Appl. 2021, 32, 84. [CrossRef]

60. NREL—National Renewable Energy Laboratory, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.
PVWatts Calculator. Available online: https://pvwatts.nrel.gov/pvwatts.php (accessed on 12 January 2024).

61. Badurek, C.A. Wind Turbine. Encyclopedia Britannica. Available online: https://www.britannica.com/technology/wind-turbine.
(accessed on 11 March 2024).

62. Dao, C.; Kazemtabrizi, B.; Crabtree, C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy
2019, 22, 1848–1871. [CrossRef]

63. Sivankutty, S.; Mary, S.A.J. Fault Diagnosis and Control Techniques for Wind Energy Conversion System: A Systematic Review.
In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies
(ICICICT), Kannur, India, 11–12 August 2022; pp. 700–704. [CrossRef]

http://dx.doi.org/10.1117/12.2063488
http://dx.doi.org/10.17226/24836
https://www.kaggle.com/datasets/amrezzeldinrashed/fault-detection-dataset-in-photovoltaic-farms
http://dx.doi.org/10.32604/iasc.2021.016681
https://ieee-dataport.org/documents/photovoltaic-cell-anomaly-detection-dataset
https://ieee-dataport.org/documents/photovoltaic-cell-anomaly-detection-dataset
http://dx.doi.org/10.1109/TII.2022.3162846
https://data.mendeley.com/datasets/n76t439f65/1
http://dx.doi.org/10.1016/j.ijepes.2020.106457
https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_decomposition/15123655/1
https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_decomposition/15123655/1
https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_decomposition/15123655/1
http://dx.doi.org/10.1080/00224065.2021.1948372
https://www.kaggle.com/datasets/marcosgabriel/photovoltaic-system-thermography
https://www.kaggle.com/datasets/marcosgabriel/photovoltaic-system-thermography
https://zenodo.org/record/4781151
http://dx.doi.org/10.1016/j.solener.2022.03.026
https://ieee-dataport.org/documents/partial-shading-and-fault-simulation-dataset-photovoltaics-module
http://dx.doi.org/10.21227/fjbq-0321 (accessed on 12 January 2024)
https://github.com/clayton-h-costa/pv_fault_dataset
http://dx.doi.org/10.3390/s20174688
https://github.com/zae-bayern/elpv-dataset
http://dx.doi.org/10.4229/35thEUPVSEC20182018-5CV.3.15
http://dx.doi.org/10.1016/j.solener.2019.02.067
http://dx.doi.org/10.1007/s00138-021-01191-9
https://pvwatts.nrel.gov/pvwatts.php
https://www.britannica.com/technology/wind-turbine
http://dx.doi.org/10.1002/we.2404
http://dx.doi.org/10.1109/ICICICT54557.2022.9917722


Sustainability 2024, 16, 6042 25 of 29

64. Liu, W.Y.; Gu, H.; Gao, Q.W.; Zhang, Y. A review on wind turbines gearbox fault diagnosis methods. J. Vibroeng. 2021, 23, 26–43.
[CrossRef]

65. Sheng, S. Wind Turbine Gearbox Condition Monitoring Vibration Analysis Benchmarking Datasets. 2014. Available online:
https://data.openei.org/submissions/738 (accessed on 10 July 2024).

66. Ogaili, A.A.F.; Abdulhady, J.A.; Hamzah, M.N. Wind Turbine Blades Fault Diagnosis Based on Vibration Dataset Analysis. 2023.
Available online: https://data.mendeley.com/datasets/5d7vbdp8f7/4 (accessed on 12 January 2024).

67. Ogaili, A.A.F.; Abdulhady, J.A. Vibration Signals Feature for Fault Diagnosis of Wind Turbine Blade. 2023. Available online:
https://data.mendeley.com/datasets/2kx995rscj/2 (accessed on 12 January 2024).

68. Foster, A.; Best, O.; Gianni, M.; Khan, A.; Collins, K.; Sharma, S. YOLO Annotated Wind Turbine Surface Damage. 2021. Available
online: https://www.kaggle.com/datasets/ajifoster3/yolo-annotated-wind-turbines-586x371 (accessed on 12 January 2024).

69. Foster, A.; Best, O.; Gianni, M.; Khan, A.; Collins, K.; Sharma, S. Drone Footage Wind Turbine Surface Damage Detection. In
Proceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece,
26–29 June 2022; pp. 1–5. [CrossRef]

70. Xiaoqiang, W.; Ziang, X. Data for: Wind turbine fault diagnosis based on ReliefF-PCA and DNN. 2021. Available online:
https://data.mendeley.com/datasets/v9wnr4bft9/1 (accessed on 12 January 2024).

