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Abstract: Accidents are events that occur unexpectedly during production or daily activities, causing
personal injury or property damage. Analyzing accident trends and their influencing factors is
crucial for policymakers to develop effective management systems and preventive measures, thereby
significantly enhancing accident prevention strategies and promoting sustainability in construction
practices. This study focuses on accidents in China’s construction industry from 2008 to 2020,
examining the macro factors that influence the growth rate of construction accidents and their
underlying mechanisms. By employing a system dynamics model with incorporated delay functions,
this study simulates the impact of 15 macro factors on the accident growth rate. The findings
reveal that improvements in factors such as the power equipment rate and safety investments not
only substantially reduce accident frequency, but also contribute to the sustainable development
of construction practices by promoting safer and more resource-efficient methods. Furthermore,
the introduction of delay functions validates the lag effects of various factors, emphasizing their
long-term cumulative impact on both safety and sustainability. The simulation results demonstrate
that the system dynamics model accurately reflects the actual growth trends of construction accidents,
providing robust scientific evidence for policymakers. This study enhances the understanding of the
mechanisms driving construction safety accidents and offers theoretical support for the formulation
of effective and sustainable safety management policies.

Keywords: building construction; macro influencing factors; system dynamics; time-lag correlation
analysis; scenario simulation

1. Introduction

The construction industry is vital to China’s national economy, significantly con-
tributing to economic growth and development. It plays a crucial role in infrastructure
development and urbanization processes in China, directly and indirectly stimulating
employment and generating substantial income [1]. Statistical data indicate that the pro-
portion of the construction industry in the national economy has been increasing annually,
with its output value as a percentage of GDP continually rising, thus becoming one of
the key drivers of economic growth [2]. However, with the rapid expansion of cities and
the increase in construction activities, safety management measures in the construction
industry have failed to improve in tandem. During the construction of building projects,
safety accidents are frequently triggered by improper operation, equipment failures, mis-
management, and environmental factors, resulting in casualties and property losses, and
causing great suffering to society and families [3,4].
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In order to minimize workplace injuries and fatalities, while promoting sustainable
practices that ensure the long-term health and viability of the construction industry, nu-
merous scholars have conducted in-depth studies on construction safety issues, proposing
various improvement measures and theoretical models. However, despite the development
of accident research on a systematic level, current safety management studies still tend to
focus on micro-level analyses of unsafe behaviors on construction sites [5]. Sanni-Anibire
et al. [6] collected data from safety professionals at 15 large construction sites in the Eastern
Province of Saudi Arabia. By employing pairwise comparison and rank-weighted survey
methods, they developed a risk assessment method to enhance the safety performance
in construction projects. The results indicated that “falling objects” posed the highest
risk, primarily due to strong winds at the construction sites. Manzoor et al. [7] collected
feedback data from contractors, clients, and consultants through questionnaires to identify
the key safety factors leading to accidents in high-rise building projects in Malaysia. The
findings revealed that “falls from roofs/floors” were the most critical safety factor, and
recommendations were made to mitigate these factors’ impact. Yılmaz [8] assessed the
relationship between construction site safety measures and workers’ actual and perceived
knowledge of these measures through face-to-face questionnaires and bivariate correlation
analysis. The study found that workers’ knowledge of occupational health and safety
measures was significantly lower than their perceived level, but certain protective measures
could significantly enhance workers’ safety awareness.

This research tendency neglects the discussion of macro-level accident-influencing
factors, resulting in a lack of systematic and forward-looking overall safety management
strategies [9]. The primary reason lies in the difficulties encountered in exploring macro-
level accident-influencing factors, which mainly center around the numerous factors that
need to be considered [10]. From the perspectives of economics, politics, society, culture,
and ecological civilization, a considerable number of related elements can be extended [11],
requiring interdisciplinary theoretical support and complex data analysis. Some studies
have consciously shifted from the micro-level to the macro-level. Cai et al. [12] proposed a
Bayesian integrated spatial collision frequency model, which links the number of collisions
at the macro- and micro-levels based on spatial interactions, simultaneously identifying
macro and micro factors that lead to collisions. Wang et al. [13] utilized time series data
of human injuries and mortality rates to determine the causal factors of accident severity
over time, evaluated the severity of traffic accidents in China from a macro perspective,
and proposed effective countermeasures to reduce traffic accident fatalities. Lee and
Abdel-Aty [14] used a multivariate Bayesian Poisson log-normal conditional autoregressive
(CAR) model to identify factors influencing the locations of bicycle accidents and the
residences of frequent accident-prone cyclists, providing a basis for implementing effective
safety measures.

However, while the impact of macro-level accident-influencing factors on accidents
is widely recognized [15], their effects differ from those at the micro-level and may not
manifest immediately. For instance, economic indicators often precede accidents [16], with
their impacts not being immediately apparent, but influencing future accidents, indicating
a lag in their effects. Conversely, the effects can also be delayed in the other direction.
The existing research has demonstrated that the impact of influencing factors on accidents
changes over time, resulting in different short-term and long-term outcomes [17], echoing
the principles of sustainability where long-term planning and impact assessments are
crucial. Thus, understanding and determining whether a particular factor itself has a
minimal impact on accidents or if the long cycle of its impact renders its effects less
apparent becomes a significant challenge in the study of macro-level factors [18].

The emergence of system dynamics provides a powerful means to address the above-
mentioned issues. This method eschews external disturbances or random events and
employs the system science principle that “every system has a structure, and the structure
of the system determines its function”. It investigates the core issues from the perspective
of causal feedback among internal elements within the system structure [19], making it
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an ideal approach to model the complex interrelations between construction safety and
sustainability. Consequently, existing research has applied system dynamics theory to
analyzing accident patterns, utilizing the findings for safety decision making, management,
and control. For instance, Liu et al. [20] used system dynamics to simulate multi-player
evolutionary games, examining the effectiveness of coal mine safety regulation through
such games. They concluded that the coal mine safety performance is influenced not only
by government safety regulations, but also, to some extent, by the game interactions of
non-safety regulations within related internal and external industries. Zhang et al. [21]
employed system dynamics methods and Vensim 9.2.3 software to establish causal mech-
anisms and loop diagrams for emergency processes, analyzing factors such as on-site
material demand gaps, the number of people in safe zones, the number of vehicles in safe
zones, the amount of disposal information, and system dynamic evolution behavior on
the observed values. Similarly, Park and Park [22] utilized system dynamics to under-
stand the process industries’ complex socio-technical safety systems. They monitored and
predicted the safety performance within organizations, identifying key components of
the safety system through various scenarios and providing valuable safety insights for
decision makers.

To address the complexity and time-lag effects of macro-level accident-influencing
factors, this paper selects production safety accidents in the construction industry as the
study’s starting point. Using data on the number of construction safety accidents in China
from 2008 to 2020, this study focuses on the growth rate of accident occurrences as the
research subject and analyzes the factors influencing it. A dynamic model is constructed
using system dynamics methods to simulate the interactions and feedback mechanisms
between different influencing factors, thereby revealing the complex process of accident
occurrence. A delay function is introduced by considering the differences in how macro-
level factors in the construction production industry affect the number of accidents over
time. This function analyzes how these indicators influence construction safety over time
and simulates the impact results to uncover the accident mechanisms within macro-level
factors. This study explores changes in various indicators that can reduce the growth rate
of accidents, providing theoretical support for policy making, and aligning these policies
with sustainable construction practices.

2. Materials and Methods
2.1. Analysis of Factors Influencing Accident Rate

In the early 21st century, many scholars conducted statistical analyses on China’s safety
production situation, exploring the intrinsic relationships between safety production and
economic and social factors. These studies have provided a theoretical basis for selecting
indicators related to construction industry accidents. The indicators primarily involve
economic and policy aspects, but also include social and cultural factors [23]. Current re-
search mainly focuses on economic development indicators, confirming a strong correlation
between safety production and economic development [24]. By analyzing domestic and
international research [25,26], it has been summarized that the most significant factors in-
fluencing the state of safety production include the economic development level, industrial
structure, social structure, population employment, and policy intervention. Therefore,
the macro-level regulation of these major relevant factors will be conducive to improving
safety conditions and fostering sustainable growth in the construction sector.

