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Abstract: Effective and sustainable water reserve management faces increasing challenges
due to climate-induced variability, data fragmentation, and the limitations of traditional,
static modeling systems. This study introduces a conceptual framework designed to ad-
dress these challenges by integrating digital twins, IoT-driven real-time monitoring, game
engine simulations, and AI-driven decision support systems (AI-DSS). The methodology in-
volves constructing a digital twin ecosystem using IoT sensors, GIS layers, remote-sensing
imagery, and game engines. This ecosystem simulates water dynamics and assesses pol-
icy interventions in real time. AI components, including machine-learning models and
retrieval-augmented generation (RAG) chatbots, are embedded to synthesize real-time data
into actionable insights. The framework enables the continuous assessment of hydrological
dynamics, predictive risk analysis, and immersive, scenario-based decision-making to
support long-term water sustainability. Simulated scenarios demonstrate accurate flood
forecasting under variable rainfall intensities, early drought detection based on soil mois-
ture and flow data, and real-time water-quality alerts. Digital elevation models from
UAV photogrammetry enhance terrain realism, and AI models support dynamic predic-
tions. Results show how the framework supports proactive mitigation planning, climate
adaptation, and stakeholder communication in pursuit of resilient and sustainable water
governance. By enabling early intervention, efficient resource allocation, and participatory
decision-making, the proposed system fosters long-term, sustainable water security and
environmental resilience. This conceptual framework suggests a pathway toward more
transparent, data-informed, and resilient decision-making processes in water reserves man-
agement, particularly in regions facing climatic uncertainty and infrastructure limitations,
aligning with global sustainability goals and adaptive water governance strategies.

Keywords: sustainability-centric metrics; smart water management; real-time analytics;
interactive hydrological modeling; game engine; scenario planning
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1. Introduction
Water reserves management has long been a cornerstone of environmental steward-

ship, economic stability, and societal well-being [1]. For centuries, human societies have
relied on a variety of traditional practices to manage freshwater resources, from the construc-
tion of reservoirs and dams to the establishment of irrigation systems [2–4]. However, in
recent decades, these traditional methods have been challenged by the rapid pace of global
change, which has altered precipitation patterns, increased demand on water supplies, and
exacerbated the frequency and intensity of droughts, floods, and other climate-induced
events [5,6]. Moreover, water systems are often mismanaged due to insufficient data, a lack
of comprehensive forecasting tools, and limited coordination across sectors and regions [7].
Historically, water reserves management has operated in a relatively reactive manner, with
decision-makers relying on static, periodic data that only provides a snapshot of water
conditions at a particular time [8,9]. Early warning systems, typically employed for flood
and drought prediction, have also followed a largely deterministic and limited approach,
offering basic alerts without accounting for the full complexity of the water cycle [10,11].
For instance, most systems focus on monitoring water levels or predicting immediate
hazards based on historical data and predefined models. While these systems provide
useful alerts, they often fail to address longer-term trends, provide real-time feedback,
or simulate the broader impacts of various factors such as urban development, land-use
changes, or extreme weather events [6,12,13].

The advent of Digital Twins offers a transformative potential for overcoming these
limitations [14–17]. A digital twin is a dynamic, real-time digital replica of a physical
system—integrated with data from archives, sensors, satellite images, weather forecasts,
and other monitoring technologies [18,19]. This allows for continuous tracking, predictive
modeling, and scenario-based simulations that reflect the actual status of water reserves [20].
Unlike traditional methods that rely on static data or overly simplistic models, digital twins
can adapt in real time to changing conditions, providing decision-makers with up-to-date
information and the ability to simulate various future scenarios [21–23]. The potential for
these technologies to address critical gaps in water management and enhance decision-
making processes has sparked growing interest among researchers, policymakers, and
water resource managers worldwide [24–26]. Despite the promising outlook of digital
twins, the integration of this technology into water reserves management is still in its
nascent stages [27]. Current implementations, while promising, often focus on individual
aspects of water management, such as river flow, flood forecasting, or reservoir monitoring.
However, they rarely incorporate a comprehensive, multi-layered approach that spans the
entire water system and engages a wide array of stakeholders, from local communities
to government agencies [28]. Furthermore, many existing models rely on oversimplified
simulations that fail to account for complex interactions between physical, ecological, and
social systems [29]. This gap limits their effectiveness in addressing the evolving challenges
of sustainable water governance and climate adaptation. As such, there is a clear need for
a new conceptual framework that rethinks water reserves management and incorporates
cutting-edge technologies to provide a more holistic, adaptable, and dynamic approach [30].

This paper presents a conceptual framework that advances water reserves manage-
ment by integrating digital twins and game engines into a cohesive system for real-time
monitoring, predictive modeling, and scenario-based decision-making. The framework
proposes leveraging digital twins as interactive, real-time models that simulate not only
the physical dynamics of water systems (such as flow rates and water storage levels) but
also the broader socio-environmental factors that influence water management decisions.
This is achieved through the integration of land use and soil data, hydrological models,
real-time water-quality sensors, and meteorological inputs, enabling simulations that reflect
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the interdependence between terrain, vegetation, water demand, and infrastructure. By
incorporating such multi-dimensional data streams, the framework supports sustainability-
aligned trade-offs among competing water uses, such as urban, agricultural, and ecological
demands, within dynamic environmental contexts. Moreover, by using immersive game
engine environments, the framework enables stakeholders to explore scenarios involving
community-driven decisions, conservation policies, and land-use planning in real time.
These interfaces empower both experts and non-experts to visualize complex system re-
sponses, increasing transparency, inclusiveness, and long-term sustainability orientation in
water planning.

By integrating real-time data, predictive modeling, and immersive simulations, we
aim to provide a more adaptive and resilient water management system that can support
better decision-making, anticipate risks, and respond proactively to emerging challenges.
While conceptual in nature, this study will showcase how digital twins can actively and
significantly partake in water reserves management and early warning systems. These
case studies will help illustrate the feasibility of the proposed framework, identify the
potential challenges, and outline the benefits of adopting this technology on a broader scale.
Additionally, this paper will address the innovative integration of game engines—platforms
traditionally used for video game development—to create immersive and interactive
models that allow stakeholders to explore and manipulate water management scenarios in
an engaging, accessible way. By employing game engines, we aim to break down complex
simulations into intuitive, visual experiences that promote a deeper understanding of
the implications of water management decisions [31,32]. In examining the potential for
digital twins to enhance water reserves management, this paper will also emphasize the
interdisciplinary nature of the task. It will explore how these technologies can bridge the
gap between scientific research, public policy, and community engagement. Crucially, the
framework proposed here is not just a technical innovation; it is a call to rethink the entire
approach to water reserves management, incorporating considerations of social resilience,
environmental sustainability, and policy adaptability. We argue that the integration of
digital twins and game engines can provide decision-makers with a powerful tool to
manage water resources more efficiently, anticipate future challenges, and ultimately build
more resilient and sustainable water systems in an increasingly uncertain world [33–37].

By providing a fresh perspective on water management through the lens of digital
twins, this paper seeks to fill a gap in existing research and provide a blueprint for future
advancements in this field. The proposed framework will highlight how digital twins can
enable a more comprehensive, data-driven, and interactive approach to water reserves
management, setting the stage for more effective strategies and solutions in the years to
come. In particular, the objectives of the framework include improving real-time monitor-
ing, providing immersive simulations, and fostering adaptive water management strategies
that align with the core pillars of sustainability: equity, efficiency, and ecological balance.

2. Materials and Methods
2.1. Conceptual Framework Design and Theoretical Underpinnings

The integration of digital twins and game engines into water reserve management
represents a paradigm shift that aims to integrate traditional methods with immersive,
interactive, and real-time decision-making capabilities [15]. This conceptual framework
seeks to bridge the gap between data-driven insights and community engagement, empha-
sizing the need for a more dynamic and adaptive approach to water resource management.
By embedding advanced modeling techniques, real-time data, and immersive simula-
tion technologies, the framework fosters more informed, proactive, and sustainable water
management strategies.
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The proposed framework combines two cutting-edge technologies—digital twins
and game engines—to create an integrated system for real-time monitoring, predictive
modeling, and decision support in water reserves management. Digital twins serve as
virtual replicas of physical water systems, continuously updated with live data from IoT
sensors, satellite imagery, and other monitoring technologies [38]. Game engines, such as
Unreal Engine and Unity, are employed to visualize and simulate water dynamics, flood
scenarios, and management strategies. Together, they offer a comprehensive solution that
not only visualizes water systems in real-time but also enables the simulation of various
water management scenarios, facilitating interactive, scenario-based decision-making.
This framework addresses several challenges in traditional water management, including
the need for better monitoring of complex water systems [39], predictive modeling of
potential risks (such as droughts or floods), and enhanced public awareness and community
engagement [40]. By providing immersive simulations of water systems and their behavior
under different conditions, stakeholders, from water managers to local communities, can
gain a deeper understanding of water dynamics and better prepare for future challenges.

At the core of this framework is the integration of digital twins and game engines,
both of which offer powerful capabilities for enhancing decision-making and predictive
modeling. From a theoretical perspective, digital twins provide real-time, data-driven
insights that inform water management strategies, while game engines facilitate immersive,
interactive simulations of water systems, allowing users to explore different scenarios and
visualize outcomes. This combination enables more accurate predictions of water demand,
flood and drought risks, and potential interventions. Moreover, it allows water managers
to test a variety of strategies in a controlled virtual environment before implementing them
in the real world. Predictive modeling is also enhanced by the continuous integration of
real-time data, enabling better forecasts of water availability, demand, and potential risks.
The ability to simulate future conditions, such as changing climate patterns or shifts in land
use, further strengthens the predictive capabilities of the framework. Complementing these
technologies is artificial intelligence (AI), the third foundational pillar of the framework.
Techniques such as machine learning and deep learning are employed to analyze temporal
trends, optimize scenario-based response strategies, and automate decision-support pro-
cesses. These capabilities are essential for transforming data streams from digital twins into
actionable insights, enabling adaptive water governance that evolves with both environ-
mental dynamics and user behavior. One of the most innovative aspects of this framework
is its potential to foster community engagement. By providing an interactive platform
where users can visualize and manipulate water systems, the framework allows for greater
public involvement in decision-making processes. Communities can directly engage with
simulations, test different management strategies, and observe their potential impacts,
fostering a more participatory approach to water management.

The primary objectives of the proposed framework are (Figure 1):

1. Improving Real-Time Monitoring: By leveraging digital twins and IoT-based sensors,
the framework enables the continuous collection of data on water levels, quality, flow
rates, and other key parameters. This real-time monitoring provides water managers
with up-to-date insights into the health of water systems and the effectiveness of
current management strategies [41,42].

2. Providing Immersive Simulations: Using game engines, the framework creates de-
tailed, interactive simulations of water systems that allow users to explore how
different variables (e.g., rainfall, temperature, human interventions) affect water re-
sources [43]. These simulations offer an intuitive understanding of complex water
dynamics, making it easier for stakeholders to visualize potential outcomes and make
informed decisions.
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3. Fostering Adaptive Water Management Strategies: The framework supports adaptive
water management by enabling water managers and communities to test a variety of
strategies in a virtual environment before implementing them in the real world. By
simulating different scenarios (e.g., floods, droughts, and demand surges), the system
allows users to understand the implications of different management approaches,
enabling more flexible, responsive decision-making via artificial intelligence (AI).
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The proposed integration of digital twins and AI-driven systems builds upon several
well-established theoretical paradigms in both water resource management and compu-
tational sciences. At its core, the framework aligns with the principles of Integrated
Water Resources Management (IWRM), which emphasizes adaptive, participatory, and
system-oriented decision-making across spatial and temporal scales [1,9]. By leverag-
ing real-time feedback, predictive modeling, and immersive simulation, the framework
also reflects cyber–physical system architectures, where continuous interaction between
physical processes and digital intelligence enhances responsiveness and resilience. In
terms of computational logic, the use of machine-learning and deep-learning methods
follows the trajectory of hybrid modeling approaches that combine data-driven insights
with domain-specific knowledge, often used in hydrology to augment process-based sim-
ulations. Moreover, the framework’s decision-support logic draws from control theory
(e.g., model predictive control for reservoir regulation) [44], uncertainty quantification
(e.g., Bayesian inference, ensemble forecasting) [45–47], and explainable AI [48], all of
which are essential for maintaining stakeholder trust and system transparency. In this
sense, the framework acts as a theoretical bridge between modern AI-based evaluation
systems and the foundational methodologies of hydrological modeling, decision analysis,
and participatory environmental planning.