71. Wen, X.; Xu, Z. Wind turbine fault diagnosis based on ReliefF-PCA and DNN. Expert Syst. Appl. 2021, 178, 115016. [CrossRef]
72. Sá, B.A.; Barros, C.M.V.; Siebra, C.A.; Barros, L.S. Wind Turbine PMSG-Short-Circuit Fault. 2019. Available online: https:

//www.kaggle.com/datasets/brunoadonis/wind-turbine-pmsg-short-circuit-fault-mcsa (accessed on 12 January 2024).
73. Sá, B.A.; Barros, C.M.V.; Siebra, C.A.; Barros, L.S. A Multilayer Perceptron-Based Approach for Stator Fault Detection in Permanent

Magnet Wind Generators. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America
(ISGT Latin America), Gramado, Brazil, 15–18 September 2019; pp. 1–6. [CrossRef]

74. Wonho, J.; Seong-Hu, K.; Sung-Hyun, Y.; Jaewoong, B.; Yong-Hwa, P. Vibration and Motor Current Dataset of Rolling Element
Bearing Under Varying Speed Conditions for Fault Diagnosis: Subset1. Available online: https://data.mendeley.com/datasets/
vxkj334rzv/7 (accessed on 12 January 2024).

75. Wonho, J.; Seong-Hu, K.; Sung-Hyun, Y.; Jaewoong, B.; Yong-Hwa, P. Vibration and Motor Current Dataset of Rolling Element
Bearing Under Varying Speed Conditions for Fault Diagnosis: Subset2. Available online: https://data.mendeley.com/datasets/
x3vhp8t6hg/7 (accessed on 12 January 2024).

76. Wonho, J.; Seong-Hu, K.; Sung-Hyun, Y.; Jaewoong, B.; Yong-Hwa, P. Vibration and Motor Current Dataset of Rolling Element
Bearing Under Varying Speed Conditions for Fault Diagnosis: Subset3. Available online: https://data.mendeley.com/datasets/
j8d8pfkvj2/7 (accessed on 12 January 2024).

77. Wonho, J.; Seong-Hu, K.; Sung-Hyun, Y.; Jaewoong, B.; Yong-Hwa, P. Vibration, acoustic, temperature, and motor current dataset
of rotating machine under varying operating conditions for fault diagnosis. Data Brief 2023, 48, 109049. [CrossRef]

78. Pandya, Y. Gearbox Fault Diagnosis Data. 2018. Available online: https://data.openei.org/submissions/623 (accessed on 12
January 2024).

79. de Portugal, E.E. EDP Open Data. Available online: https://www.edp.com/en/innovation/open-data/data. (accessed on 12
January 2024).

80. Kheirrouz, M.; Melino, F.; Ancona, M.A. Fault detection and diagnosis methods for green hydrogen production: A review. Int. J.
Hydrogen Energy 2022, 47, 27747–27774. [CrossRef]

81. Kokoh, K.B.; Mayousse, E.; Napporn, T.W.; Servat, K.; Guillet, N.; Soyez, E.; Grosjean, A.; Rakotondrainibé, A.; Paul-Joseph, J.
Efficient multi-metallic anode catalysts in a PEM water electrolyzer. Int. J. Hydrogen Energy 2014, 39, 1924–1931. [CrossRef]

82. Yu, H.; Bonville, L.; Jankovic, J.; Maric, R. Microscopic insights on the degradation of a PEM water electrolyzer with ultra-low
catalyst loading. Appl. Catal. Environ. 2020, 260, 118194. [CrossRef]

83. Zhang, S.; Yuan, X.; Wang, H.; Merida, W.; Zhu, H.; Shen, J.; Wu, S.; Zhang, J. A review of accelerated stress tests of MEA
durability in PEM fuel cells. Int. J. Hydrogen Energy 2009, 34, 388–404. [CrossRef]

84. Siracusano, S.; Baglio, V.; Van Dijk, N.; Merlo, L.; Aricò, A. Enhanced performance and durability of low catalyst loading PEM
water electrolyser based on a short-side chain perfluorosulfonic ionomer. Appl. Energy 2017, 192, 477–489. [CrossRef]

85. Millet, P.; Ranjbari, A.; De Guglielmo, F.; Grigoriev, S.A.; Auprêtre, F. Cell failure mechanisms in PEM water electrolyzers. Int. J.
Hydrogen Energy 2012, 37, 17478–17487. [CrossRef]

86. Grigoriev, S.A.; Dzhus, K.A.; Bessarabov, D.G.; Millet, P. Failure of PEM water electrolysis cells: Case study involving anode
dissolution and membrane thinning. Int. J. Hydrogen Energy 2014, 39, 20440–20446. [CrossRef]

87. Chandesris, M.; Médeau, V.; Guillet, N.; Chelghoum, S.; Thoby, D.; Fouda-Onana, F. Numerical modelling of membrane
degradation in PEM water electrolyzer: Influence of the temperature and current density. In Proceedings of the 6th International
Conference on Fundamentals and Development of Fuel Cells, FDFC2015, Toulouse, France, 3–5 February 2015.