The National Bureau of Statistics (NBS) has continuously recorded the number of
building construction accidents in the country since 2008, and the number of accidents
and the growth rate each year are shown in Table 1. This work selects 15 indicators
affecting building construction accidents at the macro level from 2008 to 2020 as raw
data, and their definitions and units are shown in Table 2. These 15 indicators can be
divided into five different categories: economic and income-related indicators, construction
production- and scale-related indicators, real estate development-related indicators, labor
productivity-related indicators, and construction safety- and equipment-related indica-
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tors. This classification provides a comprehensive framework for analyzing the various
factors affecting construction safety, including broad economic conditions, specific industry
practices, and technological advancements.

Table 1. Number and Growth Rate of Building Construction Accidents in China, 2008–2020.

Time (Year) Number of Accidents Accident Growth Rate Time (Year) Number of Accidents Accident Growth Rate

2008 778 0 2015 442 −0.153256705
2009 684 −0.113989637 2016 634 0.43438914
2010 627 −0.083333333 2017 692 0.09148265
2011 589 −0.060606061 2018 734 0.060693642
2012 487 −0.173174873 2019 773 0.053133515
2013 528 0.084188912 2020 689 −0.102199224
2014 522 −0.011363636

Table 2. Definitions and units of selected indicators.

Indicators Units Definition

Gross Domestic
Product (GDP) CNY 100 million yuan

The total final output of all resident units in a country or region
during a certain period, reflecting the economic situation of the

country or region.

Monthly income of migrant
construction workers CNY

The monthly income of migrant construction workers refers to the
total labor remuneration obtained by migrant workers engaged in the

construction industry each month, including wages, bonuses,
allowances, and subsidies. This indicator reflects the income level of

workers in the construction industry.

Construction area of
residential buildings in the

construction industry
10,000 square meters

The construction area of residential buildings in the construction
industry refers to the total area of houses under construction by

construction enterprises during the reporting period, including new
construction, expansion, and renovation. This indicator reflects the

production scale and activity level of the construction industry.

Completed area of
residential buildings in the

construction industry
10,000 square meters

The completed area of residential buildings in the construction
industry refers to the total area of houses completed and handed over
for use by construction enterprises during the reporting period. This

indicator reflects the actual output and completion status of the
construction industry.

Land area purchased by real
estate development

enterprises
10,000 square meters

The land area purchased by real estate development enterprises
refers to the land area obtained by real estate development

enterprises through various means during the reporting period. This
indicator reflects the activity of real estate development enterprises in

the land market.

Land area awaiting
development by real estate
development enterprises

10,000 square meters

The land area awaiting development by real estate development
enterprises refers to the land area that has been approved by relevant

departments and obtained land use rights through various means,
but has not yet started construction. This indicator reflects the future

development potential and reserves of real estate
development enterprises.

Gini coefficient of per capita
disposable income of

national residents
None

The Gini coefficient of per capita disposable income of national
residents is an indicator that reflects the fairness of income

distribution, with values ranging between 0 and 1.

Safety investment in the
construction industry CNY 100 million

Safety investment in the construction industry refers to various
expenditures made by construction enterprises to ensure safe

production during the production process, including safety training,
purchase and maintenance of safety equipment, safety inspections,

etc. This indicator reflects the importance and investment of
enterprises in safe production.
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Table 2. Cont.

Indicators Units Definition

Labor productivity of
construction enterprises CNY/person

Labor productivity of construction enterprises refers to the output
value created by each employee of construction enterprises during a

certain period. This indicator reflects the production efficiency of
construction enterprises and the work efficiency of workers.

Total number of owned
construction machinery and

equipment
units

The total number of owned construction machinery and equipment
refers to the total number of various types of construction machinery

and equipment owned by construction enterprises. This indicator
reflects the mechanization level and construction

capacity of enterprises.

Total power of owned
construction machinery and

equipment
(Kw)

The total power of owned construction machinery and equipment
refers to the total power of all construction machinery and equipment
owned by construction enterprises. This indicator reflects the overall

energy and construction capacity of enterprise
machinery and equipment.

Technical equipment rate of
construction enterprises CNY/person

The technical equipment rate of construction enterprises is the value
of mechanical equipment that belongs to fixed assets per person on

average, reflecting the level of enterprise mechanical equipment. This
indicator reflects the investment and technical level of enterprises in

technical equipment.

Power equipment rate of
construction enterprises (Kw/person)

The power equipment rate of construction enterprises is the ratio of
the total power of owned mechanical equipment at the end of the

year to the number of all employees or workers at the end of the year.
This indicator reflects the investment and technical level of

enterprises in power equipment.

Total output value of the
construction industry CNY 100 million

The total output value of the construction industry refers to the total
value of construction industry products and services produced by
construction enterprises in a certain period, expressed in monetary

terms. This indicator reflects the total output and economic
contribution of the construction industry.

Value-added of the
construction industry CNY 100 million

The value-added of the construction industry refers to the final
results of construction industry production and business activities

expressed in monetary terms by construction enterprises during the
reporting period. It is the new value created in the production

process of enterprises. This indicator reflects the contribution of the
construction industry to economic growth.

Each category plays a unique role in understanding and predicting construction safety
accidents. Economic indicators provide the overall economic environment in which the
construction industry operates [27]. Considering that the majority of front-line workers
in China’s construction industry are migrant workers [28], their income can represent the
employees working on the front line. In the statistical reports published in China, the
monthly income of migrant construction workers is also used as an important indicator.
Therefore, considering China’s national conditions, the Gross Domestic Product (GDP),
the Gini coefficient of per capita disposable income of national residents, and the monthly
income of migrant construction workers were selected. Construction production and scale
indicators help to understand the activity level of the industry and the potential safety chal-
lenges associated with growth [29], selecting the construction area of residential buildings
in the construction industry, completed area of residential buildings in the construction
industry, total output value of the construction industry, and value-added of the con-
struction industry. Real estate development indicators help to predict future construction
activities and related risks [30], selecting land areas purchased by real estate development
enterprises and land areas awaiting development by real estate development enterprises.
Labor productivity indicators reveal the labor situation and its potential impact on safety
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practices [31], selecting the labor productivity of construction enterprises as an indicator.
Construction safety and equipment indicators directly reflect the industry’s commitment to
safety measures and the level of mechanization and technological progress [32], selecting
safety investment in the construction industry, the total number of owned construction ma-
chinery and equipment, the total power of owned construction machinery and equipment,
the technical equipment rate of construction enterprises, and the power equipment rate of
construction enterprises. These categories collectively provide a multi-faceted approach
to analyzing construction safety from a macro perspective, representing economic, policy,
and social development levels to a certain extent, allowing us to more comprehensively
understand the factors leading to safety accidents in the construction industry.

As the economy and productivity develop, the scale of the construction industry
continues to expand and the values of various indicators keep rising. Therefore, comparing
absolute values lacks objectivity and generality. To address this, this paper employs the
first-order growth rates of these indicators for the relevant research. By dimensionless
processing, this approach more objectively reflects the correlation between various factors
and construction accidents. The processed growth rate indicators are sequentially labeled
as R1, R2..., and R15, and the growth rate of accident occurrences is labeled as R0.

The trends of various factor indicators (denoted as R1–R15) and the growth rate of
accident occurrences (A) are shown in Figure 1. It can be observed that the growth rate of
accident occurrences is highly volatile, with a notable spike in 2016. This spike is related to
the fact that 2015 saw the lowest number of accidents in recent years. The “Regulations
and Standards for Qualification Management of Construction Enterprises” issued at the
beginning of 2015 inadvertently increased the pressure on enterprises. Although the
construction enterprises obtained the corresponding qualifications, they did not necessarily
meet the qualification standards in practice. The “qualification certificate renewal” process
under the new standards required the formulation of new assessment criteria [33]. To
ensure the validity of qualifications, enterprises paid more attention to safety production
and strictly implemented various regulations, resulting in a moderately tense state across
the industry, which reduced the probability of accidents. However, the “Notice on Issues
Related to the Qualification Management of Construction Enterprises” issued in October of
the same year simplified the reassessment process to a mere certificate renewal, quickly
relieving the pressure on enterprises. The relaxation following this period of moderate
pressure led to a surge in accidents in 2016.

Additionally, 2015 was a challenging year for construction enterprises, characterized by
high personnel costs, difficulties in managing new and old projects, and a sluggish market,
which exposed various problems within enterprises. Large and medium-sized enterprises
faced bankruptcy and closure. Moreover, implementing the Public–Private Partnership
(PPP) model, the nationwide unification of the construction market, industrialization,
and major adjustments in leadership teams contributed to the historic low number of
construction accidents in 2015, but also highlighted the need for sustainable practices to
mitigate these systemic risks.