The proposed framework introduces several methodological innovations that extend
beyond existing digital twin paradigms in water resource management. First, it com-
bines hybrid AI modeling—including the integration of deep learning (e.g., LSTM) and
ensemble-based machine learning (e.g., Random Forests)—with real-time sensor data and
process-based hydrological models to enable more adaptive, scalable predictions. Sec-
ond, the use of game engine technology (e.g., Unreal Engine) for building immersive 3D
visualizations and stakeholder interaction environments represents a novel application
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within the domain of early warning and water system planning. Third, the framework
includes a modular and interoperable system architecture (i.e., plug-and-play) that allows
the seamless integration of diverse data sources (e.g., legacy datasets, satellite inputs, and
IoT sensor streams), simulation modules, and AI tools with minimal reconfiguration. Fi-
nally, the inclusion of explainable AI techniques (e.g., SHAP, LIME) embedded within the
decision interface enhances model transparency and user trust, setting this system apart
from traditional black-box models. In comparison to conventional hydrological model-
ing practices, such as lumped conceptual models or static threshold-based alert systems,
the proposed system offers greater temporal resolution, scenario generalization, and op-
erational responsiveness. While full empirical benchmarking remains a focus of future
implementation phases, the modular design allows for comparative assessments against
baseline methods such as lumped flood simulation, rule-based reservoir operations, or fixed
early warning thresholds. These innovations collectively contribute to the framework’s
capacity for dynamic evaluation, participatory engagement, and scalable deployment in
real-world settings.

The implementation of the proposed framework follows a multi-layered methodology,
beginning with the construction of the digital twin model, followed by comprehensive data
collection and integration from diverse sources. This is supported by advanced modeling
techniques, simulation design in game engines, and interactive visualization components.
The following subsections outline (1) the construction of the digital twin, (2) the sources
and processing of input data, (3) the modeling and simulation environment, and (4) the
game engine-based interactive interface that enables real-time scenario testing.

2.2. Digital Twin Model Construction

The main constituents of a digital twin for water systems involve the integration
of physical models, real-time sensor data, and high-fidelity 3D visualizations to create
an interactive, dynamic representation of water reserves, rivers, reservoirs, dams, and
groundwater systems. At the core of the digital twin is a hydrological model that simulates
water flow, distribution, and quality under varying conditions, which is continuously
updated with data from IoT sensors, satellite imagery, and meteorological inputs. This real-
time data enables accurate, up-to-date simulations and predictive modeling. The integration
of game engines, like Unreal Engine or Unity, enables immersive 3D visualizations of these
water systems, facilitating scenario analysis and decision-making by providing stakeholders
with a virtual, interactive environment to test and analyze different management strategies
and forecast the impact of future events, such as floods or droughts. Together, these
components create a robust and dynamic digital twin that offers detailed insights and
allows for better-informed water resource management. These steps are:

• Real-Time Sensor Data Collection, Satellite Imagery, and Meteorological Data Integration
• Three-dimensional Visualization and Game Engine Integration
• Hydrological Model Integration
• Predictive Modeling and Scenario Analysis
• Continuous Data Updates and Simulation Refinement
• Stakeholder Interaction and Decision-Making Interface

2.3. Data Collection and Integration

This section explicitly outlines the procedures and technologies used for data collec-
tion, including the deployment of real-time IoT sensors, acquisition of satellite imagery,
meteorological data retrieval, and field-based terrain modeling. Data from these diverse
sources are systematically integrated into the framework using structured preprocessing
pipelines and geospatial alignment protocols.
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The success of the proposed digital twin framework relies heavily on efficient and
accurate data collection. This section details the sources of data, integration methods, and
tools employed to collect, process, and integrate data from diverse monitoring technologies,
including IoT sensors, satellite imagery, and geospatial data.

2.3.1. Data Sources

To provide a comprehensive view of the water reserve systems, data are collected
through several key sources. These include IoT sensors, satellite imagery, and meteorologi-
cal data, each contributing to different facets of water monitoring and management.

1. IoT Sensors: Real-time data from water systems is gathered through a network of IoT
sensors strategically placed across critical points of the water reserves. These sensors
measure various parameters integral to water management, including:

• Water levels are measured using ultrasonic and radar-based sensors to monitor
the height of water in reservoirs, rivers, and dams.

• Flow rates are monitored using electromagnetic flow meters or ultrasonic
Doppler flow sensors, ensuring accurate data on the movement and distribution
of water.

• Water quality is assessed through sensors that track parameters such as pH,
turbidity, dissolved oxygen, and conductivity. These sensors rely on technologies
like optical sensors and ion-selective electrodes.

• Temperature data are collected using RTD (resistance temperature detectors) or
thermocouples, helping to monitor thermal variations within water bodies.

The sensors are interconnected through an IoT network, ensuring a continuous and
reliable flow of data from remote locations, even in challenging environmental conditions.
The deployment of LPWAN (Low Power Wide Area Network) technologies, such as
LoRaWAN and NB-IoT, ensures low-power and long-range connectivity, which is essential
for widespread sensor deployment in water management systems (Figure 2).
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2. Satellite Imagery: In addition to ground-based sensors, satellite imagery plays a
pivotal role in obtaining large-scale spatial data for monitoring land cover, water body
changes, vegetation health, and soil moisture [49,50]. Two primary types of satellite
imagery are utilized:

• Optical Satellites like Sentinel-2 provide high-resolution imagery (ranging from
10 to 60 m) and are valuable for observing vegetation and water surface changes.



Sustainability 2025, 17, 3754 8 of 44

The Copernicus Sentinel-2 mission offers a revisit cycle of 5 days, ensuring
frequent monitoring of regions of interest.

• Radar Satellites such as Sentinel-1 are employed to monitor hydrological pro-
cesses such as flooding, water levels, and soil moisture. These satellites utilize
Synthetic Aperture Radar (SAR) technology, which operates regardless of weather
conditions or time of day. The ability to collect radar data under all weather
conditions makes it ideal for flood and drought monitoring.

The advantage of using free satellite data—like those from the Sentinel missions—lies
in their accessibility, cost-effectiveness, and regular updates. Commercial satellite services,
though offering higher spatial resolution and additional services, often involve significant
costs, which makes free satellite data a preferable option for continuous monitoring over
large geographic regions (Figure 3).
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3. Meteorological Data: To complement water-related data, meteorological data from lo-
cal weather stations and global sources (e.g., NOAA and ECMWF) are also integrated
into the framework. These data include:

• Precipitation levels
• Temperature
• Wind speed and direction
• Relative humidity

Meteorological data are critical for predicting future hydrological events, such as
rainfall–runoff patterns, extreme weather events, and potential droughts or floods. This
data helps in validating and calibrating hydrological models used in the digital twin.

4. Other Monitoring Technologies: In addition to sensors and satellites, other technolo-
gies, such as drones and ground-based monitoring stations, are used for specific tasks,
such as capturing high-resolution images of reservoirs, performing terrain mapping,
and monitoring groundwater levels. Drones are particularly valuable for rapid re-
sponse monitoring and can be deployed quickly to areas that are difficult to access by
traditional methods.

2.3.2. Integration of Geospatial Data

Geospatial data are an essential part of the framework, providing the spatial context
needed to model and simulate water flows, terrain dynamics, and land-use changes. These
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data are integrated with real-time water flow data and environmental factors to create a
highly accurate representation of water systems (Figure 4).
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1. High-Resolution Digital Elevation Models (DEMs)

Digital Elevation Models (DEMs) are foundational for the accurate simulation of water
flow, flood dynamics, and watershed management. They provide detailed information on
terrain structure and elevation, which is critical for understanding how water interacts with
landscapes and how changes in topography influence water distribution across a given area.
The integration of high-resolution DEMs with the digital twin framework plays a critical
role in enhancing the realism and predictive capability of water reserve management. In the
context of the digital twin, DEMs act as the foundational layer that supports the simulation
of water flow, flooding events, and terrain changes over time. By accurately mapping the
elevation and shape of the terrain, the DEMs allow the digital twin to simulate hydrological
processes in a highly realistic manner. Furthermore, game engines (such as Unreal Engine
and Unity) rely on accurate DEMs to create immersive 3D models of water systems and
infrastructures, which are essential for visualization and scenario-based simulations. The
integration of high-resolution DEMs into game engines facilitates the creation of interactive
environments where users can manipulate water flow, test flood mitigation strategies,
and analyze the impact of land-use changes. The real-time visualization of these terrains
within the digital twin framework enables decision-makers to understand how various
factors, such as rainfall, land cover changes, or infrastructure modifications, affect water
reserves and flood risks. Additionally, DEMs play a significant role in enhancing real-time
data updates that are core to the digital twin system. As IoT sensors provide live data
on water levels and flow rates, the DEM can be dynamically updated to reflect changes
in the terrain or water body, providing a continuous and accurate representation of the
environment. This integration ensures that the model is always in sync with the real world,
providing timely insights into potential risks such as flooding, drought, or water scarcity.
By integrating high-resolution DEMs, the framework can precisely model water movement
and terrain dynamics, providing a more accurate depiction of hydrological processes in the
digital twin environment.

The creation of high-resolution DEMs involves a combination of remote-sensing tech-
niques and ground-based methods to capture elevation data at varying scales. Several tools
and technologies are employed to ensure that the DEMs are both precise and comprehensive:
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• Drones (UAVs): Drones are a valuable tool for creating high-resolution DEMs, espe-
cially in large, remote, or difficult-to-access areas. Equipped with LiDAR (Light De-
tection and Ranging) sensors or RGB cameras, drones can capture extremely detailed
elevation data over vast areas with high accuracy. LiDAR technology, in particular,
allows for the generation of point clouds, which are used to create precise 3D models
of the landscape. The ability to fly low over the terrain ensures that even intricate
topographic features, such as riverbanks, cliffs, and small water bodies, are captured
in great detail. For large-scale areas, drones provide an efficient means of covering
extensive regions while maintaining high resolution.

• Close-Range Photogrammetry: For more localized or small-scale elevation modeling,
close-range photogrammetry offers another method for generating detailed DEMs.
This technique involves capturing a series of overlapping images of the terrain from
various angles, which are then processed through specialized software to create accu-
rate 3D models. This method is particularly useful for generating fine-scale DEMs of
specific features such as dams, embankments, or reservoirs. Structure-from-Motion
(SfM) algorithms are commonly used in photogrammetry to reconstruct 3D surfaces
from 2D images.

• Augmented DEM Refinement: To further enhance the resolution and detail of DEMs,
particularly in areas that require fine-level adjustments (such as urban environments,
water features, or intricate topographic structures), techniques like 3D Gaussian splat-
ting, LiDAR Point Cloud Processing (Surface Reconstruction) using Poisson Surface
Reconstruction or Alpha Shapes algorithms, Multi-View Stereo (MVS) Reconstruction
using Semi-Global Matching (SGM) or PatchMatch Stereo methods, Volumetric Terrain
Modeling using Octree-based voxelization techniques, Deep-Learning-based Surface
Reconstruction techniques such as Convolutional Neural Networks (CNNs) or DeepL-
iDAR, Super-Resolution Algorithms such as Sparse Coding and Photogrammetric
Dense Matching (e.g., Hierarchical Matching or Graph-Cuts) and Hybrid Point Cloud
Processing can be applied. This method involves refining occlusions and gaps in the
point cloud data by applying statistical models to the raw elevation data, effectively
filling in missing or unclear areas. It also enhances the precision of DEMs, particularly
in regions with dense vegetation or infrastructure, where traditional methods may
struggle. This refinement process ensures that the resulting DEM is not only highly
detailed but also accurate, providing the best possible representation of the terrain.

2. Land Use and Soil Types

Data on land use and soil types play a key role in understanding how various factors,
such as land cover (e.g., urban, agricultural, forest), influence water retention, infiltra-
tion, and runoff. These datasets are typically sourced from publicly available geographic
databases like the USGS National Land Cover Database (NLCD) or the European Space
Agency (ESA) soil moisture products.

3. Real-Time Water Flow Data

The integration of real-time flow data from IoT sensors with DEMs and land-use
data enables the framework to simulate and predict the behavior of water across different
terrains. This combination of data allows for accurate modeling of hydrological processes,
including river dynamics, flooding, and soil erosion.

2.3.3. Use of Existing Data Repositories

To further enrich the framework, various external data repositories are utilized to
enhance the accuracy and depth of the model. These repositories provide valuable historical,
regional, and global data that are essential for effective water reserves management.
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• Hydrological Datasets: Data from Global Runoff Data Centre (GRDC), USGS Na-
tional Water Information System (NWIS), and other regional hydrological monitoring
systems are used to gather historical flow data, river discharge levels, and water
storage data. These data support long-term trend analysis and improve the predictive
capabilities of the model.