88. Kuhnert, E.; Heidinger, M.; Sandu, D.; Hacker, V.; Bodner, M. Analysis of PEM Water Electrolyzer Failure Due to Induced
Hydrogen Crossover in Catalyst-Coated PFSA Membranes. Membranes 2023, 13, 348. [CrossRef] [PubMed]

89. Li, N.; Araya, S.S.; Kær, S.K. Investigating low and high load cycling tests as accelerated stress tests for proton exchange
membrane water electrolysis. Electrochim. Acta 2021, 370, 137748. [CrossRef]

http://dx.doi.org/10.21595/jve.2020.20178
https://data.openei.org/submissions/738
https://data.mendeley.com/datasets/5d7vbdp8f7/4
https://data.mendeley.com/datasets/2kx995rscj/2
https://www.kaggle.com/datasets/ajifoster3/yolo-annotated-wind-turbines-586x371
http://dx.doi.org/10.1109/IVMSP54334.2022.9816220
https://data.mendeley.com/datasets/v9wnr4bft9/1
http://dx.doi.org/10.1016/j.eswa.2021.115016
https://www.kaggle.com/datasets/brunoadonis/wind-turbine-pmsg-short-circuit-fault-mcsa
https://www.kaggle.com/datasets/brunoadonis/wind-turbine-pmsg-short-circuit-fault-mcsa
http://dx.doi.org/10.1109/ISGT-LA.2019.8895013
https://data.mendeley.com/datasets/vxkj334rzv/7
https://data.mendeley.com/datasets/vxkj334rzv/7
https://data.mendeley.com/datasets/x3vhp8t6hg/7
https://data.mendeley.com/datasets/x3vhp8t6hg/7
https://data.mendeley.com/datasets/j8d8pfkvj2/7
https://data.mendeley.com/datasets/j8d8pfkvj2/7
http://dx.doi.org/10.1016/j.dib.2023.109049
https://data.openei.org/submissions/623
https://www.edp.com/en/innovation/open-data/data
http://dx.doi.org/10.1016/j.ijhydene.2022.06.115
http://dx.doi.org/10.1016/j.ijhydene.2013.11.076
http://dx.doi.org/10.1016/j.apcatb.2019.118194
http://dx.doi.org/10.1016/j.ijhydene.2008.10.012
http://dx.doi.org/10.1016/j.apenergy.2016.09.011
http://dx.doi.org/10.1016/j.ijhydene.2012.06.017
http://dx.doi.org/10.1016/j.ijhydene.2014.05.043
http://dx.doi.org/10.3390/membranes13030348
http://www.ncbi.nlm.nih.gov/pubmed/36984735
http://dx.doi.org/10.1016/j.electacta.2021.137748


Sustainability 2024, 16, 6042 26 of 29

90. Spöri, C.; Kwan, J.T.H.; Bonakdarpour, A.; Wilkinson, D.P.; Strasser, P. The Stability Challenges of Oxygen Evolving Catalysts:
Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew. Chem. Int. Ed. 2017,
56, 5994–6021. [CrossRef]

91. Renda, S.; Ricca, A.; Palma, V. Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane. Appl. Energy
2020, 279, 115767. [CrossRef]

92. Hu, Y.; Xu, X.; Wang, W. A new cavity profile for a diaphragm compressor used in hydrogen fueling stations. Int. J. Hydrogen
Energy 2017, 42, 24458–24469. [CrossRef]

93. Ghaedamini, M.; Baharlou-Houreh, N.; Afshari, E.; Shokouhmand, H.; Jahantigh, N. Experimental investigation on the heat
and water transfer enhancement in a membrane-based air-to-air humidifier at insulation condition. Int. J. Hydrogen Energy 2022,
47, 17010–17021. [CrossRef]

94. Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013,
38, 4901–4934. [CrossRef]

95. Choi, S.R.; Lim, M.; Kim, D.Y.; An, W.Y.; Lee, S.W.; Choi, S.; Bae, S.J.; Yim, S.D.; Park, J.Y. Life prediction of membrane electrode
assembly through load and potential cycling accelerated degradation testing in polymer electrolyte membrane fuel cells. Int. J.
Hydrogen Energy 2022, 47, 17379–17392. [CrossRef]

96. Singh, Y.; Orfino, F.; Dutta, M.; Kjeang, E. 3D Failure Analysis of Pure Mechanical and Pure Chemical Degradation in Fuel Cell
Membranes. J. Electrochem. Soc. 2017, 164, F1331–F1341. [CrossRef]

97. Alavijeh, A.S.; Bhattacharya, S.; Thomas, O.; Chuy, C.; Yang, Y.; Zhang, H.; Kjeang, E. Effect of hygral swelling and shrinkage on
mechanical durability of fuel cell membranes. J. Power Sources 2019, 427, 207–214. [CrossRef]

98. Panha, K.; Fowler, M.; Yuan, X.Z.; Wang, H. Accelerated durability testing via reactants relative humidity cycling on PEM fuel
cells. Appl. Energy 2012, 93, 90–97. [CrossRef]

99. Yuan, X.Z.; Zhang, S.; Ban, S.; Huang, C.; Wang, H.; Singara, V.; Fowler, M.; Schulze, M.; Haug, A.; Friedrich, K.A.; et al.
Degradation of a PEM fuel cell stack with Nafion® membranes of different thicknesses. Part II: Ex situ diagnosis. J. Power Sources
2012, 205, 324–334. [CrossRef]

