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Abstract: Dendrimers are highly branched organic macromolecules with successive layers of branch
units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as
it produces many degree-based topological indices. These indices are invariants of the topology of
graphs associated with molecular structure of nanomaterials to correlate certain physicochemical
properties like boiling point, stability, strain energy, etc. of chemical compounds. In this paper, we
first determine M-polynomials of some nanostar dendrimers and then recover many degree-based
topological indices.
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1. Introduction

In the last decade, discrete geometry and graph theory played a synergic role in the area of research
of nanomaterials and nanosciences. It conferred chemists with a variety of useful tools like polynomials,
eigenvalues and topological indices to predict some properties of the latest synthesized nanomaterials
theoretically. To engineer a nanomaterial endowed with a proposed properties, one can control
structural sensitive properties like fracture toughness, yield stress, etc. through Cheminformatics.
It combines mathematics, chemistry and information science to analyze quantitative structure-activity
(QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities
and properties of chemical compounds (see [1–3]). A graph-theoretic representation can be given to
the physical structure of a nano-material whose vertices correspond to the atoms of the compound and
edges correspond to chemical bonds. A graph G(V, E) with vertex set V and edge set E is connected,
if there exists a connection between any pair of vertices in G. A network is simply a connected graph
having no multiple edges and no loops. For a graph G, the degree of a vertex v is the number
of edges incident with v and denoted by deg(v). Nanobiotechnology is a rapidly advancing area of
scientific and technological opportunity that applies the tools and processes of nano-fabrication to build
devices for studying bio-systems. Dendrimers are one of the main objects of this new area of science,
see [1,4–8]. Dendrimers are generally synthesized from monomers by iterative growth and activation
steps. They are large and complex, with very well-defined chemical structure, and commercially
one of the major available nanoscale building blocks. These are nearly perfect mono-disperse
macromolecules with a regular and highly branched three-dimensional architecture [4–6]. Their three
major architectural components are core, branches and end groups. New branches emitting from
a central core are added in steps until a tree-like structure is formed (see Figures 1–4). Nanostar
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dendrimer is a part of a new group of macro-particles that appear to be photon funnels just like artificial
antennas and are used in the formation of nanotubes, micro and macro-capsules, chemical sensors,
colored glasses, and modified electrodes [4,5]. Due to large-scale applications, these compounds
are subject matters in both chemistry and mathematics [1,5,6,8]. Polymers are chemical molecules
comprised of large numbers of identical substructures, called units, linked together with chemical, or
sometimes physical, bonds. The spatial configuration of polymer molecules in an Euclidean space
depends on the adjacency of their units. The configuration dependent properties of the so-called
Gaussian polymer molecules of different structures can be expressed in terms of graph-theoretical
categories and their related topological indices, which depends upon the number of spanning trees,
path lengths of these graphs [9]. For detailed insight, see [10–12] and the reference therein.

Figure 1. NS1[1] and NS1[n] polypropylenimine octaamin dendrimer.

Figure 2. NS2[n] Polypropylenimine octaamin dendrimer.
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Figure 3. The nanostar dendrimer Dn for n = 1.

Figure 4. The nanostar dendrimer Dn for n = 2.

Diudea et al. in [5] computed the Sadhana polynomial of nano-dendrimers, and, in [13], discussed
topology of some classes of dendrimers. Recently, in [14], Kamran et al. computed the hyper-Zagreb
index, first multiple Zagreb index, second multiple Zagreb index and Zagreb polynomials for some
nanostar dendrimers.