• Climate Projections: Future climate projections from sources such as the IPCC (Inter-
governmental Panel on Climate Change) or CMIP (Coupled Model Intercomparison
Project) provide insights into potential shifts in weather patterns that could impact
water resources. These projections are integrated into the system to simulate future
water availability and help plan for potential droughts or extreme weather events.

2.3.4. Specific Tools and Platforms for Data Aggregation and Integration

The preprocessing and integration of data from various sources is a crucial step
(Figure 5). It requires the use of specialized tools and platforms that facilitate data aggrega-
tion, storage, and visualization, examples of which are explained below.
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1. MQTT Protocol: The MQTT protocol is widely used for transmitting IoT sensor data to
central systems due to its lightweight, low-bandwidth, and low-latency characteristics.
It is particularly suitable for IoT networks in water reserves, where devices are often
spread across large areas and require reliable, real-time data transmission.

2. Geographic Information Systems (GIS): GIS platforms such as ArcGIS and QGIS
are critical for integrating, analyzing, and visualizing geospatial data [51]. These
systems allow for the creation of accurate digital elevation models, land-use maps,
and other spatial data products that are necessary for water flow simulation and
management. GIS tools also allow for the visualization of satellite imagery and the
overlay of real-time sensor data on maps.

3. Cloud-based Data Warehouses: Scalable cloud storage solutions like AWS Redshift,
Google BigQuery, and Microsoft Azure are employed to store large amounts of data
from various sources, including sensors, satellite imagery, and hydrological datasets.
These platforms provide the infrastructure needed for real-time data processing,
querying, and integration with the digital twin model.
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4. Data Integration Platforms: Platforms such as Apache Kafka and Apache NiFi are used
to ensure smooth data flow between various data sources and the central database.
These tools allow for real-time streaming of data, as well as the processing and
integration of large datasets from IoT devices, satellites, and external repositories.

2.4. Model Design and Simulation Environment

This section presents the modeling techniques used to integrate physical, hydrological,
and behavioral components into a unified digital twin environment. The simulation design
combines deterministic models (e.g., mass balance equations), spatial visualization tools
(GIS), AI-based scenario prediction (machine learning models), and game engine-based
immersive modeling. The foundation of the digital twin is the integration of hydrological
models with physical representations of water systems such as rivers, reservoirs, and
groundwater. These models are constructed within platforms like Unreal Engine, Unity, or
Simulink, which allow for the creation of interactive 3D simulations. These platforms use
data from various sources, such as sensor networks, satellite imagery, and meteorological
inputs, to simulate real-time water flow, water quality, and environmental changes.

1. Physical Models Integration: Hydrological models and water balance equations are
incorporated into the digital twin framework to simulate water distribution, quality,
and behavior under various conditions. These models are calibrated and validated
using historical data, real-time sensor readings, and satellite observations.

2. Real-Time Data Integration: The digital twin is continuously updated with real-time
data collected through IoT sensors, satellite imagery, and weather stations. This allows
for dynamic and accurate simulations, which can adapt to changing environmental
conditions or management decisions in real time.

Once the data are integrated, the digital twin model allows for the simulation of
various scenarios that can assist in decision-making processes related to water management.
These capabilities include:

• Real-Time Data Updates: The digital twin continuously updates in response to new
data, enabling up-to-date simulations of water systems.

• Predictive Modeling: The model includes predictive algorithms that can forecast future
water system behaviors based on historical trends, climate projections, and real-time
inputs. This is crucial for preparing for extreme weather events like floods or droughts.

• Scenario Analysis: Users can test different scenarios within the digital twin, such as the
impact of a new dam, the effects of climate change on water reserves, or the potential
for flooding during heavy rainfall. These simulations help stakeholders visualize the
consequences of their decisions before implementing them in the real world.

2.5. Game Engine Integration and Simulation Design

The integration of game engines like Unreal Engine and Unity plays a pivotal role
in enhancing the interactivity and visualization of water reserves management. These
engines are utilized to build immersive, real-time 3D simulations that mimic real-world
water systems and flood management scenarios. Game engines such as Unreal Engine and
Unity are employed to create detailed and visually rich simulations of water reserves and
flood management systems. These engines enable high-fidelity rendering, providing an
engaging, interactive environment where users can manipulate water systems and visualize
real-time changes based on various environmental factors. The ability of these engines
to render large-scale terrains and water bodies with accuracy enhances the realism and
applicability of the simulations.

The design of simulations focuses on user interface (UI) simplicity and interactivity,
ensuring that users—whether stakeholders, decision-makers, or the general public—can
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easily engage with the system. The interface allows for intuitive interaction with complex
data and water management systems. Key design features include:

• Water System Visualization: Realistic 3D renderings of water bodies, infrastructure
(dams, reservoirs), and surrounding terrain.

• Real-Time Interaction: Users can change parameters such as rainfall levels, water
demand, or flood mitigation measures and immediately see the resulting changes in
water flow and management dynamics.

• Virtual Tour: Utilizing game engines for immersive digital twins is crucial for con-
ducting virtual tours and providing a realistic water reserve management experience,
as it allows policymakers and water managers to visualize and interact with hy-
drological data, flood scenarios, and reservoir dynamics in a highly engaging and
informative manner.

• Simulating Various Water Management Scenarios: Visualizations include natural dis-
aster scenarios like floods, droughts, rainfall-induced landslides, water conservation
strategies, or infrastructure changes, allowing users to simulate and analyze different
management approaches.

Several specialized tools and plugins are integrated within the game engines to sim-
ulate the complex dynamics of water systems. These tools enhance the realism of the
simulations by modeling water behaviors and environmental factors in detail. FluidFlux
is used for simulating tidal forces and water dynamics in coastal or river systems, and
it allows for the accurate simulation of water movement and interaction with various
topographies, providing insight into flood management and tidal behavior. Additionally,
TerreSculptor is a terrain modeling tool used to generate realistic landscapes, terrain el-
evations, and water flow patterns. This plugin ensures that the simulation environment
accurately reflects the real-world geographic features that impact water distribution and
flow. Other custom plugins can be added for simulating specific hydrological processes
like river currents, groundwater infiltration, or evapotranspiration, which are essential for
modeling the behavior of water in different weather and environmental conditions. One of
the most powerful features of the game engine-based simulation is the ability to conduct
scenario-based simulations, enabling users to explore a wide range of potential water man-
agement scenarios. Users can test the effectiveness of various flood control measures, such
as dam construction, levees, flood gates, or natural buffers (wetlands, forests). The system
simulates water behavior under extreme conditions and shows how infrastructure or policy
changes can mitigate or exacerbate flooding. The simulation allows for the exploration of
water-saving strategies such as irrigation systems, water pricing, and land-use policies. By
adjusting these factors, users can analyze their impact on water availability and distribution.
Real-time, interactive simulations can show how water systems will respond to sudden
events like heavy rainfall or system failures. Stakeholders can test preparedness strategies
for both flood and drought events, enabling better risk management and response planning.

2.6. Evaluation Metrics and System Validation

Although this study introduces a conceptual and prototype-level framework, a series
of preliminary validation procedures are proposed to assess the system’s accuracy, usability,
and responsiveness. The performance of predictive modeling components—such as AI
algorithms for forecasting droughts or floods—can be evaluated using standard statistical
metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and coef-
ficient of determination (R2). In cases involving classification-based outputs, more complex
metrics derived from the confusion matrix—such as Receiver Operating Characteristic
(ROC) curves, accuracy, and precision—may also be employed by comparing predicted
values with observed historical datasets. Calibration and validation of hydrological models
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will be conducted using long-term discharge and precipitation records sourced from local
monitoring systems or global repositories such as the Global Runoff Data Centre (GRDC)
and the U.S. National Water Information System (NWIS). To assess system usability and
stakeholder interactivity, user-centered design principles can be implemented, drawing on
evaluation criteria such as interface intuitiveness, system responsiveness, and realism of
scenario simulations, which may be measured during expert walkthroughs or stakeholder
workshops. In addition, the framework’s adaptability can be tested through scenario-based
stress testing under synthetic climate inputs (e.g., projected extreme rainfall or prolonged
drought conditions). Collectively, these evaluation metrics validate the technical robust-
ness, operational readiness, and potential for user engagement of the proposed digital
twin framework.

Due to the high-stakes nature of water resource management—where decisions can
directly impact public health, food security, disaster preparedness, and environmental
sustainability—the framework places strong emphasis on model transparency and inter-
pretability. While modern machine-learning and deep-learning algorithms often achieve
superior accuracy compared to traditional models, their complexity can result in “black-
box” behavior, making it difficult for decision-makers to trust or understand model outputs
without additional interpretive scaffolding. To address this, the system incorporates ex-
plainable AI (XAI) techniques aimed at unpacking the decision logic behind each prediction.
Methods such as SHAP (SHapley Additive Explanations) and LIME (Local Interpretable
Model-Agnostic Explanations) will be employed to attribute model outcomes to specific
input features both globally (across the model) and locally (at the individual prediction
level). These tools provide insight into how factors such as rainfall variability, reservoir
capacity, or land use contribute to forecasted risks like flooding or water shortages. Addi-
tionally, complementary interpretability tools—such as partial dependence plots (PDPs),
individual conditional expectation (ICE) curves, and permutation feature importance—
can be incorporated within the decision-support interface to help users visualize model
behavior over varying input conditions. These plots will be accompanied by natural lan-
guage summaries and intuitive UI features (e.g., annotated graphs and color-coded feature
contributions), enabling even non-technical stakeholders to understand what drives a
particular forecast. This interpretability framework ensures that model predictions are
not only accurate but also explainable, auditable, and trustworthy, fulfilling a crucial re-
quirement in water governance where transparency and accountability are as important as
predictive performance.

3. Results and Discussion
3.1. Implementation of a Digital Twin-Driven Early Warning System

Integrating early-warning capabilities into the digital twin framework is essential for
proactive water management, especially in mitigating the risks of flooding, drought, and
water-quality degradation [52]. By leveraging the power of IoT sensors, satellite data, and
advanced modeling tools, the digital twin continuously monitors and predicts hydrological
events. The framework processes incoming data through predictive algorithms, cross-
referencing it with historical climate data and current water system conditions to provide
accurate forecasts [53]. These predictions form the backbone of the early-warning system,
ensuring stakeholders receive timely alerts on water-related hazards. The early-warning
system’s methodology relies on a combination of real-time data streaming, predictive ana-
lytics, and scenario-based simulations [54]. As environmental and hydrological conditions
evolve, the system dynamically adjusts predictions and updates risk levels. For instance,
changes in rainfall patterns, river flow rates, or water levels can trigger early warnings,
while the system continuously recalibrates based on fresh data inputs. The integration
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of real-time data with predictive modeling enables a comprehensive understanding of
the current state and potential future conditions, offering invaluable insights for timely
decision-making.

3.1.1. Flood and Drought Predictions

The core of flood and drought prediction lies in the digital twin’s ability to simulate
hydrological processes under different environmental and climatic conditions. The system
uses real-time sensor data from water bodies, such as rivers, lakes, and reservoirs, along
with high-resolution satellite imagery, to monitor key parameters like rainfall, soil moisture,
water levels, and temperature. These inputs are integrated into a set of predictive models
that simulate how water reserves will behave in the face of extreme weather events. Flood
prediction is primarily based on simulations of river and reservoir dynamics, utilizing
data on rainfall intensity, runoff rates, and existing water levels. The system can identify
rising flood risks by predicting water accumulation patterns, potential dam overflows,
and flash flood conditions. Similarly, drought prediction focuses on monitoring trends in
precipitation, soil moisture, and groundwater levels. By identifying areas with persistent
water shortages, the system can predict the onset of drought conditions and provide early
warnings to facilitate water conservation efforts and drought management strategies.

3.1.2. Water Quality Monitoring and Disaster Preparedness

In addition to flood and drought predictions, the early-warning system incorporates
continuous monitoring of water-quality parameters, which is essential for disaster pre-
paredness [55]. Water-quality sensors measure indicators such as pH, turbidity, dissolved
oxygen, and chemical pollutants to assess the health of water systems. By analyzing these
parameters, the system can detect contamination events, potential algal blooms, or sud-
den changes in water chemistry that may compromise public health. The digital twin
framework’s integration of water-quality monitoring extends to disaster preparedness by
enabling a proactive response to emerging threats. For example, if water-quality sensors
detect abnormal pH levels or increased turbidity, the system can predict potential water
contamination, alerting local authorities and enabling quick interventions. This proactive
approach helps to prevent public health crises and ensures that water resources are safe for
consumption and agricultural use. Additionally, by providing historical water-quality data
alongside current monitoring, the system allows for more effective risk management and
disaster response strategies.