100. Healy, J.; Hayden, C.; Xie, T.; Olson, K.; Waldo, R.; Brundage, M.; Gasteiger, H.; Abbott, J. Aspects of the chemical degradation of
PFSA ionomers used in PEM fuel cellsx. Fuel Cells 2005, 5, 302–308. [CrossRef]

101. Shi, S.; Sun, X.; Lin, Q.; Chen, J.; Fu, Y.; Hong, X.; Li, C.; Guo, X.; Chen, G.; Chen, X. Fatigue crack propagation behavior of fuel
cell membranes after chemical degradation. Int. J. Hydrogen Energy 2020, 45, 27653–27664. [CrossRef]

102. Ferreira, P.J.; la O’, G.J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H.A. Instability of Pt/C Electrocatalysts in
Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2005, 152. [CrossRef]

103. Hassan, A.; Paganin, V.A.; Ticianelli, E.A. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high
temperature in proton exchange membrane fuel cell. J. Power Sources 2016, 325, 375–382. [CrossRef]

104. Kangasniemi, K.H.; Condit, D.A.; Jarvi, T.D. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel
Cell Conditions. J. Electrochem. Soc. 2004, 151, E125. [CrossRef]

105. Brik, K.; Ammar, F.B.; Djerdir, A.; Miraoui, A. Causal and Fault Trees Analysis of Proton Exchange Membrane Fuel Cell
Degradation. J. Fuel Cell Sci. Technol. 2015, 12, 051002. [CrossRef]

106. Shi, L.; Setzler, B.P.; Yan, Y. Understanding the Ebalance for water management in hydroxide exchange membrane fuel cells. J.
Power Sources 2022, 536, 231514. [CrossRef]

107. Singh, R.; Sui, P.C.; Wong, K.H.; Kjeang, E.; Knights, S.; Djilali, N. Modeling the Effect of Chemical Membrane Degradation on
PEMFC Performance. J. Electrochem. Soc. 2018, 165, F3328–F3336. [CrossRef]

108. Araya, S.S.; Zhou, F.; Sahlin, S.L.; Thomas, S.; Jeppesen, C.; Kaer, S.K. Fault characterization of a proton exchange membrane fuel
cell stack. Energies 2019, 12, 152. [CrossRef]

109. Jahnke, T.; Futter, G.A.; Baricci, A.; Rabissi, C.; Casalegno, A. Physical Modeling of Catalyst Degradation in Low Temperature
Fuel Cells: Platinum Oxidation, Dissolution, Particle Growth and Platinum Band Formation. J. Electrochem. Soc. 2020, 167, 013523.
[CrossRef]

110. Rama, P.; Chen, R.; Andrews, J. Failure Analysis of Polymer Electrolyte Fuel Cells; SAE Technical Papers; SAE: Warrendale, PA, USA,
2008; pp. 776–790. [CrossRef]

111. Wang, H.; Li, H.; Yuan, X.Z. PEM Fuel Cell Failure Mode Analysis; CRC Press: Boca Raton, FL, USA, 2011; Volume 1. [CrossRef]
112. Dhimish, M.; Zhao, X. Enhancing reliability and lifespan of PEM fuel cells through neural network-based fault detection and

classification. Int. J. Hydrogen Energy 2023, 48, 15612–15625. [CrossRef]
113. Mao, L.; Jackson, L. Comparative study on prediction of fuel cell performance using machine learning approaches. In Proceedings

of the International MultiConference of Engineers and Computer Scientists (IMECS), Hong Kong, China, 20–22 October 2016;
Volume 1, pp. 52–57.

114. Lin, Z.; Wang, C.H.; Liu, Y. The Fault Analysis and Diagnosis of Proton Exchange Membrane Fuel Cell Stack. Adv. Mater. Res.
2011, 197–198, 705–710. [CrossRef]

115. Li, Z.; Outbib, R.; Giurgea, S.; Hissel, D.; Giraud, A.; Couderc, P. Fault diagnosis for fuel cell systems: A data-driven approach
using high-precise voltage sensors. Renew. Energy 2019, 135, 1435–1444. [CrossRef]

116. Sarbast, V.A. Modeling of Proton Exchange Membrane Fuel Cell Performance Degradation and Operation Life. Master’s Thesis,
University of Victoria, Canada, Victoria, BC, Canada, 2021.

http://dx.doi.org/10.1002/anie.201608601
http://dx.doi.org/10.1016/j.apenergy.2020.115767
http://dx.doi.org/10.1016/j.ijhydene.2017.08.058
http://dx.doi.org/10.1016/j.ijhydene.2022.03.168
http://dx.doi.org/10.1016/j.ijhydene.2013.01.151
http://dx.doi.org/10.1016/j.ijhydene.2022.03.222
http://dx.doi.org/10.1149/2.0451713jes
http://dx.doi.org/10.1016/j.jpowsour.2019.04.081
http://dx.doi.org/10.1016/j.apenergy.2011.05.011
http://dx.doi.org/10.1016/j.jpowsour.2012.01.074
http://dx.doi.org/10.1002/fuce.200400050
http://dx.doi.org/10.1016/j.ijhydene.2020.07.113
http://dx.doi.org/10.1149/1.2050347
http://dx.doi.org/10.1016/j.jpowsour.2016.06.043
http://dx.doi.org/10.1149/1.1649756
http://dx.doi.org/10.1115/1.4031584
http://dx.doi.org/10.1016/j.jpowsour.2022.231514
http://dx.doi.org/10.1149/2.0351806jes
http://dx.doi.org/10.3390/en12010152
http://dx.doi.org/10.1149/2.0232001JES
http://dx.doi.org/10.4271/2008-01-0634
http://dx.doi.org/10.1201/b11112
http://dx.doi.org/10.1016/j.ijhydene.2023.01.064
http://dx.doi.org/10.4028/www.scientific.net/AMR.197-198.705
http://dx.doi.org/10.1016/j.renene.2018.09.077