A graph invariant is a number, a polynomial, or a matrix that uniquely represents the whole
graph [15]. Topological index is a graph invariant that characterizes the topology of the graph
and remains invariant under graph automorphism. Degree-based topological indices are of great
importance and play a vital role in chemical graph theory (see [13,16,17]). Wiener [18], working on the
boiling point of paraffin, introduced the idea of topological index. The Wiener index was originally the
first and most studied topological index and is defined as the sum of distances between all pairs of
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vertices in G, (for more details, see [19–21]). Zagreb indices were introduced 38 years ago by Gutman
and Trinajstic [3]. The first Zagreb index M1(G) is defined as sum of the squares of degrees of a graph
G and the second Zagreb M2(G) is the sum of the product of all degrees corresponding to each edge
in G see [3]. The second modified Zagreb index is defined by

m M2(G) = ΣuvεE(G) 1
d(u)d(v)

,

where d(u) and d(v) are the degrees of vertices u and v, respectively (see [22]). The general Randic
index of G is defined as sum of (d(u)d(v))α over all edges uv of G, where d(u) denote the degree of
vertex u of G,

Rα(G) = ΣuvεE(G)(d(u)d(v))
α,

where α is an arbitrary real number see [23]. Symmetric division index is defined by

SDD(G) = ΣuvεE(G)(
min{du, dv}
max{du, dv}

+
min{du, dv}
max{du, dv}

),

where di is the degree of vertex i in Graph G. These indices can help to characterize the chemical and
physical properties of molecules (see [13,14,16–18,22–25]).

In this article, we compute the closed forms of M-polynomials of dendirimers and represent them
graphically using Maple 13. As a consequence, we derive some topological degree-based indices easily.
However, it is important to remark that we computed different sets of topological indices as those
computed in [14]. We start by defining the M-polynomial of a general graph (see [26]).

Definition 1. Let G be a graph, which is a simple molecular connected graph, and dv(1 ≤ dv ≤ n− 1) be the
degrees of vertices in G. We partition the set of vertex V(G) and edge set E(G) of G as follows: (∀i, j and k:
δ ≤ i, j, k ≤ 4): Vk = vεV(G)|dv = k Ei,j = {e = uvεE(G)|du = janddv = i}, where δ and 4 are the
minimum and maximum of degree of dv∀vεV(G) and δ = Min{dv|vεV(G)} and4 = Max{dv|vεV(G)},
respectively. Now, let G = (V, E) be a graph and let mij be the number of degrees e = uv of G such that
{dv(G), du(G)} = {i, j}, then the M-polynomial of G define as follows:

M(G, x, y) = Σδ≤i≤j4mijxiyj,

where du, dv(1 ≤ δ ≤ du, dv ≤ 4 ≤ |V(G)| − 1) are the degrees of vertices u, v ε V(G).

We can compute many indices directly from this polynomial [26]. The following Table 1
enlists some standard degree-based topological indices and their derivation from the M-polynomial,
where Dx( f (x, y)) = x ∂ f (x,y)

∂x , Dy( f (x, y)) = y ∂ f (x,y)
∂y , Sx( f (x, y)) =

∫ x
0

f (t,y)
t dt, Sy( f (x, y)) =

∫ y
0

f (x,t)
t dt.

Table 1. Relations of M-polynomial with Topological Indices.

Topological Index f (x, y) Derivation from M(G, x, y)

First Zagreb x + y (Dx + Dy)(M(G; x, y))|x=y=1
Second Zagreb xy (DxDy)(M(G; x, y))|x=y=1
m M2(G) 1

xy (SxDy)(M(G; x, y))|x=y=1

General Randić αεN (xy)α (Dα
x Dα

y )(M(G; x, y))|x=y=1

General Randić αεN 1
xy

α
(Sα

xSα
y)(M(G; x, y))|x=y=1

Symmetric Division Index x2+y2

xy (DxSy + DySx)(M(G; x, y))|x=y=1
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2. Main Results

In this section, we give the M-polynomials of some famous classes of dendirimers and represent
them using Maple 13 (Maplesoft, Waterloo, Ontario, Canada). Finally, with the help of the above
theorem, we find some topological indices of these nanostructures.