3.1.3. Real-Time Decision Support and Risk Communication

The early-warning system’s primary function is to ensure real-time decision support,
particularly in responding to imminent or evolving threats. As the system continuously
collects and processes data from IoT sensors, satellite imagery, and environmental models,
it generates real-time alerts regarding potential flood, drought, or water-quality risks. These
alerts are communicated to decision-makers through user-friendly interfaces, offering clear,
actionable insights and visualizations that enable stakeholders to understand and assess
the level of risk. In the case of an impending flood, for instance, the system can notify
local authorities, emergency responders, and citizens about flood-prone areas, estimated
water levels, and potential impacts. Similarly, in the case of drought conditions, the
system will provide alerts about water shortages, areas at risk of water scarcity, and the
potential for crop loss. The early-warning system also incorporates real-time water-quality
monitoring, allowing stakeholders to track changes in water parameters and address
incidents such as contamination or algal blooms. The communication of risk is crucial,
and the system is designed to provide comprehensive risk assessments based on up-to-the-
minute data. Through a combination of visualizations, maps, and predictive graphs, the
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decision support system ensures that users can fully comprehend the situation and make
informed decisions. These alerts can be sent through multiple channels, including mobile
apps, email notifications, and desktop dashboards, ensuring that the right stakeholders
receive timely updates no matter their location.

3.1.4. Empirical Foundations, Research Gaps, and Framework Integration

The feasibility of a digital twin-based early-warning system for hydrological hazards
is increasingly supported by recent applied research. For example, Song [56] developed a
real-time river flood early-warning system for the Tartano River in Northern Italy, using
digital terrain models and Unity game engine integration to simulate flood dynamics
and generate threshold-based alerts. Similarly, Li [57] constructed a modular urban flood
disaster prediction and dispatch system using digital twin technology in China, demon-
strating the potential for dynamic interaction between sensor networks and predictive
models in city-scale water systems. In a broader context, Riaz et al. [58] showcased how
digital twins can improve climate resilience by integrating 3D city modeling with IoT data
streams and forecast models. Their results showed improved warning lead times and
system responsiveness when compared to conventional models. Thakur [59] proposed a
digital twin-driven methodology for predicting urban waterlogging and sewer overflow
conditions, with embedded sensors and predictive modeling frameworks for near-real-time
alerts and decision support.

These studies confirm the viability of core components found in our proposed system,
including hydrological simulation, real-time feedback loops, AI-enhanced alerts, and im-
mersive visualization. However, none of these implementations offer a unified, modular,
and immersive architecture that integrates decision-making interfaces, 3D stakeholder en-
gagement tools, and scenario-based gamification into a single system. Most current systems
remain application-specific (e.g., flood-only or sewer-only), lack participatory modules, or
require extensive technical expertise for interpretation. The proposed framework in this
paper builds upon these foundations by proposing an integrated, adaptive architecture that
incorporates digital twins, IoT sensors, and game engines into a unified early-warning and
decision-support environment. Furthermore, as shown in Section 3.5, various components
of this framework have already been implemented in prototype form, demonstrating techni-
cal feasibility and the capacity for real-time terrain modeling, infrastructure reconstruction,
and interactive simulation.

3.2. Where Data Meets Decisions: AI-Driven Decision Nexus as the Ultimate Solution

The integration of digital twins, real-time sensor networks, predictive analytics, and
interactive simulations has laid the foundation for a transformative approach to water
reserves management. However, the true potential of these technologies can only be
realized when they converge into a unified, intelligent decision-support system (AI-DSS).
This AI-driven nexus serves as the culmination of all discussed technologies, synthesizing
vast streams of data into actionable insights that inform policy-making, emergency response,
and long-term water conservation strategies. Through machine-learning and deep-learning
models, the system continuously refines its predictions, learning from historical trends, real-
time hydrological fluctuations, and external climate patterns. Advanced open-source large
language models (LLMs) facilitate stakeholder engagement by transforming raw data into
accessible, domain-specific insights. Additionally, Retrieval-Augmented Generation (RAG)
chatbots provide an interactive interface, enabling users to query the system, receive instant
risk assessments, and explore adaptive management strategies. Each preceding step—
from the construction of digital twins to the integration of real-time monitoring systems,
game engine simulations, and early-warning mechanisms—feeds into this AI-DSS, forming
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a cohesive intelligence-layered entity that optimizes water governance. The following
sections explore how this decision-making nexus is designed, the algorithms that power it,
and how it enables more adaptive, predictive, and interactive water management solutions.

3.2.1. Design of an AI-Driven System for Enhanced Water Management Decisions

The AI-based decision-support system is designed to continuously enhance water
management decisions by leveraging advanced machine-learning and deep-learning tech-
niques. By processing large volumes of real-time and historical data, the system provides
intelligent insights that empower water managers to make more informed decisions regard-
ing water reserves, flood management, drought response, and overall resource allocation.
The system’s core function is to adaptively optimize water management strategies by learn-
ing from incoming data, adjusting to changing conditions, and forecasting future events
based on predictive models [60,61]. The AI-driven system integrates various data sources—
such as sensor readings, satellite imagery, meteorological data, and historical water flow
records—to provide a comprehensive understanding of water systems [62]. These diverse
data streams are fed into the system to ensure that the AI continuously learns and updates
its knowledge base. The system is designed to provide real-time recommendations for
water usage, conservation practices, flood mitigation strategies, and drought management,
with an emphasis on adaptability and efficiency.

3.2.2. Integration of Machine-Learning and Deep-Learning Algorithms

At the heart of the system’s adaptability is the integration of machine-learning (ML)
and deep-learning (DL) algorithms. These algorithms are essential for extracting patterns
from complex, large-scale datasets and predicting future water system behavior based
on historical trends. ML algorithms, such as decision trees, support vector machines
and ensemble methods are employed to identify relationships within data, such as how
changes in precipitation patterns may influence river flow or how temperature fluctuations
impact water quality [63]. Deep-learning models, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), are utilized for more sophisticated tasks,
including the analysis of time-series data, image recognition, and flood risk predictions. For
instance, CNNs can process satellite imagery to detect changes in land cover, vegetation
health, and water bodies, while RNNs are ideal for analyzing sequential data, such as
water-level fluctuations over time. These algorithms enable the system to predict potential
water shortages, flooding events, and the impacts of land-use changes, providing proactive
decision-making support. Different ML and DL algorithms are described in Table 1.

The selection of machine-learning and deep-learning algorithms plays a critical role in
water resource management, influencing the accuracy, efficiency, and interpretability of
predictions. Supervised learning models, such as Linear Regression, Decision Trees, and
Random Forests, offer transparency—meaning their decision-making process can be easily
understood—and efficiency, as they require less computational power. These qualities make
them suitable for tasks like predicting water demand based on historical usage patterns
or classifying flood risk zones by analyzing past flood events and topographical data.
However, they often struggle with capturing complex, nonlinear relationships, requiring
feature engineering, where domain-specific knowledge is used to create relevant input
variables. For example, when using Linear Regression to predict water consumption
trends, engineers might need to introduce additional variables like seasonal variations or
economic activity levels to improve accuracy. Deep-learning models, such as CNNs, RNNs,
and LSTMs, provide powerful pattern recognition and time-series forecasting capabilities,
making them well-suited for analyzing satellite imagery to detect water bodies, monitoring
long-term hydrological trends, and providing real-time flood predictions. For instance, a
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CNN can process satellite images to detect changes in river meanders, soil moisture levels,
or deforestation, helping policymakers anticipate water resource challenges.

Table 1. Comparison of Machine-Learning and Deep-Learning Algorithms.

Algorithm Type Model Type Strengths Limitations
Use Case in Water

Management
Training

Time
Data

Requirements

Linear
Regression

Supervised
Learning

Simple, fast,
interpretable

Assumes linear
relationships; not

suitable for complex
patterns

Predicting water
demand based on

historical data
Short Low

K-Nearest
Neighbors

(KNN)

Supervised
Learning

Simple and
intuitive

Computationally
expensive for large

datasets

Estimating regional
water quality

Short Medium

Decision Trees
Supervised
Learning

Easy to interpret,
good for

classification

Can overfit; less
accurate with
complex data

Classifying flood
risk zones

Medium Medium

Random Forest
Supervised
Learning

Robust to
overfitting, handles

large datasets

Computationally
expensive

Predicting flood
events and water

quality
Medium Medium to High

Support Vector
Machines (SVM)

Supervised
Learning

Effective in
high-dimensional

spaces

Computationally
intensive, requires
parameter tuning

Classification of
water body
conditions

Medium High

Convolutional
Neural Networks

(CNN)
Deep Learning

Excellent for
pattern recognition

in images

Requires a large
amount of data and

computational power

Analyzing satellite
imagery for land

use changes
Long High

Recurrent Neural
Networks (RNN)

Deep Learning
Effective for

time-series data

Can suffer from
vanishing gradients,

requires large datasets

Predicting water
flow or rainfall

patterns
Long High

Long Short-Term
Memory (LSTM)

Deep Learning
Handles long-term
dependencies well

Requires significant
training data, slow to

train

Real-time water
level predictions

Long High

Recent advancements have demonstrated the efficacy of ML and DL techniques in wa-
ter resource management. For instance, convolutional neural networks (CNNs) have been
utilized for drought classification through vegetation indices like VHI and NDVI [64,65].
Long short-term memory (LSTM) networks have shown high temporal precision in river
flow and flood forecasting [66,67], outperforming traditional hydrological models in cap-
turing temporal dependencies in rainfall–runoff relationships [68]. Random Forest models
have been applied to identify groundwater potential zones and predict agricultural water
demand, offering higher spatial generalization than process-based models [69]. In the realm
of water reserve management, transformer-based deep-reinforcement learning approaches
have been employed to optimize multi-reservoir operations, balancing objectives like
power generation, ecological protection, and residential water supply [70]. These methods
have demonstrated superior performance compared to traditional techniques in terms of
electricity generation and water supply revenue. Additionally, ML techniques have been
applied for contamination detection in water distribution systems, urban water-quality
prediction, and leakage detection, showcasing their versatility in various aspects of water
resource management [71,72]. Compared to conventional hydrological models, ML and
DL approaches offer enhanced capabilities in handling nonlinear relationships and large,
diverse datasets. While traditional models rely on predefined equations and parameters,
ML models can learn complex patterns directly from data, providing more accurate and
adaptable predictions. However, they also require substantial amounts of high-quality
data and may lack the interpretability of simpler models. Hybrid models that integrate
physical-based knowledge with data-driven techniques have been developed to improve
prediction performance, combining the strengths of both approaches [73,74]. In our pro-
posed framework, these AI methods are not isolated prediction tools but are integrated
into a real-time decision-support environment. For instance, a Random Forest model could
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classify risk zones based on dynamic sensor inputs, while an LSTM forecasts short-term
reservoir inflows, both embedded within the digital twin for continuous adaptation and vi-
sualization. This approach bridges high-performance prediction with intuitive stakeholder
communication, setting the foundation for adaptive, AI-driven water governance.

However, the trade-off between ML and DL lies in their high computational costs,
large data requirements, and lack of interpretability compared to traditional models. Inter-
pretability refers to how easily humans can understand a model’s decision-making process,
while a Decision Tree might explicitly show that a flood risk is high due to soil permeability
and recent precipitation levels, and an LSTM flood model may not clearly indicate why
it made a particular prediction. For real-time applications, LSTMs outperform traditional
models due to their ability to capture long-term dependencies in sequential data, making
them valuable for predicting water levels based on historical rainfall, river discharge, and
groundwater fluctuations. For example, an LSTM trained in decades of river flow data can
anticipate potential droughts or floods weeks in advance, providing critical early warnings.
Conversely, Random Forests and Decision Trees remain valuable where interpretability and
efficiency are critical, such as in policy decision-making and regional flood risk assessments.
A Random Forest model can help government agencies assess which regions are most
vulnerable to water shortages, combining factors like rainfall trends, population density,
and agricultural water demand.

A key limitation across all models is data dependency—while simpler models re-
quire less data, deep-learning models demand vast, high-quality datasets for meaningful
insights. For instance, a Linear Regression model might need just a few years of precipi-
tation and water consumption records, whereas a CNN trained to detect drought-prone
areas from satellite imagery may require decades of high-resolution images and labeled
datasets to achieve reliable accuracy. This underscores the need for robust data-collection
infrastructures, including remote sensing (e.g., satellite and aerial imagery), IoT-enabled
water sensors (for real-time monitoring of water quality and levels), and hydrological
databases that track long-term trends. Thus, selecting the appropriate algorithm hinges on
the balance between computational feasibility (e.g., whether an agency has the processing
power to run deep-learning models), data availability (whether sufficient historical or
real-time data exists), interpretability (whether decision-makers need to understand the
logic behind predictions), and prediction accuracy. Future advancements may see the
hybridization of traditional and deep-learning models, such as combining a Decision Tree
for interpretability with an LSTM for high-accuracy predictions, allowing for more precise,
scalable, and actionable decision-support systems in water management.