Sustainability 2024, 16, 6042 27 of 29

117. Wang, P.; Liu, H.; Chen, J.; Qin, X.; Lehnert, W.; Shao, Z.; Li, R. A novel degradation model of proton exchange membrane fuel
cells for state of health estimation and prognostics. Int. J. Hydrogen Energy 2021, 46, 31353–31361. [CrossRef]

118. Ao, Y.; Chen, K.; Laghrouche, S.; Depernet, D. Proton exchange membrane fuel cell degradation model based on catalyst
transformation theory. Fuel Cells 2021, 21, 254–268. [CrossRef]

119. Bernhard, D.; Kadyk, T.; Kirsch, S.; Scholz, H.; Krewer, U. Model-assisted analysis and prediction of activity degradation in
PEM-fuel cell cathodes. J. Power Sources 2023, 562. [CrossRef]

120. Yue, M.; Jemei, S.; Gouriveau, R.; Zerhouni, N. Review on health-conscious energy management strategies for fuel cell hybrid
electric vehicles: Degradation models and strategies. Int. J. Hydrogen Energy 2019, 44, 6844–6861. [CrossRef]

121. Ciavarella, R.; Graditi, G.; Valenti, M.; Pinnarelli, A.; Barone, G.; Vizza, M.; Menniti, D.; Sorrentino, N.; Brusco, G. Modeling of an
energy hybrid system integrating several storage technologies: The DBS technique in a nanogrid application. Sustainability 2021,
13, 1170. [CrossRef]

122. Ali, H.A.A.; Raijmakers, L.H.J.; Chayambuka, K.; Danilov, D.L.; Notten, P.H.L.; Eichel, R.A. A comparison between physics-based
Li-ion battery models. Electrochim. Acta 2024, 493, 144360. [CrossRef]

123. Zou, B.; Zhang, L.; Xue, X.; Tan, R.; Jiang, P.; Ma, B.; Song, Z.; Hua, W. A Review on the Fault and Defect Diagnosis of Lithium-Ion
Battery for Electric Vehicles. Energies 2023, 16, 5507. [CrossRef]

124. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion
batteries. NPJ Comput. Mater. 2018, 4, 15. [CrossRef]

125. Graditi, G.; Ciavarella, R.; Valenti, M. An innovative BESS management for dynamic frequency restoration. In Proceedings
of the 2017 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and
Commercial Power Systems Europe, EEEIC/I and CPS Europe 2017, Milan, Italy, 6–9 June 2017, [CrossRef]

126. Ciavarella, R.; Gradit, G.; Valenti, M.; Strasser, T.I. Innovative Frequency Controls for Intelligent Power Systems. In Proceedings
of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), Amalfi, Italy,
20–22 June 2018. [CrossRef]

127. Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources
2017, 341, 373–386. [CrossRef]

128. Jung, R.; Metzger, M.; Haering, D.; Solchenbach, S.; Marino, C.; Tsiouvaras, N.; Stinner, C.; Gasteiger, H.A. Consumption of
Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries. Electrochem. Soc. 2016, 163, A1705. [CrossRef]

129. Ibraheem, R.; Strange, C.; Reis, G.d. Capacity and Internal Resistance of lithium-ion batteries: Full degradation curve prediction
from Voltage response at constant Current at discharge. J. Power Sources 2023, 556, 232477. [CrossRef]

130. Li, Z.; Huang, J.; Liaw, B.Y.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary
battery. J. Power Sources 2014, 254, 168–182. [CrossRef]

131. Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: A review.
J. Energy Storage 2021, 43, 103226. [CrossRef]

132. Wang, H.; Simunovic, S.; Maleki, H.; Howard, J.N.; Hallmark, J.A. Internal Configuration of Prismatic Lithium-Ion Cells at the
Onset of Mechanically Induced Short Circuit. J. Power Sources2016, 306, 424–430. [CrossRef]

133. Tran, M.K.; Mevawalla, A.; Aziz, A.; Panchal, S.; Xie, Y.; Fowler, M. A Review of Lithium-Ion Battery Thermal Runaway Modeling
and Diagnosis Approaches. Processes 2022, 10, 1192. [CrossRef]

134. Li, H.; Fu, L.; Long, X.; Liu, L.; Zeng, Z. A study on overcharge behavior of high-power type lithium-ion battery with
Li(Ni1/3Mn1/3Co1/3)O2 as cathode material. J. Therm. Anal. Calorim. 2023, 148, 5423–5435. [CrossRef]