However, Figure 1 does not adequately demonstrate a strong correlation between the
various indicators and the growth rate of accident occurrences. The possible reasons for
this could be that the individual factors’ trends have little correlation with construction
accidents, meaning there is no inherent mutual influence. Another reason might be that
the changes in these factors do not immediately impact accidents; their effects might only
become evident over time, highlighting the need for sustainable, long-term safety strategies
that consider the gradual influence of these indicators.

According to the relationship between the trajectories of different variables and the
benchmark variable, statistical indicators can be categorized into leading, coincident, and
lagging indicators. This paper aims to explore which category each of the 15 indicators falls
into relative to the growth rate of construction safety accidents, the primary subject of this
study, and to what extent they are correlated. This analysis supports sustainable decision
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making by identifying indicators that can predict or prevent accidents before they occur,
promoting a proactive approach to safety management.
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2.2. Model Construction

Considering that there are also certain relationships among R1-R15 and that, from a
macro perspective, they collectively influence R0, taking all these relationships into account
will form a relatively complex system. System dynamics is suitable for analyzing complex
system problems, where the research object is usually divided into multiple interrelated
and interacting subsystems [34]. Since this study aims to design a system with all factors
mutually related, its structure is unique and aligns with the characteristics of a complex
system. Therefore, this section employs the system dynamics method to analyze in detail
the logical relationships among different influencing factors and to simulate the changing
trends of the accident occurrence growth rate, thereby deepening the study of variables
that influence accident growth.

To establish an effective system dynamics model, the following three aspects need to
be discussed: (1) Clarify the purpose of the system simulation and identify the key issues.
(2) Determine the system boundaries to ensure that the system is neither influenced by
external environmental factors nor controlled by internal factors. (3) Based on the boundary
delineation, establish the assumptions of the model [35].

2.2.1. System Objectives

This study aims to analyze the factors influencing construction safety accidents and
organize the factors within the influencing subsystems. This study examines the impact
of multiple factors on the accident growth rate. Constructing a system dynamics model
aims to comprehensively understand the process of changes in the accident occurrence
rate and to analyze the relationships among the various factors involved in these changes.
Additionally, this study explores the impact of the mutual constraints of these factors on the
results. This approach provides guidance for the macro-level prediction of safety accidents,
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continuously optimizes prediction methods, and offers practical and effective analytical
methods for the macro-level analysis of safety conditions.

2.2.2. System Boundaries

Defining the system boundaries influences the system structure and internal factors,
and it is a critical aspect of system dynamics modeling. This step requires aligning with
the modeling objectives and the research subject, focusing on the core issues. This study
focuses on construction safety accidents in China, examining the interdependencies among
15 indicators potentially influencing accidents and their impact on the accident growth rate.
Therefore, this study takes the changes in the accident growth rate from 2009 to 2020 as
the core subject and the changes in each influencing indicator as the participating subjects.
These form various subsystems, all included within the system boundaries.

2.2.3. Model Assumptions

Given the complexity and numerous factors influencing the model’s construction,
it is not feasible to include all influencing factors. To ensure the smooth operation of
the model, the following basic assumptions are made in line with the system objectives
and boundaries:

H1: The change in the number of construction safety accidents nationwide is a continuously
evolving dynamic process, driven by the interaction and feedback of the elements within the model.

H2: The data used in the model are processed growth rate data derived from the original raw
data values. The growth rate of accident occurrences is the level variable, while the others are rate
variables.

H3: The trend of the growth rate of accident occurrences is related to the 15 involved indica-
tors, primarily considering economic and policy impacts and their implications for sustainable
industry practices.

H4: The model is only influenced by factors within the system boundaries, excluding external factors
(such as other economic indicators, policies, unforeseen events, etc.) that could cause disruptions or
system collapse.

2.3. Causal Relationships and Stock-Flow Diagrams

A causal loop diagram can visually represent the feedback relationships among var-
ious elements within a system [36]. Based on the analysis of causal relationships and
relevant influencing factors, this paper depicts the changes in the accident growth rate
influenced by 15 indicator factors. Initially, leading indicators are identified as causes and
lagging indicators as effects, although there are mutual causal relationships among the
indicators. Within the system boundaries, 15 subsystems are established. Each subsystem
treats the growth rates of the 15 indicators as level variables, while other quantities are con-
sidered rate variables. Due to the complexity of the constructed stock-flow diagram, which
includes numerous lines, it is challenging to clearly represent the relationships among the
subsystems. Therefore, Figure 2a omits the connection lines of the influence changes on the
subsystems for clarity, and Figure 2b uses a causal tree to simplify the representation of the
multi-factor feedback process.

In this model, the red and blue arrows represent different causal relationships: red
arrows indicate increments (pointing to Increment) or decrements (pointing to Decrement)
in the growth rate of construction accidents. Red arrows pointing to Increment (such as
R5) signify that an increase in a subsystem leads to an increase in the construction acci-
dent growth rate, whereas red arrows pointing to Decrement (such as R13) signify that
an increase in a subsystem leads to a decrease in the construction accident growth rate.
The blue arrows indicate the impact of growth rate changes in other subsystems on the
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GDP growth rate (GDP GR r1), showing how changes in the subsystems feedback into
the overall system by affecting the GDP growth rate. The impact of each subsystem on
the overall system is indicated by “+” or “−”, where “+” signifies that an increase in the
subsystem leads to an increase in the growth rate, and “−” signifies that an increase in the
subsystem leads to a decrease in the growth rate. Correctly understanding feedback loops
is crucial for accurately describing system behavior and assessing sustainability. There
are two main types of feedback loops: reinforcing loops and balancing loops. These loops
are significant for the sustainability of the construction industry. Reinforcing loops refer
to changes in a variable within the system that, through a series of causal relationships,
ultimately feedback to it, further amplifying its change. For example, in the reinforcing
loop of construction industry value-added growth, an increase in the GDP growth rate
drives an increase in the construction area and gross construction output, which in turn
increases the construction industry value added. This leads to a rise in the construction
accident growth rate, prompting increased safety investment, which helps to reduce acci-
dent risk, thereby further promoting GDP growth, forming a complete reinforcing loop.
Similarly, in the reinforcing loop of technical equipment rate growth, an increase in the
GDP growth rate drives investment in and upgrading of technical equipment, enhancing
the technical equipment level. This helps to reduce the construction accident growth rate,
decrease the occurrence of accidents, and further promote GDP growth, also forming a
complete reinforcing loop. These reinforcing loops not only promote economic growth,
but also support the sustainability of the construction industry by improving the safety
and technological levels, contributing to long-term economic growth and safe production.
Balancing loops, on the other hand, refer to changes in a variable within the system that,
through a series of causal relationships, ultimately feedback to it and inhibit its change,
tending toward stability. For instance, in the resource consumption and regeneration loop,
an increase in the GDP growth rate leads to an expansion in the construction area, but also
results in the consumption of land resources. As the area of land awaiting development
decreases, resource scarcity limits further growth in construction areas. With the reduc-
tion in land resources, the construction accident growth rate rises, further restricting the
growth of construction areas, thereby inhibiting rapid GDP growth and forming a complete
balancing loop. This balancing loop highlights the importance of resource management
in the sustainable development of the construction industry, emphasizing the need to
consider environmental carrying capacity while pursuing economic growth to ensure that
the construction industry does not excessively consume resources or increase accident
rates during expansion, thereby promoting sustainable development. By incorporating the
construction accident growth rate into the causal chain and using a simplified causal tree
representation, we can more comprehensively understand the feedback mechanisms within
the system and the interactions between various subsystems. This provides a scientific
basis for formulating effective policies and management measures. The analysis of this
system dynamics model helps to understand and optimize sustainability strategies in the
construction industry, ensuring the effective management of resources and safety risks
while promoting economic growth. This offers comprehensive guidance and support for
the long-term sustainable development of the construction industry.
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3. System Dynamics Model Simulation
3.1. Calculation of Indicator Weights

This study utilizes the correlation coefficients between various indicators and the
accident growth rate as a standard to analyze the growth rate data from 2009 to 2020. The
highest correlation coefficient for each indicator with the accident growth rate is identified
and its absolute value is used for weight allocation. Based on the causal relationships,
positive and negative weights are assigned. The specific relationships are shown in Table 3.
The normalized weights reflect the degree and direction of each indicator’s impact on the
accident growth rate.
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Table 3. Calculation Results of Weights for R1–R15.