2.1. M-Polynomials

Theorem 1. Let NS1[n] be a polypropylenimine octaamin dendrimer; then, the M-Polynomial is

M((NS1[n]), x, y) = 2n+1x1y2 + 4(2n − 1)x1y3 + {12× 2n − 11}x2y2 + 14(2n − 1)x2y3.

Proof. From the structure of NS1[n], we can see that there are three partitions
V{1} = {vεV(NS1[n])|dv = 1}, V{2} = {vεV(NS1[n])|dv = 2}, and V{3} = {vεV(NS1[n])|dv = 3}.
By the definition of M-polynomial, we see that the edge set of the NS1[n] partition is as follows:

E{1,2} = {e = uvεE(NS1[n])|du = 1&dv = 2} → |E{1,2}| = 2n+1,

E{1,3} = {e = uvεE(NS1[n])|du = 1&dv = 3} → |E{1,3}| = 4(2n − 1),

E{2,2} = {e = uvεE(NS1[n])|du = 2&dv = 2} → |E{2,2}| = 12× 2n − 11,

E{2,3} = {e = uvεE(NS1[n])|du = 2&dv = 3} → |E{2,3}| = 14(2n − 1).

Thus, the M-Polynomial of (NS1[n], x, y)

M(NS1[n], x, y)

= ∑
i≤j

mij(NS1[n])xiyj

= ∑
1≤2

m12(NS1[n])x1y2 + ∑
1≤3

m13(NS1[n])x1y3

+ ∑
2≤2

m22(NS1[n])x2y2 + ∑
2≤3

m23(NS1[n])x2y3

= ∑
uvεE{1,2}

m12(NS1[n])x1y2 + ∑
uvεE{1,3}

m13(NS1[n])x1y3

+ ∑
uvεE{2,2}

m22(NS1[n])x2y2 + ∑
uvεE{2,3}

m23(NS1[n])x2y3

= |E{1,2}|x1y2 + |E{1,3}|x1y3 + |E{2,2}|x2y2 + |E{2,2}|x2y3

= 2n+1x1y2 + 4(2n − 1)x1y3 + {12× 2n − 11}x2y2 + 14(2n − 1)x2y3.

Theorem 2. Let NS2[n] be the polypropylenimine octaamin dendrimer; then, the M-Polynomial is

M((NS2[n]), x, y) = 2n+1x1y2 + {8× 2n − 5}|x2y2 + 6(2n − 1)x2y3.

Proof. From the structure of NS2[n], we can see that there are three partitions V{1} = {vεV(NS2[n])|dv = 1},
V{2} = {vεV(NS2[n])|dv = 2}, and V{3} = {vεV(NS2[n])|dv = 3}. By the definition of M-polynomial,
we see that the edge set of NS2[n] partition as follows:

E{1,2} = {e = uvεE(NS2[n])|du = 1&dv = 2} → |E{1,2}| = 2n+1,

E{2,2} = {e = uvεE(NS2[n])|du = 2&dv = 2} → |E{2,2}| = 8× 2n − 5,

E{2,3} = {e = uvεE(NS2[n])|du = 2&dv = 3} → |E{2,3}| = 6(2n − 1).
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Thus, the M-Polynomial of (NS2[n], x, y)

M(NS2[n], x, y) = ∑
i≤j

mij(NS2[n])xiyj

= ∑
1≤2

m12(NS2[n])x1y2 + ∑
2≤2

m22(NS2[n])x2y2

+ ∑
2≤3

m23(NS2[n])x2y3

= ∑
uvεE{1,2}

m12(NS2[n])x1y2 + ∑
uvεE{2,2}

m22(NS2[n])x2y2

+ ∑
uvεE{2,3}

m23(NS2[n])x2y3

= |E{1,2}|x1y2 + |E{2,2}|x2y2 + |E{2,2}|x2y3

= 2n+1x1y2 + {8× 2n − 5}|x2y2 + 6(2n − 1)x2y3.

Theorem 3. Let Dn be the nanostar dendrimer; then, the M-Polynomial is

M(Dn, x, y) = 12(2× 2n−1− 1)x2y2 + 6(5× 2n−1− 4)x2y3 + (12× 2n−1− 9)x3y3.