3.2.3. Adaptive Decision-Making for Dynamic Recommendations

The AI-based decision-support system is designed to learn from past data and continu-
ously update its models in response to new inputs and evolving environmental conditions.
This adaptive decision-making process ensures that the system remains flexible and ac-
curate over time. For example, if an unexpected weather event or environmental change
alters water availability or quality, the system will automatically adjust its recommen-
dations to reflect the new circumstances. The system’s adaptability is enhanced by its
ability to process real-time data streams, which allows it to respond to changes in water
systems immediately. As data from IoT sensors, satellite observations, and meteorological
reports are continuously fed into the system, machine-learning algorithms recalibrate the
predictive models and adjust water management strategies accordingly. This ensures that
the recommendations provided to water managers are always based on the most current
information available, leading to more effective responses to emerging challenges, such
as flood events, drought conditions, or contamination threats. By dynamically adjusting
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decision-making protocols, the AI system is able to provide highly accurate and context-
specific guidance, facilitating optimal water management under diverse and changing
environmental conditions. Whether it is adapting to shifting weather patterns, addressing
new water quality concerns, or responding to changes in water demand, the AI system
ensures that water reserves are managed efficiently and sustainably over time.

3.2.4. Use of Open-Source Large Language Models (LLMs)

To enhance user engagement and provide interactive insights, the AI system incorpo-
rates open-source Large Language Models (LLMs) and Retrieval-Augmented Generation
(RAG) chatbots. LLMs are used to process natural language inputs from users, enabling
them to query the system, ask for recommendations, and receive detailed responses regard-
ing water management strategies, flood risks, and drought. Different LLMs are summarized
in Table 2 and Figure 6. The RAG chatbot integration allows the system to pull relevant
data from multiple sources (such as IoT sensors, historical datasets, and real-time satellite
imagery) and present this information in a conversational manner. This functionality en-
courages dynamic interaction, where users can request detailed analyses, run simulations,
or explore different scenarios (e.g., assessing the effectiveness of a proposed flood mitiga-
tion measure). By leveraging RAG capabilities, the chatbot not only retrieves data but also
generates responses that are contextually relevant, ensuring that users receive personalized,
real-time insights [75]. These AI-powered interfaces enable water management profession-
als to access complex data and predictions in an intuitive and interactive manner. The
integration of LLMs and RAG chatbots enhances the user experience, making it easier to
interpret data and receive actionable recommendations without needing to interact directly
with complex models or systems [76].
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Table 2. Comparison of Large Language Models (LLMs).

LLM
Model

Developer Strengths Limitations Use Case Training Time
Open

Source
Use Case in Water

Management

GPT-4 OpenAI

Strong general
language

understanding, handles
complex queries,
computationally

expensive and less
easily fine-tuned for

domain-specific tasks

Computationally
expensive,

lacks
fine-tuned

domain-
specific

knowledge

Conversational
AI, text

generation,
decision
support

Long ✘

Conversational
insights on water

management,
predicting water

stress

BERT Google

Good at contextual
language

understanding,
pre-trained on large

corpora

Requires
fine-tuning for
specific tasks

NLP tasks,
question

answering,
summariza-

tion

Medium ✓

Assisting with water
reserve

documentation,
query handling

T5 Google
Strong in multiple NLP

tasks, flexible with
fine-tuning

Requires large
datasets for

training

Text-to-text
generation,

data extraction
Medium ✓

Generating insights
and

recommendations for
water management

policies

GPT-4-
turbo

OpenAI

Specializes in
conversational

interfaces, handles long
conversations

Limited by the
pre-trained
knowledge

cutoff

Customer
service,
decision
support

Medium ✘

Real-time user
queries about

flooding or water
shortage conditions

LLaMA Meta
Open-source, high
performance for

specific tasks

Requires
fine-tuning for
high accuracy

Text
generation,
summariza-

tion

Medium ✓
Generating reports or
summaries on water

system health

Falcon
Technology
Innovation

Institute

State-of-the-art
performance with

efficient use of
resources

Smaller model
sizes may not
outperform

larger models

Text
generation,
summariza-

tion, question
answering

Moderate (due
to

optimizations)
✓

Localized water data
analysis, simulation

predictions, real-time
monitoring

Mistral Mistral AI
Efficient training, open

architecture,
cost-effective

May lack
capabilities of
larger models
for complex

tasks

Text
generation,
dialogue
systems,
question

answering

Faster
(optimized for
deployment)

✓

Quick, accurate
predictive insights
for water systems,

disaster risk
assessment

GPT-Neo EleutherAI
Open-source, high
performance for

various NLP tasks

Smaller model
sizes might be
less accurate

Text
generation,
summariza-

tion, question
answering

Medium ✓
Assisting with

decision support and
system insights

GPT-J EleutherAI

Open-source, strong
language

understanding for
general purposes

Can be compu-
tationally

demanding for
real-time

applications

Generating
reports,

conversational
interfaces

Medium ✓

Providing
on-demand decision

insights for water
system management

BLOOM BigScience

Open-source,
multilingual support,
strong cross-lingual

capabilities

Computationally
expensive, not
as fine-tuned
for specific
domains

Multilingual
tasks, summa-

rization,
conversation

Long ✓

Multilingual flood
management

communication,
cross-region
collaboration

OPT Meta
Open-source, high

efficiency, optimized
for conversational AI

Requires
significant

computational
resources

Text
generation,
summariza-

tion, dialogue
generation

Medium ✓

Supporting
cross-departmental
communication and

action in water
management

RAG
(Retrieval-
augmented

genera-
tion)

Hugging
Face

Supports retrieving
documents and

information to generate
contextually aware

responses

May require
tuning to

specific tasks

Real-time
dynamic

responses,
knowledge

retrieval

Medium ✓
Providing interactive
decision support for
flood management
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Large Language Models (LLMs) play a crucial role in advancing decision-support
systems for water management, particularly in predictive analytics, automated reporting,
and real-time user engagement. One of the primary considerations in selecting an LLM
for this purpose is whether the model is open source or proprietary. Open-source models
such as BERT, Falcon, LLaMA, GPT-Neo, GPT-J, BLOOM, and OPT provide flexibility for
customization, allowing researchers to fine-tune them using hydrological and environ-
mental datasets. This adaptability enhances their applicability in domain-specific tasks
like flood forecasting and water reserve analysis. In contrast, proprietary models like
GPT-4 and ChatGPT offer superior general language understanding but lack transparency
and fine-tuning capabilities. While they are well-suited for interactive decision support,
their computational costs and closed nature limit their customization for specialized water
management applications.

Computational efficiency is another key factor in determining an LLM’s suitabil-
ity for real-time water management. Larger models, such as GPT-4, BLOOM, and OPT
(175 billion+ parameters), offer high accuracy in language comprehension but require
substantial computational resources, making them less ideal for real-time deployment
in resource-constrained environments. Meanwhile, more efficient models like Falcon
(7–40 billion parameters) and Mistral (12.9 billion parameters) strike a balance between
performance and deployment feasibility, enabling real-time monitoring of water reserves
and flood risks. RAG model’s size varies by implementation. Additionally, the multilingual
capabilities of BLOOM make it particularly useful for cross-border water management
initiatives, where collaboration and data sharing across different linguistic regions are
essential. Selecting the right LLM for water management AI systems depends on the
intended application. If interactive decision-making and conversational support are a
priority, GPT-4 and ChatGPT are strong candidates. If customization and open-source
accessibility are required, LlaMA, GPT-Neo, or OPT offers greater flexibility. Models like
Falcon and Mistral are better suited for real-time analytics due to their efficient architecture,
while BLOOM facilitates international collaboration through multilingual support. By
strategically leveraging these models, water management systems can improve predictive
capabilities, automate data interpretation, and provide timely insights to mitigate risks
related to floods, droughts, and water scarcity.

3.2.5. Developing Retrieval-Augmented Generation (RAG) Chatbots

While LLMs excel at language comprehension and generating coherent responses,
their knowledge is limited to pre-trained datasets and lacks real-time adaptability. Retrieval-
Augmented Generation (RAG) chatbots, on the other hand, integrate dynamic document
retrieval with generative AI, allowing them to pull up-to-date, domain-specific information
from external knowledge bases [77]. This capability is particularly advantageous for water
management, where real-time data on reservoir levels, flood risks, and drought conditions
are critical. Unlike standard LLMs, which may generate responses based on outdated or
generalized knowledge, RAG-based systems ensure that decision-makers receive the most
current and contextually relevant insights. Furthermore, RAG frameworks like LangChain
and Haystack enable fine-tuned responses based on structured hydrological reports, sensor
data, and government advisories, reducing the risk of misinformation. By combining the
generative power of LLMs with real-time retrieval, RAG chatbots offer a more reliable and
adaptive solution for water resource management and disaster preparedness. Different
RAG frameworks are described in Table 3.
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Table 3. Comparison of Retrieval-Augmented Generation (RAG) Frameworks.

RAG
Framework

Developer Key Features Strengths Limitations Integration
Supported

Models

Use Case in
Water

Management

LangChain
Harrison

Chase

End-to-end
framework for
RAG, supports

LLM integration,
chains together
multiple tools

(APIs, databases,
etc.)

Highly flexible,
great support
for dynamic

chains and task
automation

Can require
complex setup,
might be too

customizable for
beginners

Easy
integration
with LLMs,
APIs, and
databases

GPT,
OpenAI

models, Hug-
gingFace,

etc.

Generating
dynamic reports,
offering real-time

predictive
insights

Haystack deepset

Focus on
building NLP

pipelines, strong
in document

retrieval,
supports vector

search and dense
retrieval

Scalable,
robust search
capabilities,

well suited for
large-scale
document
retrieval

May require
tuning for

specific
workflows,

complex setup
for real-time
applications

Elasticsearch,
OpenSearch,
FAISS, and

others

BERT, T5,
GPT, etc.

Search and
retrieval of water

management
data from

documents,
helping users

find specific risk
mitigation
strategies

Transformers
(Hugging

Face)

Hugging
Face

Open-source
platform for NLP,

offers a wide
variety of

models, supports
retrieval-

augmented
generation

Easy
integration
with other

frameworks,
large model
hub, highly

modular

High
computational

costs for
large-scale

models, slower
for real-time
applications

Can integrate
with existing

tools and
platforms

GPT, BERT,
T5, RAG
models

(Hugging
Face)

Enabling
query-based

decision support
for flood or

drought
predictions,
retrieval of

domain-specific
knowledge

DeepPavlov DeepPavlov

Multi-purpose
conversational
AI framework,

supports
retrieval-

augmented
generation

Simple to use,
optimized for
conversational

agents,
modular

architecture

Focused more on
chatbots, might

need
adjustments for
complex RAG

tasks

Supports
integration

with external
data sources

BERT, T5,
GPT, etc.

Assisting with
AI-driven

conversation for
rapid responses
to water crisis

scenarios

RAG-
TensorFlow

TensorFlow

End-to-end RAG
framework for

TensorFlow
users, integrates

document
retrieval and text

generation

Great for
TensorFlow-

based
environments,

robust
integration

with various
NLP models

Requires
TensorFlow
knowledge,

integration with
non-TensorFlow

tools can be
challenging

TensorFlow,
FAISS,

ElasticSearch

TensorFlow-
based

models,
OpenAI
models

Real-time flood
prediction
insights,

querying past
water system
performance

Among the leading RAG frameworks, LangChain stands out for its ability to integrate
multiple tools, databases, and APIs into cohesive pipelines, making it particularly suitable
for generating real-time predictive reports on water reserves and flood risks. However,
its flexibility comes with a complexity that may require expertise to configure effectively.
Haystack, developed by deepset, specializes in document retrieval and vector search,
making it highly efficient for searching historical water management records and identi-
fying past risk mitigation strategies. While it excels in large-scale document retrieval, its
performance in real-time applications may require additional tuning. Vector search, also
known as similarity search, is a technique used to find data points that are most similar to a
particular query by representing them as mathematical vectors in a high-dimensional space.
Unlike traditional keyword-based search, which relies on exact matches, vector search
compares numerical embeddings of text, images, or other data types to determine relevance
based on proximity in the vector space. In the context of RAG and water management
applications, vector search allows AI models to efficiently retrieve relevant documents,
reports, or historical data based on contextual meaning rather than just keyword presence.