Evaluation
Object

Absolute Value of
Original Correlation

Coefficient

Absolute Value of
Correlation
Coefficient

Change
Magnitude Lag Periods Weight

of Lag Range Composite
Score

Normalized
Weight (with

Direction)

R1 0.081 0.299 0.218 3 0.1 0.189 0.233 −0.0330
R2 0.421 0.386 0.035 1 0.3 0.186 0.638 −0.0901
R3 0.344 0.409 0.065 1 0.3 0.211 0.650 −0.0919
R4 0.321 0.474 0.153 1 0.3 0.184 0.716 −0.1011
R5 0.282 0.271 0.011 3 0.1 0.569 0.278 0.0393
R6 0.211 0.246 0.035 3 0.1 0.600 0.269 0.0381
R7 0.404 0.244 0.16 3 0.1 0.042 0.225 0.0318
R8 0.516 0.309 0.207 1 0.3 0.401 0.795 −0.1123
R9 0.399 0.407 0.008 2 0.2 0.294 0.474 −0.0669

R10 0.238 0.296 0.058 3 0.1 0.350 0.236 −0.0334
R11 0.357 0.333 0.024 1 0.3 0.261 0.611 −0.0863
R12 0.082 0.407 0.325 3 0.1 0.372 0.401 −0.0567
R13 0.058 0.199 0.141 2 0.2 0.413 0.391 0.0552
R14 0.077 0.259 0.182 1 0.3 0.250 0.582 −0.0822
R15 0.007 0.246 0.239 1 0.3 0.221 0.579 −0.0818

Based on the principles of system dynamics, Vensim software is used for system
simulation analysis. Taking subsystem R1 as an example, the input variable data are
provided. The system dynamics equations are constructed as follows:

(GDPgrowth) = Lookup[(2009, 0)− (2020, 0.3)], (2009, 0.0855208),
(2010, 0.176881), (2011, 0.216196), (2012, 0.103783),
(2013, 0.100975), (2014, 0.0853339), (2015, 0.0703818),
(2016, 0.0835249), (2017, 0.114739), (2018, 0.104857),
(2019, 0.0731377), (2020, 0.0274216)

(1)

Accident growth rate = INTEG (Increment–Decrement) (2)

In system dynamics, the INTEG function is used to calculate state variables, where the
equation implies that the level of accident growth rate is equal to the cumulative difference
between the rate of increase and decrease. The lookup table function is set to reflect the real
changes in the growth rates of various indicators over the years, making the simulation
more realistic. Similar lookup table functions are applied to other subsystem variables. The
dynamic equations are shown in Table 4.

Table 4. System Dynamics Equations for Each Subsystem.

System Variable Name Type System Dynamics Equations

Subsystem R1 GDP Growth Rate
Impact Change Rate

0.0850r2 + 0.0806r3 + 0.0817r4 − 0.0595r5 − 0.0846r6 −
0.1072r7 + 0.0646r8 − 0.0595r9 + 0.0411r10 + 0.0777r11 −

0.0495r12 + 0.0641r13 + 0.0737r14 + 0.071r15

Subsystem R2 Monthly Income Growth Rate
Impact Change Rate

0.0815r1 + 0.1103r3 + 0.1204r4 − 0.0405r5 − 0.0438r6 −
0.0537r7 + 0.0786r8 + 0.0772r9 + 0.064r10 + 0.0758r11 +

0.0578r12 + 0.0347r13 + 0.0872r14 + 0.0744r15

Subsystem R3 Construction Area Growth
Rate Impact Change Rate

0.0779r1 + 0.1112r2 + 0.1105r4 − 0.0604r5 − 0.0648r6 −
0.0438r7 + 0.0754r8 + 0.0744r9 + 0.035r10 + 0.0631r11 +

0.0529r12 + 0.0257r13 + 0.0996r14 + 0.1053r15

Subsystem R4 Completed Area Growth Rate
Impact Change Rate

0.0759r1 + 0.1167r2 + 0.1062r3 − 0.0643r5 − 0.0491r6 −
0.0639r7 + 0.0762r8 + 0.0782r9 + 0.0398r10 + 0.0574r11 +

0.0485r12 − 0.0358r13 + 0.0984r14 + 0.0897r15

Subsystem R5 Land Acquisition Area
Growth Rate Impact Change Rate

−0.0643r1 − 0.0456r2 − 0.0674r3 − 0.0747r4 − 0.0652r6
+ 0.0484r7 + 0.0626r8 − 0.1373r9 − 0.0671r10 − 0.0575r11

− 0.1095r12 + 0.0525r13 + 0.0874r14 − 0.0606r15

Subsystem R6 Undeveloped Land Area
Growth Rate Impact Change Rate

−0.0827r1 − 0.0447r2 − 0.0655r3 − 0.0517r4 − 0.059r5 −
0.0744r7 − 0.0393r8 − 0.1237r9 − 0.0847r10 − 0.0904r11

− 0.0847r12 − 0.0662r13 + 0.0674r14 + 0.0656r15
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Table 4. Cont.

System Variable Name Type System Dynamics Equations

Subsystem R7 Gini Coefficient Growth Rate
Impact Change Rate

−0.1125r1 − 0.0587r2 − 0.0476r3 − 0.0721r4 + 0.047r5 −
0.0799r6 + 0.0448r8 − 0.0865r9 − 0.1163r10 + 0.0734r11

− 0.0675r12 + 0.0653r13 − 0.0419r14 − 0.0864r15

Subsystem R8 Safety Investment Growth
Rate Impact Change Rate

0.0737r1 + 0.0936r2 + 0.0889r3 + 0.0935r4 + 0.0662r5 −
0.0459r6 + 0.0487r7 + 0.0803r9 + 0.0728r10 + 0.059r11 +

0.0703r12 + 0.0347r13 + 0.0861r14 + 0.0862r15

Subsystem R9 Labor Productivity Growth
Rate Impact Change Rate

−0.0542r1 + 0.0733r2 + 0.0701r3 + 0.0767r4 − 0.1159r5 −
0.1153r6 − 0.0751r7 + 0.0641r8 − 0.0502r10 + 0.0502r11

− 0.0433r12 − 0.0591r13 + 0.0771r14 + 0.0754r15

Subsystem R10
Total Number of Owned
Construction Machinery

Growth Rate Impact Change
Rate

0.0461r1 + 0.075r2 + 0.0407r3 + 0.0481r4 − 0.0698r5 −
0.0973r6 − 0.1245r7 + 0.0716r8 − 0.0619r9 − 0.0342r11 −

0.0757r12 − 0.0663r13 + 0.0915r14 + 0.0975r15

Subsystem R11
Total Power of Owned

Construction Machinery
Growth Rate Impact Change

Rate
0.0796r1 + 0.0809r2 + 0.0668r3 + 0.0632r4 − 0.0545r5 −
0.0947r6 + 0.0715r7 + 0.053r8 + 0.0564r9 − 0.0311r10 −

0.0857r12 + 0.0443r13 + 0.0974r14 + 0.121r15

Subsystem R12 Technical Equipment Rate
Growth Rate Impact Change Rate

−0.0535r1 + 0.0651r2 + 0.0591r3 + 0.0563r4 − 0.1096r5 −
0.0935r6 − 0.0695r7 + 0.0666r8 − 0.0513r9 − 0.0729r10 −

0.0904r11 + 0.0919r13 + 0.0609r14 + 0.0593r15

Subsystem R13 Power Equipment Rate
Growth Rate Impact Change Rate

0.0836r1 + 0.0472r2 + 0.0347r3 − 0.0503r4 + 0.0635r5 −
0.0883r6 + 0.0811r7 + 0.0396r8 − 0.0845r9 − 0.0769r10 +

0.0565r11 + 0.111r12 + 0.0734r14 + 0.1094r15

Subsystem R14
Total Output Value of

Construction Industry Growth
Rate Impact Change

Rate
0.0688r1 + 0.0849r2 + 0.0962r3 + 0.0988r4 + 0.0756r5 +
0.0644r6 − 0.0373r7 + 0.0704r8 + 0.079r9 + 0.076r10 +