Proof. From the structure of Dn, we can see that there are two partitions V{2} = {vεV(Dn)|dv = 2} and
V{3} = {vεV(Dn)|dv = 3}. By the definition of the M-polynomial, we see that the edge set of Dn

partition as follows:

E{2,2} = {e = uvεE(Dn)|du = 2&dv = 2} → |E{2,2}| = 12(2× 2n−1− 1),

E{2,3} = {e = uvεE(Dn)|du = 2&dv = 3} → |E{2,3}| = 6(5× 2n−1− 4),

E{3,3} = {e = uvεE(Dn)|du = 3&dv = 3} → |E{3,3}| = 12× 2n−1− 9.

Thus, the M-Polynomial of (Dn, x, y)

M(Dn, x, y) = ∑
i≤j

mij(Dn)xiyj

= ∑
2≤2

m22(Dn)x2y2 + ∑
2≤3

m23(Dn)x2y3 + ∑
3≤3

m33(Dn)x3y3

= ∑
uvεE{2,2}

m22(Dn)x2y2 + ∑
uvεE{2,3}

m23(Dn)x2y3 + ∑
uvεE{3,3}

m33(Dn)x3y3

= |E{2,2}|x2y2 + |E{2,3}|x2y3 + |E{3,3}|x3y3

= 12(2× 2n−1− 1)x2y2 + 6(5× 2n−1− 4)x2y3 + (12× 2n−1− 9)x3y3.

2.2. Surfaces Representing M-Polynomials

We use Maple 13 to represent graphs of M-polynomials of the above-mentioned dendrimers.
From graphs, it can be seen that the behavior of the polynomials differ along different parameters see
Figures 5–7.
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Figure 5. M-polynomial of NS1[n] polypropylenimine octaamin dendrimer.

Figure 6. M-polynomial of NS2[n] polypropylenimine octaamin dendrimer.

Figure 7. M-polynomial of Dn polypropylenimine octaamin dendrimer.

2.3. Some Degree-Based Topological Indices

In this part, we compute some degree-based topological indices of some classes of dendrimers.

Theorem 4. Let G = NS1[n] be a polypropylenimine octaamin dendrimer; then,

1. M1(G) = 2(35× 2n+1 − 53)

2. M2(G) = 1189× 22n+2 − 3722× 2n+1 + 2808
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3. m M2(G) = 247× 22n − 433× 2n + 2277
12

4. Rα(G) = (1189× 22n+2 − 3722× 2n+1 + 2808)α

5. Rα(G) = (247× 22n − 433× 2n + 2277
12 )α

6. SDD(G)= 1156× 22n+1 − 1010× 2n+1 − 1690× 2n + 1482

Proof. Let f (x, y) = M((NS1[n]), x, y) = 2n+1x1y2 + 4(2n − 1)x1y3 + {12× 2n − 11}x2y2 + 14(2n − 1)x2y3

Dx( f (x, y)) = 2n+1y2 + 4(2n − 1)y3 + 2(12× 2n − 11)xy2 + 28(2n − 1)xy3

(Dx f (x, y))(M(NS1(n); x, y))|x=y=1 = 29× 2n+1 − 54

Dy( f (x, y)) = 2n+2xy + 12(2n − 1)xy2 + 2(12× 2n − 11)x2y + 42(2n − 1)x2y2

(Dx f (x, y))(M(NS1(n); x, y))|x=y=1 = 41× 2n+1 − 52

Sx f (x, y) = 2n+1xy2 + 4(2n − 1)xy3 +
1
2
(12× 2n − 1)x2y2 + 7(2n − 1)x2y3

(Sx f (x, y))(M(NS1(n); x, y))|x=y=1 = 19× 2n − 33
2

Sy f (x, y) = 2nxy2 +
4
3
(2n − 1)xy3 +

1
2
(12× 2n − 11)x2y2 +

14
3
(2n − 1)x2y3

(Sy f (x, y))(M(NS1(n); x, y))|x=y=1 = 13× 2n − 23
2

.