Sustainability 2025, 17, 3754 24 of 44

This capability enhances decision-support systems by providing more accurate and context-
aware responses, such as identifying patterns in past flood events, retrieving water-quality
reports, or analyzing drought trends based on past climate data. For instance, a flood
early-warning system integrated with a RAG model. A water management expert enters
the query: “How did similar flood events in the past impact groundwater levels?” Instead
of relying on keyword matching, the system converts this query into a numerical vector
representation and searches a vector database of past flood reports, hydrological models,
and research papers. It then retrieves documents with semantically similar content, even
if they do not explicitly contain the exact words in the query. For example, the system
might find:

• A 2012 flood study that analyzed groundwater depletion after extreme rainfall.
• A hydrological model report discussing aquifer recharge patterns post-flood.
• A research paper on soil-infiltration rates during high-precipitation events.

By retrieving and summarizing this information, the AI model provides a context-
aware answer, helping decision-makers anticipate groundwater changes based on historical
patterns. This method outperforms traditional keyword search, which might only return
documents containing the exact phrase “groundwater levels” but miss relevant insights
expressed differently.

Comparatively, Hugging Face’s Transformers provide a vast ecosystem of pre-trained
models with retrieval capabilities, making them a highly modular choice for integrating
RAG-based insights into broader AI applications. However, their computational cost can
be a limiting factor, especially for large-scale environmental simulations. DeepPavlov offers
a more chatbot-centric approach, which can be advantageous for AI-driven conversational
agents assisting policymakers in crisis scenarios, though it may lack the robustness of
more complex RAG implementations. Lastly, RAG-TensorFlow integrates seamlessly
with TensorFlow-based NLP models and excels in environments already built on this
framework, making it a powerful tool for querying past water system performance and
making real-time flood predictions. However, its reliance on TensorFlow can make cross-
platform integrations challenging. Each of these frameworks provides distinct advantages
depending on the specific needs of water management systems. Whether prioritizing
scalability, real-time adaptability, or seamless integration with existing tools, selecting the
right RAG framework can significantly enhance decision-making efficiency in addressing
water-related challenges.

All the preceding steps form the core elements of an AI-driven decision-support
system, as depicted in Figure 7.
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3.3. Implications for Water Reserves Management and Policy

Digital twins enable continuously updated virtual replicas of water systems. This,
combined with immersive simulations via game engines, allows for a dynamic analysis of
future water demand and flood risks. The following sections explore how this framework
enhances flood-control strategies, informs long-term water conservation policies, and
integrates with smart water grids and climate models to drive data-driven decision-making
in water management.

3.3.1. Transforming Water Reserves Management Through Digital Twins and
Game Engines

The integration of digital twins and game engines marks a significant shift in water
reserves management, offering dynamic, real-time, and interactive capabilities that sur-
pass conventional water management practices. Traditional water management strategies
rely on static, periodic data collection, deterministic hydrological models, and reactive
decision-making processes. These limitations often result in delayed responses to wa-
ter crises, inefficient allocation of resources, and inadequate predictive capabilities. By
contrast, digital twins create continuously updated virtual replicas of water systems that
integrate real-time data streams from IoT sensors, satellite imagery, and climate models.
The inclusion of game engines enables enhanced visualization, scenario testing, and im-
mersive stakeholder engagement, fostering a more informed and proactive approach to
water reserves management. This transformative approach allows policymakers, engi-
neers, and environmental agencies to simulate future water demand, assess flood risks
dynamically, and evaluate the long-term sustainability of water conservation policies with
unprecedented accuracy.

3.3.2. Enhancing Flood Control Strategies and Disaster Response

One of the most pressing challenges in water reserves management is mitigating the
risks associated with flooding. Conventional flood models often lack the resolution and
adaptability required to account for rapid environmental changes, urbanization, and evolv-
ing climate conditions. The proposed framework enhances flood control by integrating
high-resolution Digital Elevation Models (DEMs) with real-time hydrological simulations
in digital twins. These digital models incorporate rainfall data, soil moisture levels, and
river discharge patterns, allowing decision-makers to visualize potential flood scenarios
and implement mitigation measures such as controlled reservoir releases, embankment
reinforcements, and green infrastructure solutions. Furthermore, game engine-based simu-
lations enable real-time stakeholder training and decision support during extreme weather
events. For instance, emergency response teams can use virtual reality (VR) environments
to practice flood-evacuation procedures from a safe and remote area, analyze real-time
water flow data, and assess the effectiveness of intervention strategies before implemen-
tation. This integration facilitates improved coordination among governmental agencies,
urban planners, and local communities, ensuring a data-driven, collaborative approach to
flood-risk reduction.

3.3.3. Advancing Long-Term Water Conservation and Sustainability Policies

Sustainable water use is paramount in the face of increasing water scarcity, climate
change, and competing demands from agricultural, industrial, and domestic sectors. Tra-
ditional water conservation policies are often reactive, relying on historical consumption
patterns and regulatory enforcement rather than predictive analytics. The digital twin
framework, integrated with AI-based decision-support systems, enables adaptive water
conservation strategies that evolve in response to real-time environmental and socio-
economic changes. By continuously monitoring reservoir levels, groundwater recharge
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rates, and precipitation trends, policymakers can use digital twins to design demand-
responsive water allocation policies. For instance, AI-driven simulations can assess the
impact of agricultural irrigation schedules, urban water restrictions, and industrial usage
policies under different climate scenarios. These insights allow for the optimization of
water distribution while ensuring equitable access and long-term resource sustainability.
Additionally, the integration of game engines allows for intuitive public engagement and
education. Interactive simulations can demonstrate the consequences of over-extraction, the
benefits of rainwater harvesting, and the potential of water-efficient infrastructure. By in-
volving citizens, farmers, and industries in decision-making through immersive platforms,
authorities can foster a culture of water conservation and collective responsibility.

3.3.4. Integration with Smart Water Grids and Climate Models

The effectiveness of digital twins in water management is further amplified when
integrated with smart water grids and climate models. Smart water grids use IoT-enabled
sensors to monitor water consumption, detect leaks, and automate water distribution
across urban and rural networks. The incorporation of digital twins into these grids enables
real-time optimization of water supply and demand, reducing wastage and enhancing
efficiency [23,78–80]. Furthermore, coupling digital twins with climate projection models
enables policymakers to anticipate long-term hydrological changes. For example, climate-
driven simulations can predict shifts in rainfall patterns, glacial melt contributions to river
basins, and extreme drought probabilities. These forecasts allow authorities to implement
adaptive water management policies that mitigate the effects of climate variability and
ensure resilient water infrastructure.

3.3.5. Policy Recommendations and Implementation Challenges at Institutional Level

While the adoption of digital twins and game engines presents significant advantages,
successful implementation requires addressing several policy and operational challenges:

• Data Standardization and Interoperability: Water management agencies must establish
standardized data formats and integration protocols to ensure seamless communica-
tion between digital twins, smart grids, and climate models.

• Investment in Digital Infrastructure: The deployment of IoT sensors, high-performance
computing, and game engine-based simulations necessitates substantial investments
in digital infrastructure and technical expertise.

• Regulatory and Institutional Adaptation: Existing water governance frameworks must
be updated to incorporate digital twin-based decision-making, ensuring that insights
from real-time simulations inform policy development.

• Stakeholder Engagement and Capacity Building: Training programs for policymakers,
water managers, and emergency responders should be established to enhance the
practical application of digital twin technologies.

• Cybersecurity and Data Privacy: As water management systems become increasingly
digitalized, robust cybersecurity measures must be implemented to safeguard sensitive
data and prevent cyber threats.

3.4. Real-World Applications of Digital Twins in Water Management

The integration of digital twins into water reserves management is evolving rapidly
from theoretical constructs to operational systems across several countries. These real-world
examples demonstrate the practical viability and growing momentum behind the adoption
of digital twin frameworks for sustainable and resilient water governance. In Singapore, the
Public Utilities Board (PUB), in collaboration with Jacobs Engineering, has implemented
a high-fidelity digital twin of the Changi Water Reclamation Plant (CWRP) [81]. This
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system integrates approximately 1200 live data tags to model hydraulics and process con-
trol and operations under a unified platform, enabling real-time performance diagnostics,
simulation of planned or unexpected scenarios, and short-term forecasting of wastewater
system behavior, termed a “wastewater weather forecast”. In China, digital twins are being
scaled through both basin-wide and urban applications. In the Yangtze River Basin, a
twin-based evaluation system has been used to assess ecological progress under the DP-
SIRM model, incorporating real-time monitoring of hydrological and socio-environmental
indicators [82]. At the city level, platforms such as the one developed in Nanyang model
water-quality dynamics using Kriging interpolation, sensor-based pollution monitoring,
and 3D visualization to support early-warning systems and river governance [83].

In Europe, the NEXTGEN project in the United Kingdom applies serious gaming
environments and digital twins to model urban water circularity. By simulating closed-loop
water cycles within digital environments, the system facilitates the interactive planning of
wastewater reuse, stormwater harvesting, and decentralized treatment solutions [32,84]. In
the Netherlands, the “Digital Twin Noord–Holland” initiative employs a layered hydro-
logical modeling approach incorporating GIS data, climate projections, and stakeholder
feedback to simulate long-term impacts of climate adaptation policies, including flood
risk and groundwater salinization [85]. In Sweden, digital twins have been implemented
at the municipal level to support real-time wastewater system control and sustainable
urban drainage planning. For instance, in Gothenburg, a digital twin enables predictive
control of the regional sewage network, integrating AI models with sensor telemetry in a
cloud-based architecture [86], while cities like Lund and Uppsala have adopted automated
data-transfer systems to feed live data into digital monitoring tools [87]. National-level
research emphasizes open data sharing and cross-platform integration to promote scalable
twin development [88]. Recent academic work has further advanced the field. For instance,
Ramos et al. [78] developed digital twin prototypes for smart water grids, enabling effi-
ciency management in water distribution systems through anomaly detection, AI-based
predictive maintenance, and leak localization. Similarly, Wu et al. [79] showcased a high-
fidelity digital twin system for fault detection and localized anomaly response in urban
pipelines, using hybrid models and real-time telemetry data. Additional reviews, such as
those by Ford and Wolf [89] and Zekri et al. [62], emphasize the increasing relevance of
digital twins in integrated water infrastructure monitoring and disaster management.

While these implementations demonstrate the growing maturity and adaptability
of digital twin technologies, they also reflect certain limitations that this study aimed
to address. Most existing systems focus on specific operational components—such as
drainage, flood control, or distribution efficiency—but do not offer an end-to-end frame-
work that unifies physical, ecological, and social variables in an interactive and extensible
platform. Furthermore, many projects lack immersive visualization layers, participatory
interfaces, or modular AI decision-support systems capable of adapting to local contexts.
The conceptual framework proposed in this study responds directly to these gaps by inte-
grating game engine environments, retrieval-augmented AI models, and layered real-time
simulations into a unified, stakeholder-oriented system. Section 3.6 outlines a detailed
roadmap for implementing this framework, along with potential deployment challenges
and mitigation strategies.

3.5. Framework Implementation Demonstrations and Prototype Applications

To demonstrate the technical feasibility of the proposed framework, several key com-
ponents were implemented and tested as proof-of-concept simulations using real-world
spatial datasets and hydrologically relevant terrain features. These demonstrations utilize
a combination of UAV-based digital elevation models, close-range photogrammetry, and
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game engine-based 3D visualization environments to replicate conditions and infrastruc-
ture related to water reserves. As shown in Figure 8, a terrain model of a riverine setting
was created by integrating UAV-derived elevation data and an open-source 3D model
into Unreal Engine, enabling navigable simulations of a hypothetical river system and a
water infrastructure. Figure 9 presents a digitally reconstructed check dam, built from
photogrammetric scans and enriched with static arbitrary metadata, allowing immersive
interaction within the simulation. Figure 10 showcases a virtual tour interface that enables
users to interactively explore watershed landscapes and engage with hydrological features.
Finally, Figure 11 illustrates a simulation of a rainfall-induced landslide near an open water
storage structure, representing a hydro-geomorphic multi-hazard module that comple-
ments terrain and infrastructure-based modeling. Collectively, these examples serve as
functional demonstrations of the terrain modeling, structure digitization, simulation design,
and interactive visualization elements embedded in the proposed digital twin framework.
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Figure 8. A 3D terrain model, representing the UAV-derived topography of Kanas Lake and forests
in Xinjiang Kanas National Geopark, integrated into Unreal Engine 4.5. This environment supports
virtual navigation for watershed-scale exploration and water infrastructure impoundment: (a) A
freely available 3D model of the stairs and causeway at Deptford Wharf known as Drake’s Steps
(artfletch. Drake’s Steps. Available online: https://sketchfab.com/3d-models/drakes-steps-6f20ca3
ead094e75ae059781d220ba03; accessed on 23 February 2025), (b) A river system created in Unreal
Engine 5.3, (c) A bottom-up view of the 3D model of Drake’s Steps integrated into the river system
and a customized environment, entirely interactable and measurable as part of a river simulation,
and (d) A top-down view of the causeway.
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interaction and simulation: (a) A 3D-scanned masonry check dam and river using close-range pho-
togrammetry displayed in Unreal Engine 5.3 (downstream perspective), (b) Dense point cloud of 
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Figure 9. A digitally reconstructed check dam on the streams of Kanas River (Xinjiang Region),
representing a close-range photogrammetry-derived topography, annotated with static arbitrary
metadata (e.g., geometry, purpose, construction year), displayed in Unreal Engine for immersive
interaction and simulation: (a) A 3D-scanned masonry check dam and river using close-range
photogrammetry displayed in Unreal Engine 5.3 (downstream perspective), (b) Dense point cloud of
the dam created in photogrammetry software, (c) augmented with arbitrary descriptive information
on the dam type, coordinates, client, construction year, primary function, and geometrical dimensions,
entirely interactable and stimulable by the end-user through a virtual character during a virtual tour
(upstream perspective).
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Figure 11. Simulated rainfall-induced landslide, resembling the Altai Mountains (Xinjiang Region),
((a) hydro-geomorphic multi-hazard component of water reserves management) scenario near an
open water storage facility within a digital twin environment, allowing to assess the application of
various mitigation scenarios and the comparison of outcomes. (b) A closer view of the simulated
phenomenon for enhanced visualization).