0.0888r11 + 0.0526r12 + 0.0525r13 + 0.0545r15

Subsystem R15
Value-Added Growth Rate of
Construction Industry Growth

Rate Impact Change
Rate

0.0634r1 + 0.0693r2 + 0.0972r3 + 0.0862r4 − 0.0501r5 +
0.0599r6 − 0.0735r7 + 0.0674r8 + 0.0738r9 + 0.0775r10 +

0.1055r11 + 0.049r12 + 0.0749r13 + 0.0521r14

Subsystem R5 + R6 +
R7 + R13 Growth Rate Increase Rate 0.0393R5 + 0.0381R6 + 0.0318R7 + 0.0552R13

Other Subsystems not
Including Increase Growth Rate Decrease Rate

0.0330R1 + 0.0901R2 + 0.0919R3 + 0.1011R4 + 0.1123R8 +
0.0669R9 + 0.0334R10 + 0.0863R11 + 0.0567R12 +

0.0822R14 + 0.0818R15

Level Accident Growth Rate Level State INTEG (Increase—Decrease)

3.2. Time-Lag Correlation Analysis

Time-lagged correlation analysis is a commonly used method to verify sequences’
leading, coincident, or lagging relationships using correlation coefficients. Through this
analysis method, one can determine the time dimension state at which the correlation
between various factors and accidents reaches its maximum, and then compare it with the
correlation coefficient in the original time dimension [37]. Suppose the obtained correlation
degree is greater than the original correlation degree. In that case, it indicates that the
impact of this indicator on the growth rate of construction accidents has a time difference
and requires advance or lag operations to analyze its correlation and impact effect. If the
obtained correlation degree is less than the original correlation degree, it indicates that the
reason for the unclear relationship is not the time difference, but possibly that the indicator
itself has little impact on the occurrence of accidents. Nevertheless, the impact of this
indicator on the volatility of the accident development level still exists, so the discussion of
this indicator needs to be retained.

Using the construction accident growth rate as the benchmark indicator, the 15 in-
fluencing factor indicators are treated as selected indicators. Each of these indicators is
advanced or lagged by several periods, and their correlation coefficients are calculated.
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The largest time-lag correlation coefficient is chosen to reflect the time-lag correlation re-
lationship between the selected and benchmark indicators by comparing the correlation
coefficients at different periods. The corresponding number of periods represents the
number of periods by which the indicator is advanced or lagged. This method is derived
from the cross-correlation method in time-series analysis [38], which is an extension of
the Pearson correlation coefficient and is used for time-series data. The cross-correlation
method is used to measure the similarity or dependence between two time series, taking
into account the lag effect over time [39]. By using this method, the similarity or dependence
between two time series can be measured, identifying and understanding the potential
relationships between the growth rate of construction accidents and other influencing
factors. The specific formula is as follows:

Arxy(t) =
∑n

i=1 (xi − x)(yi+t − y)√
∑n

i=1 (xi − x)2(yi+t − y)
2

(3)

where:
rxy(t) is the correlation coefficient at the time lag t.
xi is the value of the benchmark indicator (accident growth rate) at time i.
yi+t is the value of the selected indicator at time i + t.
x is the mean of the benchmark indicator values.
y is the mean of the selected indicator values.
n is the number of samples.
Using this formula, the correlation coefficients for different time lags or advances

can be calculated, identifying the maximum correlation coefficient and its corresponding
time lag. This reveals the time-difference impact of each indicator on the growth rate of
construction accidents. At this point, the fluctuations of the selected indicators are closest to
the benchmark indicator, and only those leading indicators with strong correlations can be
used as predictive indicators for future forecasts. Table 5 shows the correlation coefficients
of each indicator with the benchmark indicator before and after the time dimension changes,
as well as the number of periods of change. R0 represents the benchmark indicator, namely
the growth rate of accidents.

Table 5. Correlation Coefficients Between R1 and R15 and R0 Before and After Time Dimension
Changes and the Corresponding Periods.

Baseline
Indicator (R0)

Original Correlation
Coefficient

Maximum Time-Lag
Correlation Coefficient Periods Baseline

Indicator (R0)
Original Correlation

Coefficient
Maximum Time-Lag

Correlation Coefficient Periods

R1 −0.081 −0.299 −3 R9 −0.399 −0.407 −2
R2 −0.421 −0.386 1 R10 0.238 −0.296 −3
R3 −0.344 −0.409 1 R11 −0.357 −0.333 1
R4 −0.321 −0.474 −1 R12 −0.082 −0.407 −2
R5 0.282 0.271 −3 R13 −0.058 0.199 −2
R6 0.211 0.246 −3 R14 −0.077 −0.259 −1
R7 0.404 0.244 −3 R15 −0.007 −0.246 −1
R8 −0.516 −0.309 1

By comparing the correlation relationships between various factors before and after
time-lag correlation analysis, it was found that there are 11 leading indicators and 4 lagging
indicators. Taking the GDP growth rate (R1) as an example of a leading indicator for the
accident growth rate (R0), the impact of the GDP growth rate in 2009 needs to be lagged by
3 years to affect the accident data in 2012. After such an adjustment, the correlation co-
efficient between the two variables increased from −0.081 to −0.299, which aligns with
the general rule that economic indicators typically precede safety events. As a lagging
indicator, the growth rate of the construction area (R3) indicates that construction accidents
affect the future construction area of residential buildings. By lagging the impact of the
accident growth rate in 2009 by one year to affect the data in 2010, the correlation coefficient
between the two variables increased from −0.344 to −0.409. This suggests that frequent



Sustainability 2024, 16, 7706 14 of 27

safety accidents in the previous year may lead to a decrease in the construction area of resi-
dential buildings in the following year. Although the residential area is determined during
the planning stage, the actual impact of the construction accident rate on the residential
building area includes both the planned area and the actual construction area. An increase
in accident rates will draw more attention from the government and enterprises towards
safety. When accidents are reported or accident statistics are displayed by the government
or enterprises, it inevitably affects construction activities, leading to a temporary reduction
in the actual construction area. However, the planned construction area ultimately remains
unchanged; the reduction in daily construction activities may extend the overall project
timeline, thereby decreasing the annual total residential construction area. Additionally, in
China, due to the rapid pace of infrastructure development, many buildings are completed
in less than a year. Accidents not only affect the ongoing construction projects, but also
influence government decisions regarding planned areas, which in turn affects the final
indicators [40]. Thus, the impact of construction accidents is multifaceted, affecting not
only the immediate construction activities, but also future planning and overall annual
construction outcomes.

The correlation between most indicators and the accident growth rate has been some-
what enhanced with a few exceptions. Notably, as leading indicators, the total number
of owned construction machinery and equipment (R10) and the growth rate of the power
equipment ratio (R13) increased their correlation after lag adjustment and changed the
direction of their correlation. The improvement in these two indicators represents an
increased equipment quantity and a higher degree of automation, signifying technological
progress in the construction industry. This advancement significantly reduces unsafe hu-
man behaviors and unsafe conditions of objects, thereby exerting a suppressive effect on
the future number of accidents, which aligns with actual patterns. Figure 3 illustrates the
trend of each indicator and the accident growth rate after the time-lag correlation analysis,
displaying more significant correlations than Figure 1.
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3.3. Formatting of Mathematical Components

In system dynamics, the changes in variables may require a certain period to respond,
a phenomenon known as delay, and the function describing this phenomenon is called a
delay function [41]. There are numerous instances of delay in systems, such as trainees
needing time before their training has an effect or the incubation period of a disease. A
delay in logistics flow is referred to as a logistics delay, while a delay in the information flow
is called an information delay. In principle, all logistics and information flows experience
delays, but only major delays are typically designed to balance system complexity and
accuracy. Regarding the impact of lag, there are two approaches to choose from: material
delay and information smoothing [42]. An information delay smooths the information
to eliminate interfering information, such as spikes, by averaging information values
at different time points. The larger the period, the better the smoothing effect, but the
distortion also becomes more significant. Therefore, this study does not consider using
smoothing, but instead uses the DELAY1 function to explore the level of each subsystem
after a logistics delay.

DELAY1({in}, {dtime}, {init}) (4)

where:
{in}—the variable to be delayed.
{dtime}—the delay time.
{init}—the initial value of the variable.
By performing differential processing on the accumulated quantities corresponding to

the levels of each subsystem, the real value of the change in the impact of each indicator
under the influence of other indicators is obtained. Setting a time lag of 3 years and
conducting a time-lag correlation analysis on these data yields the optimal correlation
coefficient for each subsystem and its lead period, thus determining the number of periods
it should lag relative to the accident growth rate. The results are shown in Table 6.