135. Magne-Tang, N.; Decaux, C.; Thivel, P.X.; Lefrou, C. Exploring the Discharge Performance of Li-ion Batteries Using Ohmic Drop
Compensation. Batteries 2023, 9, 451. [CrossRef]

136. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation
among the whole life cycle. eTransportation 2019, 1, 100005. [CrossRef]

137. Surya, S.; Mohan, K.; Chhetri, A.; Williamson, S. Software Tools and Datasets for Battery Management System Applications.
TechRxiv. Preprint. 2023. [CrossRef]

138. Saha, B.; Goebel, K. Battery Data Set. NASA Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA, USA,
2007. Available online: https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-
set-repository/ (accessed on 9 May 2024).

139. Luzi, M. Automotive Li-ion Cell Usage Data Set. IEEE Dataport. 2018. Available online: https://ieee-dataport.org/documents/
automotive-li-ion-cell-usage-data-set (accessed on 9 May 2024).

140. Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al.
Automotive Li-ion Cell Usage Data Set. 2018. Available online: https://data.matr.io/1/projects/5d80e633f405260001c0b60a
(accessed on 9 May 2024).

141. Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al.
Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402. [CrossRef]

142. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.
Cycle Life Prediction Dataset. 2019. Available online: https://data.matr.io/1/projects/5c48dd2bc625d700019f3204 (accessed on
9 May 2024).

http://dx.doi.org/10.1016/j.ijhydene.2021.07.004
http://dx.doi.org/10.1002/fuce.202100002
http://dx.doi.org/10.1016/j.jpowsour.2023.232771
http://dx.doi.org/10.1016/j.ijhydene.2019.01.190
http://dx.doi.org/10.3390/su13031170
http://dx.doi.org/10.1016/j.electacta.2024.144360
http://dx.doi.org/10.3390/en16145507
http://dx.doi.org/10.1038/s41524-018-0064-0
http://dx.doi.org/10.1109/EEEIC.2017.7977864
http://dx.doi.org/10.1109/SPEEDAM.2018.8445275
http://dx.doi.org/10.1016/j.jpowsour.2016.12.011
http://dx.doi.org/10.1149/2.0951608jes
http://dx.doi.org/10.1016/j.jpowsour.2022.232477
http://dx.doi.org/10.1016/j.jpowsour.2013.12.099
http://dx.doi.org/10.1016/j.est.2021.103226
http://dx.doi.org/10.1016/j.jpowsour.2015.12.026
http://dx.doi.org/10.3390/pr10061192
http://dx.doi.org/10.1007/s10973-023-12076-6
http://dx.doi.org/10.3390/batteries9090451
http://dx.doi.org/10.1016/j.etran.2019.100005
http://dx.doi.org/10.36227/techrxiv.21903531.v1
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://ieee-dataport.org/documents/automotive-li-ion-cell-usage-data-set
https://ieee-dataport.org/documents/automotive-li-ion-cell-usage-data-set
https://data.matr.io/1/projects/5d80e633f405260001c0b60a
http://dx.doi.org/10.1038/s41586-020-1994-5
https://data.matr.io/1/projects/5c48dd2bc625d700019f3204


Sustainability 2024, 16, 6042 28 of 29

143. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.
Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [CrossRef]

144. Kollmeyer, P. Panasonic 18650PF Li-ion Battery Data. Mendeley Data. 2018. Available online: https://data.mendeley.com/
datasets/wykht8y7tg/1 (accessed on 9 May 2024).

145. Zhao, R.; Kollmeyer, P.J.; Lorenz, R.D.; Jahns, T.M. A compact unified methodology via a recurrent neural network for accurate
modeling of lithium-ion battery voltage and state-of-charge. In Proceedings of the 2017 IEEE Energy Conversion Congress and
Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 5234–5241. [CrossRef]

146. Herring, P.; Gopal, C.B.; Aykol, M.; Montoya, J.H.; Anapolsky, A.; Attia, P.M.; Gent, W.; Hummelshøj, J.S.; Hung, L.; Kwon, H.K.;
et al. Battery Evaluation and Early Prediction (BEEP). Git Repository. 2020. Available online: https://github.com/TRI-AMDD/
beep(accessed on 9 May 2024).

147. Herring, P.; Gopal, C.B.; Aykol, M.; Montoya, J.H.; Anapolsky, A.; Attia, P.M.; Gent, W.; Hummelshøj, J.S.; Hung, L.; Kwon, H.K.;
et al. BEEP: A Python library for Battery Evaluation and Early Prediction. SoftwareX 2020, 11, 100506. [CrossRef]

148. Buteau, S. Universal Battery Database. Git Repository. 2020. Available online: https://github.com/Samuel-Buteau/universal-
battery-database (accessed on 9 May 2024).