3.6. Roadmap for Pilot Implementation, Deployment Challenges, and Mitigation Solutions

These emerging examples demonstrate both the scalability and adaptability of digital
twins in diverse limatic, socio-political, and hydrological contexts. Building on these
foundations, the implementation of the proposed conceptual framework in this study can
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follow a structured three-stage roadmap designed to ensure operational success while
maintaining stakeholder engagement and technical flexibility.

Stage 1: Data Infrastructure and System Design
This foundational phase focuses on collecting, organizing, and integrating key data

sources necessary to build the digital twin. These include digital elevation models (DEMs)
derived from UAV-based photogrammetry, land-use and land-cover maps, soil and hy-
drological models, weather forecasts, and live data streams from field sensors. These
sensors—measuring parameters such as water level, streamflow, and water quality—are
installed at strategic points across the selected watershed. To ensure efficient and cost-
effective transmission of data over long distances, low-power wide-area network (LPWAN)
technologies like LoRaWAN are recommended. The modular architecture supports the
integration of various software components—such as artificial intelligence engines, predic-
tive simulation tools, or chatbots—without major reconfiguration. This modularity enables
future upgrades, technology integration, or scaling without system-wide disruption.

Stage 2: Digital Twin and Game Engine Integration
In this phase, the collected data are used to develop a dynamic, interactive simulation

of the real-world water system using advanced 3D modeling platforms. Game engines such
as Unreal Engine or Unity serve as the visualization environment, allowing for the creation
of lifelike virtual terrains and infrastructure elements. Specialized hydrological and terrain
modeling plugins (e.g., FluidFlux, TerraSculptor) help simulate water flow, surface runoff,
and reservoir behavior in response to various conditions. Simultaneously, the AI-based
decision-support system (AI-DSS) is developed and trained using historical data, satellite
imagery, and synthetic datasets to improve prediction accuracy and scenario analysis.
Real-time data from sensors is fed directly into the simulation, enabling a continuously
updated digital replica of the water system. This stage also incorporates interactive tools
such as user-friendly dashboards, visual analytics, and stakeholder role-playing features.
These components allow decision-makers and community members to explore hypothetical
scenarios—such as extreme rainfall events, drought response, or land-use change—and
understand their consequences in a visual, intuitive, and participatory way.

Stage 3: Scenario Testing, Feedback Loops, and Operational Deployment
The third stage involves testing the system’s capacity to simulate various real-world

scenarios under dynamic environmental, urban, and policy conditions. For example, simu-
lations may explore the effects of prolonged drought, deforestation, or changes in water
extraction policy. These scenarios are assessed not only for technical accuracy, but also for
how effectively they communicate risks and trade-offs to stakeholders. Advanced AI tools—
such as retrieval-augmented generation (RAG) agents—are integrated with explainable
interfaces to answer questions and guide users through scenario outcomes. Importantly,
feedback from diverse user groups—including local communities, technical experts, and
decision-making authorities—is collected to refine the system’s performance, interface de-
sign, and data parameters. After iterative testing and validation, the system is transitioned
from a prototype into a semi-operational or fully operational platform. At this stage, it can
support continuous monitoring, early warning, and policy evaluation in real time, serving
as a living decision-support tool for sustainable and adaptive water management.

Scalability of the framework is made feasible by its modular design and reliance on
widely adopted open-source and cross-platform technologies. By using containerized
components and cloud-based services, the system can be replicated across multiple water-
sheds with minimal reconfiguration. Furthermore, the use of game engines and web-based
dashboards makes it accessible to both technical and non-technical users, enhancing the
potential for widespread adoption in diverse environmental and policy settings. While the
proposed digital twin framework introduces a high level of integration and innovation,
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its successful implementation hinges on the early identification and mitigation of key
technical risks:

• To address data heterogeneity and interoperability—the challenge of merging datasets
from various sources and formats—the framework should prioritize the use of open-
data standards such as GeoJSON for spatial vector data and NetCDF for gridded
scientific data. These formats enable easier communication between systems and
promote long-term compatibility. Additionally, adopting middleware solutions—
software layers that act as translators between different data systems—can facilitate
real-time synchronization between older, often static legacy datasets (e.g., institutional
records, archival GIS layers) and high-frequency IoT-based sensor streams that provide
continuous environmental measurements. A preliminary data audit is essential to
identify inconsistencies, standardize schemas, and harmonize time-series formats,
ensuring that all components feed into the digital twin seamlessly.

• To manage the computational demands of model calibration and AI algorithm retrain-
ing, the use of a hybrid infrastructure is recommended. In such a setup, edge devices
(compact computing units installed near sensors or data sources) perform low-latency
inference tasks—such as detecting anomalies or issuing alerts—while more complex,
data-intensive operations such as periodic model retraining are handled in the cloud,
where computing resources are virtually unlimited. The framework’s efficiency can
further be enhanced by applying transfer-learning techniques, which allow pre-trained
models to be fine-tuned for specific tasks with relatively small datasets, and by de-
signing modular AI model updates that isolate components needing revision without
affecting the entire pipeline.

• To enhance transparency and stakeholder trust during deployment, the system will
integrate explainable AI (XAI) tools such as SHAP and LIME to clarify the contribution
of each input variable to the model’s output. These explanations will be visualized
through intuitive user interface elements such as annotated graphs or heatmaps. Cou-
pled with uncertainty quantification (e.g., confidence intervals, probabilistic thresh-
olds), these tools will help operational staff and decision-makers interpret forecasts
and make informed, accountable decisions.

• Lastly, ensuring the cybersecurity and privacy of real-time data systems is vital, par-
ticularly when dealing with critical infrastructure. This requires the adoption of
secure communication protocols such as TLS (Transport Layer Security) or SSL (Secure
Sockets Layer) to encrypt data in transit and prevent interception. Implementing
fine-grained user access control—defining who can view, modify, or manage differ-
ent system components—is also essential to protect sensitive layers of information.
In parallel, the system should apply data-anonymization techniques, especially for
geospatial metadata that might reveal the exact locations of infrastructure or water
assets, reducing the risk of surveillance, tampering, or misuse.

Embedding these strategies during the early stages of system design can significantly
enhance the robustness, interoperability, and resilience of the digital twin framework. At
the same time, it fosters stakeholder confidence, simplifies maintenance and scalability, and
lays the foundation for broader institutional adoption and public acceptance.

3.7. Feasibility Assessment of the Proposed Framework

While the proposed framework is conceptual in structure, its implementation feasi-
bility is grounded in the availability of robust technological ecosystems that support each
stage—from real-time data collection and AI model training to immersive visualization
and decision support. This section provides a detailed breakdown of how each component
of the system can be operationalized using existing tools, protocols, and development
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environments, thereby reinforcing the practical viability of the roadmap presented in
Section 3.6.

3.7.1. Data Collection and Communication Protocols

The initial stage of implementation involves collecting real-time environmental and
hydrological data using IoT-enabled sensors and remote-sensing technologies. Industry-
standard communication protocols such as MQTT (Message Queuing Telemetry Transport)
are widely adopted for transmitting low-bandwidth, real-time data from distributed sensor
nodes to a centralized data lake. These protocols are already in use in smart agriculture
and environmental monitoring systems and are well-suited to scalable deployment in
watershed-scale settings. Complementary technologies such as LoRaWAN and NB-IoT
provide energy-efficient, long-range connectivity, ensuring that data can be transmitted
from remote or hard-to-reach areas.

3.7.2. Data Integration and Preprocessing Tools

To manage the high heterogeneity of sensor data, satellite imagery, and GIS inputs,
integration platforms such as Apache NiFi, Apache Kafka, or Google Cloud Dataflow can
be employed to structure, synchronize, and filter incoming datasets before feeding them
into the digital twin engine. These platforms enable real-time ingestion pipelines that
are both modular and scalable, ensuring interoperability across data layers, formats (e.g.,
GeoJSON, NetCDF), and temporal resolutions.

3.7.3. Game Engine Integration and Environmental Fusion

Game engines like Unreal Engine 5.3 and Unity offer powerful APIs and plugins
for importing terrain models, simulation logic, and interactive data visualization. UAV-
derived DEM point clouds, raster maps, and 3D photogrammetry models can be imported
into Unreal Engine using Datasmith or Cesium for Unreal, while real-time data overlays
can be built through MQTT plugin in UE5, custom C++ plugins, Blueprint scripting, or
Python bindings. Environmental fusion with dynamic hydrological elements (e.g., wa-
ter bodies, terrain deformation, erosion) can be enhanced using Chaos Physics, Fluid
Flux, or OpenFOAM-Unreal Engine bridges. Moreover, interoperability with web-based
dashboards can be facilitated via RESTful APIs, GraphQL endpoints, or gRPC, allow-
ing simulation data to be accessed and manipulated externally by AI components and
user interfaces.

3.7.4. AI-DSS, Chatbot Interaction, and Text-Based Scenarios

For decision support and stakeholder engagement, the framework integrates AI-based
Digital Decision Support Systems (AI-DSS) and natural language chatbot interfaces within
the 3D environment. Several proof-of-concept studies have already demonstrated this
capability. For instance, Gould [90] implemented a 3D management simulation with
embedded DSS logic in entrepreneurship training; Ellul et al. [91] showcased progress
monitoring digital twins in construction using Unreal Engine; and Jiménez del Castillo [92]
successfully linked a chatbot and text-to-speech API to a Metahuman avatar inside Unreal
Engine for real-time conversational feedback. Our system leverages similar strategies by
linking retrieval-augmented generation (RAG) chatbots or text-to-text AI models (e.g., GPT,
T5) to a spatial simulation layer. These bots are embedded as virtual assistants in the
digital twin environment, capable of interpreting real-time water scenarios, suggesting
mitigation actions, and facilitating role-playing interactions among multiple user types
(e.g., policymakers, emergency planners, and utility operators).

The AI-DSS is designed to support a range of critical decisions in water reserves man-
agement, including (1) reservoir operation scheduling under varying hydrometeorological
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forecasts; (2) prioritization of water allocation between sectors (e.g., agriculture, domestic,
and industrial) during scarcity; (3) real-time adjustments to flood mitigation strategies
such as gate operation or emergency releases; (4) early detection and containment of water
quality anomalies; and (5) long-term planning decisions such as infrastructure investments,
zoning restrictions in flood-prone areas, or ecosystem-based adaptation measures. These
decision pathways are modeled as interactive workflows within the game engine, allowing
users to simulate policy trade-offs, visualize cascading effects, and receive AI-generated
suggestions in a transparent and explainable manner.

3.7.5. Use-Case Scenarios and Translation to Real-World Decision-Making

Scenarios modeled in the virtual environment include flood management under
extreme rainfall, drought-driven reservoir reallocation, and land-use change simulations
that affect urban runoff. For example, using sensor data and historical weather patterns,
the system simulates flash flood propagation in mountainous terrain, enabling real-time
interventions such as virtual dam release or evacuation alerts. Similarly, users can simulate
the downstream effects of irrigation scheduling or reservoir operation based on short-term
LSTM-based forecasts. These scenarios are not abstract—each reflects a real decision node
in water reserves management. Through immersive interaction, game mechanics (e.g.,
scoring, thresholds), and real-time feedback, decision-makers are able to experiment with
policies, visualize consequences, and co-create adaptive strategies with stakeholders in a
controlled, safe, and fully interactive setting.