Table 6. Lag Periods and Correlation Coefficients of Each Subsystem.

Subsystem Lag Periods Correlation Coefficient Subsystem Lag Periods Correlation Coefficient

R1 −3 −0.6347 R9 −3 −0.4190
R2 0 0.5106 R10 −3 0.3127
R3 0 −0.5217 R11 −3 −0.6373
R4 0 −0.5177 R12 −1 −0.4190
R5 −3 −0.2137 R13 −3 −0.5406
R6 0 −0.4473 R14 0 −0.3395
R7 0 −0.4211 R15 0 −0.4314
R8 0 −0.6373

Table 6 shows that the indicators R1, R5, R9, R10, R11, R12, and R13 exhibit lag effects.
Therefore, delay operations are performed on these indicators, as shown in Figure 4. After
the delay, the accumulated levels of the subsystems become smoother compared to before,
although the overall trends remain unchanged. The delayed subsystems are then integrated
back into the original system to form a new complete system. Simulations of the increases
and decreases are conducted to observe the changes in results.

After applying delay processing to the impact effects of each subsystem, the volatility
was reduced to varying degrees. However, the peak characteristics were preserved, avoid-
ing distortion caused by peak suppression. Since the delayed data more accurately reflect
the actual impact, analyzing the generated comparison charts can reveal the changing
patterns of the impact effects of each subsystem.
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Specifically, after delaying the impact effect of GDP by 3 years, the overall level shows
a declining trend, and the original spike in 2019–2020 is postponed, with the local peak
shifting from 2015 to 2016. After delaying the impact effect of the land acquisition area
by 3 years, the overall fluctuation becomes smoother, with the original low point in 2012
and high point in 2016 being postponed to 2014 and 2018, respectively, and the low point
in 2019 being postponed to after 2020. The impact effects of labor productivity, the total
number of owned construction machinery and equipment, and total power, after being
delayed by 3 years, all show a declining trend in their overall levels, with the correlation
coefficient increasing from around 0.9 to above 0.95. The local maxima and minima are also
correspondingly delayed. The impact effect of the technical equipment rate, after a 1-year
delay, maintains the same volatility as the original state, only being postponed by one year
in terms of time. After delaying the impact effect of the power equipment rate by 3 years,
the overall level shows a declining trend, with the local peak shifting from 2012 to 2013.
Overall, the cumulative levels of the subsystems after delay processing become smoother
compared to before, but the trends remain unchanged. This further verifies the lag effect of
the impacts and provides a more reliable basis for analysis.

4. Discussion
4.1. Single Subsystem Simulation

After establishing a complete system dynamics model, we need to individually ma-
nipulate each subsystem to study its impact on the accident growth rate. The specific
operations are as follows: reduce the level of subsystems that influence the increase in
accident occurrences by 20% and reduce the level of subsystems that influence the decrease
in accident occurrences by 50%. This approach allows us to explore the impact of changes
in subsystem levels on the accident growth rate, highlighting sustainable practices that
contribute to long-term safety improvements. Figure 5 shows that changes in the levels
of specific subsystems (R5, R6, R7, and R13) significantly impact the accident growth rate.
Among these, the reduction in the level of R13 has a notable suppressive effect on the
increase in accident occurrences, thereby lowering the accident growth rate. This phe-
nomenon is because the reduction in R13 corresponds to a slowdown in the growth rate of
the power–equipment ratio. Despite this, the power–equipment ratio itself continues to
increase. The increase in the power–equipment ratio indicates a higher level of mechaniza-
tion in construction activities. A higher level of mechanization can reduce dependence on
manual labor, lower the error rate in operations, and enhance the stability and safety of con-
struction processes, promoting not only immediate safety, but also sustainable construction
practices by reducing resource consumption and minimizing the environmental impact.
Therefore, even if the growth rate of the power–equipment ratio slows down, it can still
effectively reduce safety accidents during construction, thus suppressing the increase in
the number of accidents.

Additionally, the slowdown in the growth rate of the power–equipment ratio also
means that workers have more time to adapt to and familiarize themselves with new
equipment and technologies. This increased adaptation period helps workers better master
the operation and safe use of equipment, further reducing operational errors and safety
accidents. This factor not only contributes to immediate safety improvements, but also
builds a foundation for long-term sustainable safety practices, as well-trained workers are
less likely to engage in practices that could lead to resource wastage and environmental
damage.

On the other hand, the reduction in the levels of the other three subsystems (R5,
R6, and R7) has instead promoted an increase in the number of accidents, with their
impact ranked as R7 > R5 > R6. This indicates that the slowdown in the rate of the
income disparity reduction has the greatest promoting effect on the accident growth rate,
followed by the reduction in the land acquisition area, and the impact of changes in
the area of land awaiting development is the smallest. Previous research has found a
relationship between income disparity and accident rates in the transportation sector.
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Studies have shown that in low-income areas, the accident rate for pedestrians and cyclists
is higher [43]. As income increases, the traffic accident mortality rate significantly decreases,
indicating that low-income groups face higher traffic accident risks [44]. Anbarci et al. [45]
explored the relationship between income inequality and traffic accidents, concluding
that income inequality increases accident rates. These studies collectively support the
conclusion that the existence and expansion of income disparity may lead to unbalanced
economic development, which in turn can cause social instability and ultimately increase
the risk of safety accidents. The reduction in the land acquisition area may affect the
planning and execution of construction projects, thereby impacting safety management [46].
Changes in the area of land awaiting development have a relatively smaller impact, possibly
because it is less directly related to actual construction operations. Therefore, in subsequent
simulations, we need to increase the levels of these three subsystems (R5, R6, and R7) and
pay attention to their weight distribution to achieve the goal of suppressing the growth in
the number of accidents.
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On the other hand, for the other group of subsystems (R1, R2, R3, R4, R8, R9, R10, R11,
R12, R14, and R15), reducing their levels decreases the reduction in the number of accidents,
thereby increasing the growth rate of accident occurrences. Among these subsystems, the
reduction in the level of R4 has the greatest suppressive effect on the reduction in the
number of accidents. The impact size ranking is as follows: R4 > R3 > R8 > R11 > R2
> R9 > R15 > R12 > R10 > R1 > R14. This indicates that the continuous increase in the
completed area significantly reduces the number of accidents, while the total output value
of the construction industry has the smallest impact. The increase in the completed area
usually signifies the successful completion and quality assurance of construction projects,
indicating that safety management measures during the construction process were effective,
thereby significantly reducing the occurrence of accidents. On the other hand, while the
total output value of the construction industry reflects the overall scale of the industry,
it has less of an impact on the safety management of specific construction projects, thus
having the smallest influence.

To minimize the growth rate of accident occurrences, apart from reducing the level of
subsystem R13, the levels of other subsystems should be correspondingly increased. Since
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multiple other indicators influence the levels of each subsystem, it is necessary to assign
simulated growth rates to these indicators for the next two years to obtain the simulation
results for each subsystem level.

First, use the r1–r15 indicator data from 2009 to 2020 as input, assuming that the
indicator values for 2021 and 2022 remain the same as in 2020, i.e., no change. This will
yield the initial change in impact and the cumulative effect of each indicator’s growth rate
on subsystem levels. Next, apply an increase and decrease of 10%, 20%, and 50% to the
values of each indicator for the next two years to evaluate the impact of these changes on
subsystem levels. Specifically, the r13 indicator should only be decreased while the other
indicators are increased. This method generates images under various change scenarios
and verifies the reasonableness of the assumptions.

In this process, the impact effect of the subsystem is calculated by summing the
impact effects of each indicator within the subsystem and applying the predetermined
weight distribution. Figure 6 shows the changes in the levels of the R1–R15 subsystems.
In subsystems R1–R13, the increase or decrease of each influencing indicator is positively
correlated with the overall subsystem level change, meaning that appropriate adjustments
can increase the reduction level of the accident growth rate and decrease the increase level
of the accident growth rate.
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However, regardless of changes made to other indicators, the levels of subsystems
R14 and R15, representing the growth rate of the total output value and value-added
growth rate of the construction industry, respectively, will decrease. This will lead to a
reduction in the level of accident growth rate reduction, thereby increasing the accident
occurrence growth rate. Based on the overall system analysis, the subsystem level of
the construction industry’s total output value growth rate (R14) ranks lowest in terms of
contribution to reduction, with a smaller impact; the subsystem level of the construction
industry’s value-added growth rate (R15) ranks moderate, with a certain impact. Therefore,
in subsequent scenario settings, special attention should be paid to the special cases in the
above simulation results.