Theorem 5. 1. M1(G):

(Dx + Dy) f (x, y)(M(NS1(n); x, y))|x=y=1 = 2(35× 2n+1 − 53).

2. M2(G):

(DxDy) f (x, y)(M(NS1(n); x, y))|x=y=1 = 1189× 22n+2 − 3722× 2n+1 + 2808.

3. m M2(G):

(SxSy) f (x, y)(M(NS1(n); x, y))|x=y=1 = 24× 22n − 433× 2n +
2277

12
.

4. Rα(G):

(DxDy)
α f (x, y)(M(NS1(n); x, y))|x=y=1 = (1189× 22n+2 − 3722× 2n+1 + 2808)α.

5. Rα(G):

(SxSy)
α f (x, y)(M(NS1(n); x, y))|x=y=1 = (24× 22n − 433× 2n +

2277
12

)α.

6. SDD(G):

(DxSy + DySx)(M(G; x, y))|x=y=1 = 1156× 22n+1 − 1010× 2n+1 − 1690× 2n + 1482,

M((NS2[n]), x, y) = 2n+1x1y2 + {8× 2n − 5}x2y2 + 6(2n − 1)x2y3.
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Theorem 6. Topological Index Derivation from M((NS2[n], x, y)

1. M1(G) = 2(17× 2n+1 − 25)

2. M2(G) = 285× 22n+2 − 838× 2n+1 + 616

3. m M2(G) = 63× 22n − 79× 2n + 99
4

4. Rα(G) = (285× 22n+2 − 838× 2n+1 + 616)α

5. Rα(G) = (63× 22n − 79× 2n + 99
4 )α

6. SDD(G)= 276× 22n+1 − 172× 2n+1 − 406× 2n + 253

Proof. Let f (x, y) = M((NS2[n]), x, y) = 2n+1x1y2 + (8× 2n − 5)x2y2 + 6(2n − 1)x2y3,

Dx( f (x, y)) = 2n+1y2 + 2(8× 2n − 5)xy2 + 12(2n − 1)xy3

(Dx f (x, y))(M(NS2(n); x, y))|x=y=1 = 15× 2n+1 − 22,

Dy( f (x, y)) = 2n+2xy + 2(8× 2n − 5)x2y + 18(2n − 1)x2y2,

(Dx f (x, y))(M(NS2(n); x, y))|x=y=1 = 19× 2n+1 − 28,

Sx f (x, y) = 2n+1xy2 +
1
2
(8× 2n − 5)x2y2 + 3(2n − 1)x2y3,

(Sx f (x, y))(M(NS2(n); x, y))|x=y=1 = 9× 2n − 11
2

,

Sy f (x, y) = 2nxy2 +
1
2
(8× 2n − 5)x2y2 + 2(2n − 1)x2y3,

(Sy f (x, y))(M(NS2(n); x, y))|x=y=1 = 7× 2n − 9
2

.

1. M1(G):
(Dx + Dy) f (x, y)(M(NS2(n); x, y))|x=y=1 = 2(17× 2n+1 − 25).

2. M2(G):

(DxDy) f (x, y)(M(NS2(n); x, y))|x=y=1 = 285× 22n+2 − 838× 2n+1 + 616.

3. m M2(G):

(SxSy) f (x, y)(M(NS2(n); x, y))|x=y=1 = 63× 22n − 79× 2n +
99
4

.

4. Rα(G):

(DxDy)
α f (x, y)(M(NS2(n); x, y))|x=y=1 = (285× 22n+2 − 838× 2n+1 + 616)α.

5. Rα(G):

(SxSy)
α f (x, y)(M(NS2(n); x, y))|x=y=1 = (63× 22n − 79× 2n +

99
4
)α.