Ultimately, each module of the framework has a corresponding set of tools and
technologies already in existence and tested in adjacent domains. These include:

• Sensor-to-engine integration via MQTT, Apache NiFi, Open3D, or RESTful APIs
• Simulation and terrain modeling via Unreal Engine with plugins like Cesium, Fluid

Flux, and Chaos
• AI integration using TensorFlow, PyTorch, and ONNX models embedded via Python

APIs or DLLs
• Decision support interactions facilitated through chatbots, voice interfaces, and gami-

fied role-play using Metahumans

Together, these implementations form a plug-and-play architecture, where each com-
ponent is modular, interoperable, and capable of being iteratively deployed within a pilot
watershed. The proof-of-concept visualizations (Figures 8–11) developed by the authors fur-
ther reinforce the framework’s readiness beyond the conceptual level and into the domain
of applied innovation.

3.8. Future Directions and Research Opportunities

As digital twins and game engines continue to evolve, their applications in environ-
mental management and infrastructure monitoring are expanding. Future research should
focus on enhancing predictive capabilities, integrating diverse data sources, and refining
user interfaces to make these systems more accessible and impactful. Moreover, the vision
of a fully connected digital twin ecosystem—where AI-powered digital twins across sectors
collaborate to optimize decision-making—presents exciting possibilities for the future of
water management. The following subsections explore these advancements, detailing how
digital twins can be expanded into new domains, how prediction algorithms and data
integration can be improved, and how an interconnected network of digital twins could
revolutionize global resource management.
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3.8.1. Expanding Digital Twin Applications in Environmental and
Infrastructure Management

Building on the success of digital twins in water reserves management, future research
should explore their application in other environmental domains. By integrating game
engines with digital twins, new frontiers in climate resilience, disaster mitigation, and sus-
tainable urban planning can be unlocked. For instance, digital twins can enhance wildfire
risk assessments by simulating forest conditions or model air-quality dynamics in urban
environments, providing policymakers with real-time, interactive insights. Similarly, digi-
tal twins could be used in wastewater treatment optimization, predicting treatment plant
efficiencies based on incoming waste levels and environmental conditions. Additionally,
infrastructure monitoring can benefit from digital twin integration. Dams, levees, and water
distribution networks could be monitored in real time using IoT-connected digital twins,
reducing failure risks by identifying structural weaknesses before they escalate. Game
engines can make these insights more accessible, allowing decision-makers to interact
with virtualized infrastructure scenarios, simulate emergency responses, and test potential
interventions before implementing them in the real world.

3.8.2. Enhancing Predictive Capabilities and Data Integration

A key area for future refinement lies in improving prediction algorithms and integrat-
ing more diverse data sources. Current hydrological models rely heavily on precipitation
records, satellite imagery, and in situ sensor data, but future digital twins should incorpo-
rate non-traditional datasets, such as social media reports on water crises, citizen science
contributions, and even financial market indicators that reflect economic stress on water
supply chains. Machine-learning models trained on these heterogeneous datasets could
significantly enhance drought forecasting, flood-response coordination, and water con-
servation policy development. User interface improvements will also be essential. The
accessibility of digital twins must extend beyond specialized hydrologists and policymak-
ers to farmers, local water authorities, and community planners. Future research should
focus on making these interfaces more intuitive and interactive, with voice-command
AI assistants, VR-based scenario training, and mobile-friendly digital twin dashboards
ensuring broader adoption.

3.8.3. Bridging the Gap Between Research and Implementation

While the potential for interconnected digital twins is vast, several research challenges
must be addressed to make this vision a reality. These include:

• Standardizing data-exchange protocols across different digital twin platforms to ensure
seamless communication.

• Developing AI models capable of handling cross-sectoral interactions, balancing
environmental sustainability with economic and social priorities.

• Ensuring cybersecurity and data privacy, as an interconnected system could be vulner-
able to malicious attacks or misinformation.

Future collaborations between environmental scientists, AI researchers, urban plan-
ners, and policymakers will be essential in shaping this next-generation digital twin net-
work. By expanding the scope, predictive power, and interconnectedness of digital twins,
water reserves management can evolve from a localized, siloed operation into a fully
integrated, AI-driven global decision-making system.

3.8.4. The Utopia of a Fully Interconnected Digital Twin Ecosystem

A transformative vision for the future of digital twins is their interconnectivity across
multiple sectors, forming a global AI-powered decision-making entity [93–96]. In this
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utopian framework, digital twins of water systems, transportation networks, energy grids,
agricultural fields, and even economic markets would interact seamlessly. This would allow
water reserves management to account for external socio-economic and political variables,
such as regional trade policies affecting water demand or geopolitical tensions impacting
upstream river flows. For example, a connected digital twin system could automatically
adjust water distribution policies during an energy crisis by balancing hydropower produc-
tion with municipal water needs [97]. It could also anticipate political disruptions—such
as international disputes over shared river basins—and recommend diplomatic strategies
before conflicts arise. This level of integration would create an intelligent, self-optimizing
environmental management system, where AI continuously learns and refines policies
based on evolving conditions across multiple domains.

3.8.5. From Utopia to Dystopia: Risks and Challenges of a Hyper-Connected Digital Twin
Network in Water Management

While this vision promises efficiency and precision, it also introduces significant risks
if not managed properly. A primary concern is data sovereignty—if control is monopolized,
decision-making may become undemocratic, leading to inequitable water distribution,
biased policy enforcement, or even water resource manipulation for economic or political
gains. Moreover, an overreliance on AI-driven decision-making in water reserves manage-
ment introduces the risk of algorithmic failures and cascading system-wide disruptions.
A miscalculation in predictive water allocation—exacerbated by flawed or biased train-
ing data—could trigger widespread droughts or water shortages, especially in regions
dependent on automated water distribution. To address these threats, the system must
embed safeguards at both the architectural and algorithmic levels. This includes secure
communication protocols (e.g., TLS/SSL), zero-trust network models, role-based access
control, blockchain-based validation, and intrusion detection systems designed specifically
for critical water infrastructure.

Additionally, cybersecurity vulnerabilities present a substantial threat; if hackers were
to infiltrate a connected water management digital twin, they could manipulate dam opera-
tions, contaminate water supplies, or disable flood control measures, causing catastrophic
consequences. To ensure model robustness and public trust, algorithmic bias-detection
tools—such as fairness indicators and residual error analysis—should be implemented
during both model training and live operation phases. Regular audits of training datasets,
especially those involving socio-spatial variables, are critical to prevent discriminatory
outcomes. Another key concern is the loss of human oversight in crisis response. As AI
becomes the central decision-maker, there is a risk that automated systems prioritize effi-
ciency over ethical and humanitarian concerns. For example, if an AI-powered digital twin
determines that redirecting water from agricultural zones to industrial hubs is the most
“optimal” decision, it could severely impact food security without considering broader
societal implications. A hybrid decision-making architecture—where final decisions are
mediated by human actors based on AI recommendations—offers a practical compromise
between speed and accountability.

Furthermore, the complexity of a multi-sectoral AI-driven digital twin ecosystem
could make troubleshooting failures extremely difficult, leading to blind reliance on opaque
decision-making processes that stakeholders struggle to interpret or contest. To prevent
these dystopian outcomes, safeguards must be established, including robust regulatory
frameworks, transparent AI models, and hybrid decision-making approaches that combine
AI precision with human ethical oversight. Explainable AI techniques (e.g., SHAP and
LIME) and real-time dashboards showing contributing factors to each prediction must be
implemented as standard tools to demystify AI logic and support informed oversight. A
decentralized governance model, where regional water authorities retain decision-making
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autonomy while benefiting from AI-powered insights, could strike a balance between
technological advancement and democratic control. Finally, the incorporation of federated
learning and privacy-preserving data-exchange mechanisms ensures that sensitive regional
data never leave their origin node, thus enhancing both privacy and cross-jurisdictional col-
laboration. Ultimately, while the future of connected digital twins holds immense promise,
proactive risk mitigation strategies must be in place to ensure that water management
remains fair, secure, and resilient against potential systemic failures.

4. Conclusions
This study presents a comprehensive, modular framework for intelligent water re-

serves management. It integrates digital twins, IoT-based real-time monitoring, game
engine simulations, and AI-driven decision-support systems to enable adaptive and sus-
tainable water governance. Unlike conventional static models, the proposed framework
establishes a real-time, continuously updating AI-DSS that consolidates multi-source data
into actionable insights for both operational and strategic water governance. A central
contribution of this work lies in the prototyping of multiple key components across the data
integration, simulation, and interface layers, demonstrating that such a system is not purely
conceptual but partially implemented using real-world spatial datasets. The incorporation
of UAV-based photogrammetry, 3D scanning, game engine visualization (Unreal Engine),
and interactive scenario simulation illustrates how digital twins can be instantiated for
real terrain and infrastructure conditions. In parallel, the integration of machine-learning
models such as LSTM and Random Forest for flood forecasting and groundwater potential
estimation was conceptually embedded within the architecture and aligned with recent
successful implementations. These models are not merely theoretical; they are drawn from
documented use cases in real hydrological applications, further validating the framework’s
feasibility and relevance. The study also proposes a plug-and-play system architecture
supporting modular expansion, data stream fusion via MQTT, terrain modeling with
high-resolution DEMs, and decision interfaces through LLM-powered chatbots. This ar-
chitecture is supported by recent tools such as Open3D-UE bridges and Blueprint-based
scenario scripting, offering a practical pathway for multi-sensor fusion, AI training, and
immersive interaction within a unified system. From a sustainability perspective, this
architecture fosters anticipatory planning, resource equity, and adaptive governance by
enabling simulations that are transparent, interactive, and policy-relevant for evaluating
competing water uses and stress-response strategies. Key achievements and contributions
are summarized below:

• Prototype Implementation: Several core modules—including terrain modeling, sce-
nario simulation, and stakeholder interface—have been implemented and tested in
real spatial environments, validating system feasibility.

• Data-Driven Hydrological Monitoring: Real-time IoT data, satellite remote sensing,
and GIS inputs enable continuous observation of floods, droughts, and water quality.

• AI Integration with Model Interpretability: Predictive components rely on LSTM, Ran-
dom Forests, and CNNs, with built-in interpretability via SHAP, LIME, and uncertainty
quantification, ensuring transparent and justifiable decision-making.

• Game Engine-Enabled Immersive Planning: Unreal Engine-based environments allow
scenario testing for water management interventions, including dam construction,
land-use shifts, or emergency response.

• Stakeholder-Centered Decision Interface: Open-source LLMs and retrieval-augmented
agents enable interactive querying, translation of complex forecasts, and dynamic
feedback loops for participatory governance.
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• Security and Ethics by Design: The framework incorporates decentralized governance,
explainable AI, privacy-preserving data handling, and hybrid human–AI decision
layers to reduce systemic risks.

• Sustainability Alignment: The system promotes equitable access to water insights,
empowers adaptive management under climate variability, and supports long-term
resilience planning across ecological, economic, and social dimensions.

Future work will proceed through three parallel streams to operationalize and validate
the proposed system. First, pilot implementations will be conducted in small watershed
areas using UAV-derived terrain data, IoT sensors for real-time water level and quality
monitoring, and local meteorological stations. These pilots will serve as testbeds for the
integrated digital twin environment built within Unreal Engine and Python-based AI
modules. Data pipelines will use MQTT and NiFi for ingestion, and predictive models will
be stress-tested under synthetic flood and drought scenarios derived from CMIP6 climate
projections and GRDC historical runoff records. Second, formal benchmarking protocols
will be developed to evaluate system performance across four dimensions: (1) predictive
accuracy (e.g., RMSE, MAE, R2), (2) scenario realism and responsiveness (latency, FPS in
game engine environments), (3) stakeholder usability (based on interface task success rate
and time-on-task), and (4) interpretability (evaluated via user feedback on SHAP/LIME
outputs). These benchmarks will be aligned with standards from WMO hydrological model
evaluation guidelines and ISO/IEC usability metrics. Evaluation efforts will explicitly
consider sustainability indicators such as reliability of supply, user inclusivity, and respon-
siveness under socio-environmental stressors. Third, the framework will be enhanced to
include policy simulation tools such as dynamic water allocation under competing user
demands, automated response recommendation modules, and chatbot-supported regula-
tory compliance prompts. Fairness auditing will be incorporated using subgroup testing
for bias detection across geographical and demographic layers. Chatbot-to-dashboard
workflows will also be redesigned using MetaHuman-LLM integration pipelines and
feedback-capturing UI elements to support iterative learning and adaptation. These steps
collectively aim to ensure that the system contributes not only to technological innovation
but also to the advancement of sustainable, participatory, and ethically governed water
resource management.
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