For example, the safety investment (R8) growth rate is not significantly affected by
the other 14 indicators. However, its subsystem level ranks high regarding contribution to
reduction, indicating that other indicators and even small changes do not easily influence
the level of safety investment and can significantly impact the growth rate of accident
occurrences. Therefore, the level of the R8 subsystem should be maximized; the reduction
in the level of the R15 subsystem should be minimized; and for the R14 subsystem, the
reduction in its level should also be minimized, but restrictions can be lifted if necessary.

4.2. Full System Level Simulation

After simulating the level of a single subsystem, we obtained the impact of changes in
indicators within each subsystem on the subsystem level and further explored the impact
of subsystem levels on the study subject (i.e., the accident growth rate level). The specific
operations are as follows: by reducing the level of increases by 5%, 10%, 20%, and 50%, and
increasing the level of decreases by 5%, 10%, 20%, and 50%, we simulated the cumulative
value of the accident growth rate level and performed differential processing. The results are
shown in Figure 7. As the magnitude of changes in the levels of the impact on the increase
and decrease in accident occurrences increases, the cumulative effect on the accident growth
rate level also further increases. When analyzing the trend of accident growth rate changes
from 2009 to 2020, it was found that making corresponding adjustments to the subsystems
can effectively reduce the accident growth rate and lower the increase in the accident
growth rate, thereby suppressing the accident growth rate. Specifically, when the increase is
reduced, the speed at which accidents increase slows down; when the decrease is increased,
the speed at which accidents decrease accelerates. This method of adjusting accident rates
is aligned with sustainable safety management practices, which aim to create a balance
between operational productivity and safety, thereby enhancing the overall resilience of
construction projects against potential disruptions. Therefore, by reasonably adjusting the
increases and decreases of subsystems, the goal of controlling the accident growth rate can
be achieved. This strategic approach not only addresses the immediate needs for accident
reduction, but also aligns with sustainable development goals by promoting safer, more
efficient, and environmentally friendly construction practices.

By comparing the original data with the simulation results of an overall 5% change in
subsystem levels, it was found that during this period, the range of the accident growth rate
increased from 0.0469 to 0.0487, an increase of 3.69% year-on-year; when the change was
10%, the range increased to 0.0504, a year-on-year increase of 7.39%; with a 20% change, the
range increased to 0.0539, a year-on-year increase of 14.78%; and with a 50% change, the
range increased to 0.0643, a year-on-year increase of 36.95%. This indicates that even small
adjustments in subsystems not only impact the immediate accident rates, but also foster
long-term sustainability by establishing safer and more resilient operational practices. The
effective expression of this impact in the model reached 73.9%. This demonstrates that
changes in subsystem indicators have a cumulative effect, and even small adjustments
can significantly impact the accident growth rate. Therefore, policymakers can gradually
achieve the goal of reducing the accident growth rate by fine-tuning subsystem indicators to
align with sustainability goals that include reducing environmental impacts and ensuring
worker safety.



Sustainability 2024, 16, 7706 21 of 27

Sustainability 2024, 16, x FOR PEER REVIEW 21 of 28 
 

After simulating the level of a single subsystem, we obtained the impact of changes 
in indicators within each subsystem on the subsystem level and further explored the im-
pact of subsystem levels on the study subject (i.e., the accident growth rate level). The 
specific operations are as follows: by reducing the level of increases by 5%, 10%, 20%, and 
50%, and increasing the level of decreases by 5%, 10%, 20%, and 50%, we simulated the 
cumulative value of the accident growth rate level and performed differential processing. 
The results are shown in Figure 7. As the magnitude of changes in the levels of the impact 
on the increase and decrease in accident occurrences increases, the cumulative effect on 
the accident growth rate level also further increases. When analyzing the trend of accident 
growth rate changes from 2009 to 2020, it was found that making corresponding adjust-
ments to the subsystems can effectively reduce the accident growth rate and lower the 
increase in the accident growth rate, thereby suppressing the accident growth rate. Spe-
cifically, when the increase is reduced, the speed at which accidents increase slows down; 
when the decrease is increased, the speed at which accidents decrease accelerates. This 
method of adjusting accident rates is aligned with sustainable safety management prac-
tices, which aim to create a balance between operational productivity and safety, thereby 
enhancing the overall resilience of construction projects against potential disruptions. 
Therefore, by reasonably adjusting the increases and decreases of subsystems, the goal of 
controlling the accident growth rate can be achieved. This strategic approach not only 
addresses the immediate needs for accident reduction, but also aligns with sustainable 
development goals by promoting safer, more efficient, and environmentally friendly con-
struction practices. 

 
Figure 7. Impact of Subsystem Changes on Overall System Simulation Results. 

By comparing the original data with the simulation results of an overall 5% change 
in subsystem levels, it was found that during this period, the range of the accident growth 
rate increased from 0.0469 to 0.0487, an increase of 3.69% year-on-year; when the change 
was 10%, the range increased to 0.0504, a year-on-year increase of 7.39%; with a 20% 
change, the range increased to 0.0539, a year-on-year increase of 14.78%; and with a 50% 
change, the range increased to 0.0643, a year-on-year increase of 36.95%. This indicates 
that even small adjustments in subsystems not only impact the immediate accident rates, 
but also foster long-term sustainability by establishing safer and more resilient opera-
tional practices. The effective expression of this impact in the model reached 73.9%. This 
demonstrates that changes in subsystem indicators have a cumulative effect, and even 
small adjustments can significantly impact the accident growth rate. Therefore, policy-
makers can gradually achieve the goal of reducing the accident growth rate by fine-tuning 

Figure 7. Impact of Subsystem Changes on Overall System Simulation Results.

Using the system dynamics model corrected by the delay function, further level
simulations were conducted for single subsystems and the entire system. The simulation
results for single subsystems are shown in Figures 8 and 9. From Figure 8, it can be
seen that the impact effect of reducing the system level on the decrease in the increase
amount is ranked as follows: R13 > overall reduction > original > R5, indicating that
reducing the power equipment rate has the strongest suppressive effect on the increase in
the accident growth rate. However, for land acquisition areas, reducing it would instead
exacerbate the occurrence of accidents. Under their combined effect, the increase in the
number of accidents was somewhat controlled. This suggests that the fluctuation of the
power equipment rate has a greater impact on production safety accidents and should
receive more attention. This means that increasing the power equipment rate is one of
the key measures to control the accident growth rate. On the other hand, reducing the
land acquisition area might lead to fewer construction projects, resulting in insufficient
investment in safety management by construction companies, thus increasing the likelihood
of accidents. If the levels of the five subsystems affecting the decrease amount are reduced,
it can be seen that lowering their levels would exacerbate the increase in the number of
accidents, with the impact ranking as follows: R11 > R9 > R10 > R1 > R12. This means
that reducing the levels of these systems suppresses the reduction in the accident growth
rate. Suppressing the total power of owned construction machinery for single systems
would significantly increase the probability of accidents. Therefore, it is necessary to jointly
enhance the levels of the total power of owned construction machinery, labor productivity,
the total number of owned construction machinery, GDP, and the technical equipment rate
to reduce the probability of accidents. These findings indicate that increasing the levels of
these subsystems is an important strategy to reduce the number of accidents. Specifically,
enhancing the total power of owned construction machinery and labor productivity can
directly improve the safety and efficiency of the construction process, thereby significantly
reducing the occurrence of accidents.
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Figure 9 shows that the corrected simulation results for the increase and decrease levels
of the growth rate generally follow the same trend as before the correction, but the overall
variation is smoother. In 2012, the increase in the accident growth rate reached its minimum,
and the decrease reached its maximum, indicating that the number of accidents in 2012
significantly decreased compared to 2011. There were 589 construction safety accidents in
2011 and 487 in 2012, a year-on-year decrease of 17.3%, the largest drop in the past decade.
Conversely, in 2016, the increase in the accident growth rate reached its maximum, and the
decrease reached its minimum, indicating that the number of accidents in 2016 significantly
increased compared to 2015. There were 442 construction safety accidents in 2015 and 634 in
2016, a year-on-year increase of 43.4%, the largest rise in the past decade. This confirms that
the results obtained from the corrected system dynamics model are consistent with actual
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situations, validating the model’s effectiveness. By comparing with actual data, the model’s
simulation results accurately reflect the trend of accident occurrences, demonstrating the
model’s reliability in predicting accident growth rates. This provides strong support for
further policy making and safety management. Adopting a sustainable approach in these
policies ensures that the industry not only aims to reduce accident rates, but also enhances
overall project sustainability, contributing to safer conscious construction environments