149. Institute, H.N.E. Alawa-Toolbox. Available online: https://www.hnei.hawaii.edu/alawa-toolbox/ (accessed on 20 June 2024).
150. Dubarry, M.; Berecibar, M.; Devie, A.; Anseán, D.; Omar, N.; Villarreal, I. State of health battery estimator enabling degradation

diagnosis: Model and algorithm description. J. Power Sources 2017, 360, 59–69. [CrossRef]
151. VISHAY INTERTECHNOLOGY. E Series Power MOSFET.Rev. A. 2019. Available online: https://www.vishay.com/docs/9229

5/siha11n80ae.pdf (accessed on 9 May 2024).
152. Toshiba Electronic Devices & Storage Corporation. MOSFETs Silicon Carbide N-Channel MOS. Rev. 2. 2022. Available

online: https://toshiba.semicon-storage.com/info/TW015N120C_datasheet_en_20220615.pdf?did=143221&prodName=TW0
15N120C (accessed on 9 May 2024).

153. Vishay Intertechnology. Aluminum Electrolytic Capacitors SMD (Chip), Very Low Z. 2024. Available online: https://www.
vishay.com/docs/28395/150crz.pdf (accessed on 9 May 2024).

154. KEMET Electronics Corporation. Surface Mount Hybrid Aluminum Polymer Capacitors. 2024. Available online: https:
//content.kemet.com/datasheets/KEM_A4098_A780.pdf (accessed on 9 May 2024).

155. Ma, L.; Xu, H.; Huang, A.Q.; Zou, J.; Li, K. IGBT Dynamic Loss Reduction through Device Level Soft Switching. Energies 2018, 11,
1182. [CrossRef]

156. Graditi, G.; Adinolfi, G. Temperature influence on photovoltaic power optimizer components reliability. In Proceedings of the
International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy,
22–24 June 2022; pp. 1113–1118. [CrossRef]

157. Hu, Y.; Shi, P.; Li, H.; Yang, C. Health Condition Assessment of Base-Plate Solder for Multi-Chip IGBT Module in Wind Power
Converter. IEEE Access 2019, 7, 72134–72142. [CrossRef]

158. Khalil, M.; Soulatiantork, P. Reliability assessment of PV inverters. In Proceedings of the 14th IMEKO TC10 Workshop Technical
Diagnostics New Perspectives in Measurements, Tools and Techniques for System’s Reliability, Maintainability and Safety, Milan,
Italy, 27–28 June 2016.

159. Hu, Z.; Ge, X.; Xie, D.; Zhang, Y.; Yao, B.; Dai, J.; Yang, F. An Aging-Degree Evaluation Method for IGBT Bond Wire with Online
Multivariate Monitoring. Energies 2019, 12, 3962. [CrossRef]

160. Faults in LVDC Microgrids with Front-End Converters. Technical Application Papers N. 14, ABB S.p.A., 2021. Available online:
https://library.e.abb.com/public/d772a7b5e0d0428fbc66ea24fe04be65/1SDC007113G0201_QT14%202021_EN.pdf (accessed on 9
May 2024).

161. Kullaa, J. Detection, identification, and quantification of sensor fault in a sensor network. Mech. Syst. Signal Process. 2013,
40, 208–221. [CrossRef]

162. Jiang, L.; Djurdjanovic, D.; Ni, J.; Lee, J. Sensor Degradation Detection in Linear Systems. In Proceedings of the Engineering
Asset Management, Gold Coast, Australia, 11–14 July 2006; pp. 1252–1260. [CrossRef]

163. Hau, F.; Baumgärtner, F.; Vossiek, M. Influence of vibrations on the signals of automotive integrated radar sensors. In Proceedings
of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19-21 March
2017; pp. 159–162. [CrossRef]

164. Huang, Y.; Gertler, J.; McAvoy, T.J. Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions.
J. Process. Control. 2000, 10, 459–469. [CrossRef]

165. Zhang, X.; Parisini, T.; Polycarpou, M.M. Sensor bias fault isolation in a class of nonlinear systems. IEEE Trans. Autom. Control.
2005, 50, 370–376. [CrossRef]

166. Liu, L.; Zhao, F.; Yi, L.; Peng, M.; Lu, B.; Wang, T.; Shen, J. Fault Test Analysis of Abnormal Remaining Amount of Smart Meter.
In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 7–30 April 2023; pp. 1366–1370.
[CrossRef]

167. Lei, Z.Q.; Li, G.J.; Egelhoff, W.F.; Lai, P.T.; Pong, P.W.T. Review of Noise Sources in Magnetic Tunnel Junction Sensors. IEEE Trans.
Magn. 2011, 47, 602–612. [CrossRef]