6. SDD(G):

(DxSy + DySx)(M(NS2(n); x, y))|x=y=1 = 276× 22n+1 − 172× 2n+1 − 406× 2n + 253,
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M((Dn, x, y) = 12(2× 2n−1 − 1)x2y2 + 6(5× 2n−1 − 4)x2y3 + (12× 2n−1 − 9)x3y3.

Theorem 7. Topological Index Derivation from M(Dn, x, y)

1. M1(G) = 2(159× 2n−1 − 111)

2. M2(G) = 22n+3 × 783− 17469× 2n + 12177

3. m M2(G) = 403× 22n−1 − 1073× 2n−1 + 357

4. Rα(G) = (22n+3 × 783− 17469× 2n + 12177)α

5. Rα(G) = (403× 22n−1 − 1073× 2n−1 + 357)α

6. SDD(G) = 9138× 22n−2 − 12489× 2n−1 + 4266

Proof. Let f (x, y) = M(Dn; x, y) = 2n+1x1y2 + 4(2n − 1)x1y3 + {12× 2n − 11}x2y2 + 14(2n − 1)x2y3,

Dx( f (x, y)) = 24(2n − 1)xy2 + 12(5× 2n−1 − 4)xy3 + 9(2n+1 − 3)x2y3,

(Dx f (x, y))(M(Dn; x, y))|x=y=1 = 9(2n+3 − 11),

Dy( f (x, y)) = 24(2n − 1)x2y + 18(5× 2n − 4)x2y2 + 9(2n+1 − 3)x3y2,

(Dx f (x, y))(M(Dn; x, y))|x=y=1 = 174× 2n−1 − 123,

Sx f (x, y) = 6(2n − 1)x2y2 + 3(5× 2n−1 − 4)x2y3 + (4× 2n−1 − 3)x3y3,

(Sx f (x, y))(M(Dn; x, y))|x=y=1 = 31× 2n−1 − 21,

Sy f (x, y) = 6(2n − 1)x2y2 + 2(5× 2n−1 − 4)x2y3 + (2n+1 − 3)x3y3,

(Sy f (x, y))(M(Dn; x, y))|x=y=1 = 13× 2n − 17.

1. M1(G):
(Dx + Dy) f (x, y)(M(Dn; x, y))|x=y=1 = 2(159× 2n−1 − 111).

2. M2(G):
(DxDy) f (x, y)(M(Dn; x, y))|x=y=1 = 783× 22n+3 − 17469× 2n + 12177.

3. m M2(G):

(SxSy) f (x, y)(M(Dn; x, y))|x=y=1 = 403× 22n−1 − 1073× 2n−1 + 357.

4. Rα(G):

(DxDy)
α f (x, y)(M(NS1(n); x, y))|x=y=1 = (783× 22n+3 − 17469× 2n + 12177)α.

5. Rα(G):

(SxSy)
α f (x, y)(M(NS1(n); x, y))|x=y=1 = (403× 22n−1 − 1073× 2n−1 + 357)α.

6. SDD(G):

(DxSy + DySx)(M(G; x, y))|x=y=1 = 9138× 22n−2 − 12489× 2n−1 + 4266.
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3. Conclusions

We first determine M-polynomials of some nanostar dendrimers, and then recover many
degree-based topological indices. A large amount of chemical experiments requires determining the
chemical properties of new compounds and new drugs. Fortunately, the chemical based experiments
indicate that there is a strong inherent relationship between the chemical characteristics of chemical
compounds and drugs and their molecular structures. Topological indices calculated for these chemical
molecular structures can help us to understand the physical features, chemical reactivity, and biological
activity. The topological index of a molecule structure can be considered as a non-empirical numerical
quantity that quantities the molecular structure and its branching pattern. In this point of view,
topological indices can be regarded as a score function that maps each molecular structure to a real
number and can also be used as a descriptor of the molecule under testing. These results can also play
a vital rule in preparation of new drugs.
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