By exploring the impact of subsystem levels on the study subject (accident growth rate
level) using the corrected model, we simulated the cumulative value of the accident growth
rate level and performed differential processing. The results are shown in Figure 10. By
comparing the corrected original data with the simulation results of a 5% overall change in
subsystem levels during this period, the range of the accident growth rate increased from
0.0511 to 0.0533, a year-on-year increase of 4.34%; with a 10% change, the range increased to
0.0556, a year-on-year increase of 8.68%; with a 20% change, the range increased to 0.0600,
a year-on-year increase of 17.37%; and with a 50% change, the range increased to 0.0733,
a year-on-year increase of 43.42%. By comparing this with the data before correction, it
was found that in the corrected model, changes in subsystem indicators had an impact on
the overall accident growth rate level that was closer to the simulated change values. The
effective expression of this impact increased to 86.8%. The corrected model demonstrated
higher accuracy and consistency in predicting the impact of subsystem changes on the
accident growth rate. This further indicates that considering the time effects of macro
indicators is necessary when studying construction safety accidents. It further validates
that, when exploring the factors affecting construction safety accidents, the time effects
of these macro indicators must be considered. Using the time-lag correlation between
indicators as a basis and introducing delay functions can effectively correct the result
deviations caused by the time lag of different indicators’ impacts. The correction method of
introducing delay functions effectively addresses the time-lag effect problem of different
indicators, making the model more accurately reflect actual situations. This is significant
for improving prediction accuracy and formulating effective safety management policies.

Sustainability 2024, 16, x FOR PEER REVIEW 24 of 28 
 

accidents, the time effects of these macro indicators must be considered. Using the time-
lag correlation between indicators as a basis and introducing delay functions can effec-
tively correct the result deviations caused by the time lag of different indicators’ impacts. 
The correction method of introducing delay functions effectively addresses the time-lag 
effect problem of different indicators, making the model more accurately reflect actual 
situations. This is significant for improving prediction accuracy and formulating effective 
safety management policies. 

 
Figure 10. Impact of Corrected Subsystem Changes on Overall System Simulation Results. 

4.3. Policy Recommendations 
By analyzing the system dynamics model of construction safety accidents and its 

simulation results, we gained a deep understanding of the impact of macro factors on 
accident occurrence rates. To reduce the occurrence of construction safety accidents, pol-
icy makers should focus on the following aspects: Firstly, the power equipment rate (R13) 
should be increased, meaning the use of modern and automated equipment should be 
expanded. The government can encourage enterprises to introduce advanced equipment 
through policy formulation, tax reductions, and subsidies, while also strengthening tech-
nical training to improve equipment operation and maintenance levels, ensuring equip-
ment safety performance, and thereby reducing safety accidents caused by equipment 
failures [47]. This approach not only enhances safety, but also supports sustainable con-
struction practices by reducing reliance on labor-intensive methods and minimizing envi-
ronmental impacts through efficient resource use. Increasing safety investment (R8) [48] 
is another effective measure. The government should mandate a minimum safety invest-
ment ratio for construction enterprises and provide special funds or low-interest loans to 
support enterprises’ safety equipment and training investments. Enhancing safety educa-
tion and training for workers can improve their safety awareness and operational skills, 
effectively reducing accidents caused by human errors while also promoting a culture of 
safety that aligns with sustainable employment practices. These two aspects are often re-
lated in practice; the increase in the power equipment rate requires corresponding safety 
investment to introduce safer equipment, ensure equipment maintenance, and provide 
operational training. Only in this way can the potential of modern equipment in reducing 
accidents be maximized. 

Figure 10. Impact of Corrected Subsystem Changes on Overall System Simulation Results.

4.3. Policy Recommendations

By analyzing the system dynamics model of construction safety accidents and its sim-
ulation results, we gained a deep understanding of the impact of macro factors on accident
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occurrence rates. To reduce the occurrence of construction safety accidents, policy makers
should focus on the following aspects: Firstly, the power equipment rate (R13) should be
increased, meaning the use of modern and automated equipment should be expanded. The
government can encourage enterprises to introduce advanced equipment through policy
formulation, tax reductions, and subsidies, while also strengthening technical training to
improve equipment operation and maintenance levels, ensuring equipment safety per-
formance, and thereby reducing safety accidents caused by equipment failures [47]. This
approach not only enhances safety, but also supports sustainable construction practices
by reducing reliance on labor-intensive methods and minimizing environmental impacts
through efficient resource use. Increasing safety investment (R8) [48] is another effective
measure. The government should mandate a minimum safety investment ratio for con-
struction enterprises and provide special funds or low-interest loans to support enterprises’
safety equipment and training investments. Enhancing safety education and training for
workers can improve their safety awareness and operational skills, effectively reducing
accidents caused by human errors while also promoting a culture of safety that aligns
with sustainable employment practices. These two aspects are often related in practice; the
increase in the power equipment rate requires corresponding safety investment to introduce
safer equipment, ensure equipment maintenance, and provide operational training. Only
in this way can the potential of modern equipment in reducing accidents be maximized.

Regulating the completed area (R4) is also crucial. A reasonable construction sched-
ule and planning of the completed area can reduce safety hazards caused by rushing
projects [49]. The government can require enterprises to formulate reasonable construction
plans, limit the excessive growth of the completed area, and strictly enforce construction
quality acceptance systems to ensure safety and quality at every construction stage.

To control income disparity (R7), it is recommended that a fair remuneration sys-
tem be established to narrow the income gap among construction workers and enhance
their work enthusiasm and safety awareness. Improving the social security system by
providing basic medical, pension, and work injury insurance can alleviate workers’ con-
cerns. Additionally, strengthening the supervision of labor contract signing and fulfillment
can safeguard workers’ legal rights. These measures can boost workers’ enthusiasm and
sense of responsibility, thereby reducing safety accidents caused by psychological pressure
or dissatisfaction, while also contributing to a sustainable workforce that feels valued
and protected.

5. Conclusions

This study takes construction safety accidents as an example to investigate 15 macro-
level factors affecting the growth rate of construction accidents and their impact patterns.
By constructing a system dynamics model and introducing delay functions, the time-
dimensional differences and their effects on the accident growth rate were simulated and
analyzed, leading to the following conclusions:

(1) Macro factors significantly influence the accident growth rate. Factors such as the
power equipment rate (R13), completed area (R4), and safety investment (R8) notably
affect the growth rate of construction accidents. In particular, increasing the power
equipment rate and safety investment can significantly reduce the frequency of ac-
cidents. This not only enhances immediate operational safety, but also contributes
to the long-term sustainability of construction practices by ensuring that modern,
efficient, and safer methods are adopted.

(2) Introducing delay functions validated the lag effect of different macro factors on the
accident growth rate. This indicates that the impact of some factors is not immediate,
but gradually unfolds over time. For example, although the improvement in the power
equipment rate might not show significant effects in the short term, it has a notable
impact on reducing accidents in the long term. Such delayed effects underscore the
importance of planning for sustainability in safety practices, where long-term benefits
are realized through consistent and sustained efforts.
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(3) The simulation results demonstrate that the system dynamics model can accurately
reflect the actual growth trends of construction accidents. Adjusting the increases and
decreases in subsystem levels can effectively control the growth rate of accidents. The
model validation shows high reliability in predicting accident occurrence rates.

(4) This study found that slight adjustments in subsystem indicators can have significant
cumulative effects over the long term. Even small changes can notably impact the
control of the accident growth rate. This provides policymakers with a theoretical basis
for gradually improving safety management measures. Such incremental adjustments
align with sustainable development principles, where ongoing minor improvements
can lead to substantial enhancements in safety and efficiency.

This study reveals the significant influence of macro factors on construction safety
accidents through the system dynamics model, validating the importance of time effects
and cumulative effects, and providing scientific evidence for policymakers. However,
the study primarily focuses on macro-level factors, neglecting the role of micro factors
such as on-site management and individual behavior in accident occurrences. Future
research should combine micro-behavior analysis with macro models to provide more
comprehensive safety management strategies that integrate both immediate and long-term
sustainability goals.
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