http://dx.doi.org/10.1038/s41560-019-0356-8
https://data.mendeley.com/datasets/wykht8y7tg/1
https://data.mendeley.com/datasets/wykht8y7tg/1
http://dx.doi.org/10.1109/ECCE.2017.8096879
https://github.com/TRI-AMDD/beep
https://github.com/TRI-AMDD/beep
http://dx.doi.org/10.1016/j.softx.2020.100506
https://github.com/Samuel-Buteau/universal-battery-database
https://github.com/Samuel-Buteau/universal-battery-database
https://www.hnei.hawaii.edu/alawa-toolbox/
http://dx.doi.org/10.1016/j.jpowsour.2017.05.121
https://www.vishay.com/docs/92295/siha11n80ae.pdf
https://www.vishay.com/docs/92295/siha11n80ae.pdf
https://toshiba.semicon-storage.com/info/TW015N120C_datasheet_en_20220615.pdf?did=143221&prodName=TW015N120C
https://toshiba.semicon-storage.com/info/TW015N120C_datasheet_en_20220615.pdf?did=143221&prodName=TW015N120C
https://www.vishay.com/docs/28395/150crz.pdf
https://www.vishay.com/docs/28395/150crz.pdf
https://content.kemet.com/datasheets/KEM_A4098_A780.pdf
https://content.kemet.com/datasheets/KEM_A4098_A780.pdf
http://dx.doi.org/10.3390/en11051182
http://dx.doi.org/10.1109/SPEEDAM.2012.6264560
http://dx.doi.org/10.1109/ACCESS.2019.2918029
http://dx.doi.org/10.3390/en12203962
https://library.e.abb.com/public/d772a7b5e0d0428fbc66ea24fe04be65/1SDC007113G0201_QT14%202021_EN.pdf
http://dx.doi.org/10.1016/j.ymssp.2013.05.007
http://dx.doi.org/10.1007/978-1-84628-814-2_138
http://dx.doi.org/10.1109/ICMIM.2017.7918881
http://dx.doi.org/10.1016/S0959-1524(00)00021-4
http://dx.doi.org/10.1109/TAC.2005.843875
http://dx.doi.org/10.1109/PandaFPE57779.2023.10140559
http://dx.doi.org/10.1109/TMAG.2010.2100814


Sustainability 2024, 16, 6042 29 of 29

168. Grouz, F.; Sbita, L.; Boussak, M. Current sensors gain faults detection and isolation based on an adaptive observer for PMSM
drives. In Proceedings of the 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), Hammamet,
Tunisia, 18–21 March 2013; pp. 1–6. [CrossRef]

169. Yang, Q.; Wang, J. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location. Entropy 2015, 17,
7101–7117. [CrossRef]

170. Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication Technologies for Smart Grid: A Comprehensive Survey. Sensors 2021, 21,
8087. [CrossRef] [PubMed]

171. Xinyu, D.; Yin, H.; Yang, H.; Yue, H.; Xiaoyong, Q.; Yu, J.; Jie, Q.; Lin, L. Demonstration of chaotic-laser based WDM-PON secure
optical communication and real-time online fiber-fault detection and location. In Proceedings of the 2015 Opto-Electronics and
Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [CrossRef]

172. Chun-Kit, C.; Tong, F.; Lian-Kuan, C.; Keang-Po, H.; Lam, D. Fiber-fault identification for branched access networks using a
wavelength-sweeping monitoring source. IEEE Photonics Technol. Lett. 1999, 11, 614–616. [CrossRef]

173. Gardner, F. A BPSK/QPSK Timing-Error Detector for Sampled Receivers. IEEE Trans. Commun. 1986, 34, 423–429. [CrossRef]
174. Yuan, W.; Shi, Q.; Wu, N.; Guo, Q.; Huang, X. Gaussian Message Passing Based Passive Localization in the Presence of Receiver

Detection Failures. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6
June 2018; pp. 1–5. [CrossRef]

175. Li, F.; Luo, B. Preserving data integrity for smart grid data aggregation. In Proceedings of the 2012 IEEE Third International
Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 366–371. [CrossRef]

176. Kim, H.; Hwang, I.; Lee, J.; Yeom, H.Y.; Sung, H. Concurrent and Robust End-to-End Data Integrity Verification Scheme for
Flash-Based Storage Devices. IEEE Access 2022, 10, 36350–36361. [CrossRef]

177. Jamil, N.; Qassim, Q.S.; Bohani, F.A.; Mansor, M.; Ramachandaramurthy, V.K. Cybersecurity of Microgrid: State-of-the-Art
Review and Possible Directions of Future Research. Appl. Sci. 2021, 11, 9812. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/SSD.2013.6564061
http://dx.doi.org/10.3390/e17107101
http://dx.doi.org/10.3390/s21238087
http://www.ncbi.nlm.nih.gov/pubmed/34884092
http://dx.doi.org/10.1109/OECC.2015.7340182
http://dx.doi.org/10.1109/68.759416
http://dx.doi.org/10.1109/TCOM.1986.1096561
http://dx.doi.org/10.1109/VTCSpring.2018.8417730
http://dx.doi.org/10.1109/SmartGridComm.2012.6486011
http://dx.doi.org/10.1109/ACCESS.2022.3163729
http://dx.doi.org/10.3390/app11219812

	Introduction
	Materials and Methods
	Caveats
	Anomalies and Faults in PV Systems
	Anomalies and Faults in Wind Turbines
	Anomalies and Faults in Electrolyzers
	Anomalies and Faults in Fuel Cells
	Anomalies and Faults in Battery Systems
	Anomalies and Faults in DC/x Conversion Systems
	Anomalies and Faults in Monitoring Systems
	Anomalies and Faults in Communication Systems

	Conclusions
	References

